Spelling suggestions: "subject:"regressares""
791 |
Métodos de correção de autovalores e regressão isotônica nos modelos AMMI / Methods of eigenvalue correction and isotonic regression in models AMMIAraújo, Lúcio Borges de 02 February 2006 (has links)
Em experimentação agrícola, é freqüente a necessidade de análise conjunta de grupos de experimentos. Em muitos casos, o pesquisador deseja generalizar resultados para condições gerais de regiões e/ou em avaliar o desempenho de vários genótipos (tratamentos) em diversos ambientes (locais e/ou ano). Quando um conjunto de experimentos é planejado para vários locais é necessário considerar o delineamento individual em cada local e a combinação total dos genótipos com os locais (interação genótipo × ambiente). Logo, os dados observados podem ser organizados em uma tabela de dupla entrada. Existem várias metodologias de análise e interpretação para a interação genótipo × ambiente proveniente de um grupo de cultivares testados em vários ambientes. Entre essas metodologias destaca-se os modelos AMMI ("additive main effects and multiplicative interaction model"), como o próprio nome diz é um método uni-multivariado, que engloba uma análise de variância para os efeitos principais, que são os efeitos dos genótipos (G) e os ambientes (E) e para efeitos multiplicativos (interação genótipo × ambiente), utiliza-se a decomposição em valor singular (DVS). Essa técnica multivariada baseia-se no uso dos autovalores e autovetores provenientes da matriz de interação genótipo × ambiente. Araújo e Dias (2005) verificaram o problema de superestimação e subestimação de autovalores estimados da maneira convencional. Para superar esses problemas de estimação de autovalores, Muirhead (1987) apresenta três métodos para corrigir autovalores estimados a partir das matrizes de covariâncias amostral e alerta que nem sempre essas correções mantêm a ordem decrescente de valores, assim é sugerido o uso de regressão isotônica para ordenar esses dados, mas propriamente um algoritmo apresentado por Lin e Pearlman (1985). Os resultados indicaram que: A regressão isotônica juntamente com o algoritmo foi necessária e se mostrou muito importante em todos conjuntos de dados; Houve uma redução no número de componentes significativos para serem retidos nos modelos, fazendo com que os modelos AMMI selecionados sejam mais parcimoniosos quando se utiliza qualquer um dos métodos de correção; O método 2 apresentou as menores taxa de correção da soma de quadrados da interação genótipo × ambiente e o método 3 apresentou a maiores taxa de correção; Em relação a medida RMSPDPRESS, os menores valores foram obtidos quando se utilizou o método de correção 2. Já o método de correção 3 apresentou os maiores valores para RMSPDPRESS; O método 2 também se mostrou melhor quando o interesse era verificar o ganho em número de repetições, sendo que este benefício esteve sempre próximo de 3 repetições. Já o método 3 é o que apresenta um menor ganho em número de repetições, em torno de duas repetições. / In agricultural research is common to analyse groups of experiments. In many cases, the researcher intends to generalize results to general conditions of areas and/or evaluate the responses of several genotypes (treatments) in several environments (places and/or years). When a group of experiments is planned for several places it is necessary to consider the of design in each place and the combinations of the genotypes with the places (the interaction of genotype × environment). The observed data can be organized in an array. There are several methods of analysis and interpretation for the genotype × environment interaction from a group of genotype tested in several environments. These methods include AMMI models ("additive main effect and multiplicative interaction models"). As the name says it is a uni-multivariate method, that includes an analysis of variance for the main effects (the effects of the genotypes (G) and environments (E)) and assumes multiplicative effects for the genotype × environment interaction, using a singular value decomposition (DVS). This method estimates the eigenvalues and eigenvectors deriving from the matrix of genotype × environment interaction. Araújo and Dias (2005) found an overestimation and underestimation problem with the eigenvalues in the conventional way. To correct these problems Muirhead (1987) presents three methods to correct the eigenvalues from covariance the matrix and noted that these do not always maintain the order of values. The author suggested the use of isotonic regression to correct the eigenvalues, using an algorithm presented by Lin and Pearlman (1985). The results indicated that: The isotonic regression with the algorithm is necessary and it showed very important in all groups of data; There was a reduction in the number of significant components to be kept in the models and the order that the AMMI model selected is more parsimonious when any of the correction methods is used; The method 2 has the smallest rate of correction to the sum of squares of the genotype × environment interaction and method 3 has the largest correction rate; The measure RMSPDPRESS was smallest when method of correction 2 was used. The method of correction 3 has the largest values for RMSPDPRESS; Method 2 was also better when the interest was to verify the gain in number of replicates, and this benefit was always close to 3 replicates. The method 3 gives the smaller gain in the number of replicates, of around two replicates.
|
792 |
Mapeamento pedológico digital via regressão geograficamente ponderada e lógica booleana: uma estratégia integrada entre dados espectrais terrestres e de satélite / Digital pedological mapping by geographically weighted regression and boolean logic: an integrated strategy between terrestrial and satellite spectral dataMedeiros Neto, Luiz Gonzaga 10 February 2017 (has links)
Mapas pedológicos são importantes fontes de informação necessárias à agricultura, mas praticamente inexistentes em escalas adequadas para o Brasil, e seu levantamento pelo método convencional para a demanda brasileira é inviável. Como alternativa ao problema, mapeamento pedológico digital apresenta-se como uma área do conhecimento que envolve as relações das informações de campo, laboratório e pontuais de solos com métodos quantitativos via imagens de satélite e atributos do relevo para inferir atributos e classes. A literatura destaca, portanto, a importância do estudo da posição espacial de pontos amostrais na estimativa de atributos do solo a partir dos valores espectrais de imagens de satélite, aliado a isso, faz-se importante o cruzamento dos atributos do solo estimados e espacializados para chegar a classes de solo. Face ao exposto, o objetiva-se o desenvolvimento de uma técnica via imagem de satélite, dados espectrais e atributos do relevo, integrados por lógica booleana, para determinar mapas pedológicos. O trabalho foi realizado no município de Rio das Pedras, SP e entornos, numa área total de 47.882 ha. Onde, realizou-se processamento de imagens de satélites multitemporais, para obtenção da informação espectral da superfície de solo exposto. Esta informação foi correlacionada com espectro de laboratório de pontos amostrais em subsuperfície (profundidade 80-100 cm) e estimou-se os espectros simulando bandas de satélite para locais desconhecidos. Elaborou-se uma chave de classificação de solos por cruzamento de mapas de atributos via lógica booleana, onde definiu os seguintes atributos a serem mapeados: argila, V% e matéria orgânica (M.O) na profundidade 0-20 cm e argila, CTC, V%, m%, Al, ferro total, matiz, valor e croma na profundidade 80-100 cm. As estimativas de espectros em subsuperfície e dos atributos dos solos nas duas profundidades foram realizadas pela técnica multivariada regressão geograficamente ponderada (GWR), que teve seu desempenho preditivo avaliado pela comparação com desempenho preditivo da técnica de regressão linear múltipla (MRL). Os resultados mostraram correlação entre os espectros das duas profundidades, com R2 de validação acima 0.6. Argila (0-20 e 80-100 cm), matiz, valor e croma foram os atributos do solo que obtiveram as melhores estimativas com R2 acima 0.6. A técnica multivariada GWR obteve-se desempenho superior ao MRL. O mapa pedológico digital comparado aos mapas de solos detalhados de levantamentos convencionais obteve índice kappa de 34.65% e acurácia global de 54,46%. Tal resultado representa um nível regular de classificação. Por outro lado, deve se considerar que se trata de uma região de alta complexidade geológica e compreendendo heterogeneidade de solos. A técnica desenvolvida mostra-se com potencial de evolução no mapeamento digital de solos à medida que forem evoluindo as estimativas de atributos de solos e ajustes nos critérios da chave de classificação. / Soil maps are important sources of information necessary for agriculture, but practically absent in appropriate scales for Brazil, and its mapping by the conventional method for the brazilian demand is impracticable. How an alternative to the problem, digital pedological mapping appears as an area of knowledge that involves the relationship of field information, laboratory and point of soils with quantitative methods by satellite images and relief attributes to predict attributes and classes. The literature highlights therefore the importance of studying the spatial position of sampling points in the estimation of soil attributes from spectral values of satellite images, combined to this, is an important the crossing of the estimated and spatialized soil attributes to get the soil classes. In view of exposed, the objective is the development of a technique satellite image, spectral data and attributes of relief, integrated by boolean logic to determine soil maps. The work was carried out in Rio das Pedras county, SP, and surroundings, in a total area of 47,882 ha. Which was held processing multitemporal satellite images, to obtain spectral information of exposed soil surface. This information was correlated with laboratory spectra of sample points in the subsurface (depth 80-100 cm) and was estimated spectra simulating satellite bands to unknown locations. Produced is a soil classification key for cross attribute maps by boolean logic, which defines the following attributes to be mapped: clay, cation saturation and organic matter (OM) in the 0-20 cm depth and clay, CEC, cation saturation, aluminiu saturation, Al, total iron, hue, value and chroma in depth 80-100 cm. The estimates spectra subsurface and soil attributes in two depths were performed by multivariate technique geographically weighted regression (GWR), which had its predictive performance is evaluated by comparison with predictive performance of multiple linear regression (MRL). The results showed a correlation between the spectra of the two depths, with validation R2 above 0.6. Clay (0-20 and 80-100 cm), hue, value and chroma were the soil attributes obtained the best estimates R2 above 0.6. The GWR multivariate technique yielded better performance than MRL. The digital soil map compared to the detailed soil maps of conventional surveys obtained kappa index of 34.65% and overall accuracy of 54.46%. This result is a regular level of classification. On the other hand, it must be considered that it is a highly complex geological region and comprising heterogeneity of soils. The technique developed shows with potential developments in digital soil mapping as they evolve estimates of soil attributes and adjustments to the classification key criteria.
|
793 |
Modelo de regressão para dados com censura intervalar e dados de sobrevivência grupados / Regression model for interval-censored data and grouped survival dataHashimoto, Elizabeth Mie 04 February 2009 (has links)
Neste trabalho foi proposto um modelo de regressão para dados com censura intervalar utilizando a distribuição Weibull-exponenciada, que possui como característica principal a função de taxa de falha que assume diferentes formas (unimodal, forma de banheira, crescente e decrescente). O atrativo desse modelo de regressão é a sua utilização para discriminar modelos, uma vez que o mesmo possui como casos particulares os modelos de regressão Exponencial, Weibull, Exponencial-exponenciada, entre outros. Também foi estudado um modelo de regressão para dados de sobrevivência grupados na qual a abordagem é fundamentada em modelos de tempo discreto e em tabelas de vida. A estrutura de regressão representada por uma probabilidade é modelada adotando-se diferentes funções de ligação, tais como, logito, complemento log-log, log-log e probito. Em ambas as pesquisas, métodos de validação dos modelos estatísticos propostos são descritos e fundamentados na análise de sensibilidade. Para detectar observações influentes nos modelos propostos, foram utilizadas medidas de diagnóstico baseadas na deleção de casos, denominadas de influência global e medidas baseadas em pequenas perturbações nos dados ou no modelo proposto, denominada de influência local. Para verificar a qualidade de ajuste do modelo e detectar pontos discrepantes foi realizada uma análise de resíduos nos modelos propostos. Os resultados desenvolvidos foram aplicados a dois conjuntos de dados reais. / In this study, a regression model for interval-censored data were developed, using the Exponentiated- Weibull distribution, that has as main characteristic the hazard function which assumes different forms (unimodal, bathtub shape, increase, decrease). A good feature of that regression model is their use to discriminate models, that have as particular cases, the models of regression: Exponential, Weibull, Exponential-exponentiated, amongst others. Also a regression model were studied for grouped survival data in which the approach is based in models of discrete time and in life tables, the regression structure represented by a probability is modeled through the use of different link function, logit, complementary log-log, log-log or probit. In both studies, validation methods for the statistical models studied are described and based on the sensitivity analysis. To find influential observations in the studied models, diagnostic measures were used based on case deletion, denominated as global influence and measures based on small perturbations on the data or in the studied model, denominated as local influence. To verify the goodness of fitting of the model and to detect outliers it was performed residual analysis for the proposed models. The developed results were applied to two real data sets.
|
794 |
Modelos de regressão beta com efeitos aleatórios normais e não normais para dados longitudinais / Beta regression models with normal and not normal random effects for longitudinal dataUsuga Manco, Olga Cecilia 01 March 2013 (has links)
A classe de modelos de regressão beta tem sido estudada amplamente. Porém, para esta classe de modelos existem poucos trabalhos sobre a inclusão de efeitos aleatórios e a flexibilização da distribuição dos efeitos aleatórios, além de métodos de predição e de diagnóstico no ponto de vista dos efeitos aleatórios. Neste trabalho são propostos modelos de regressão beta com efeitos aleatórios normais e não normais para dados longitudinais. Os métodos de estimação de parâmetros e de predição dos efeitos aleatórios usados no trabalho são o método de máxima verossimilhança e o método do melhor preditor de Bayes empírico. Para aproximar a função de verossimilhança foi utilizada a quadratura de Gauss-Hermite. Métodos de seleção de modelos e análise de resíduos também foram propostos. Foi implementado o pacote BLMM no R para a realização de todos os procedimentos. O processo de estimação os parâmetros dos modelos e a distribuição empírica dos resíduos propostos foram analisados por meio de estudos de simulação. Foram consideradas várias distribuições para os efeitos aleatórios, valores para o número de indivíduos, número de observações por indivíduo e estruturas de variância-covariância para os efeitos aleatórios. Os resultados dos estudos de simulação mostraram que o processo de estimação obtém melhores resultados quando o número de indivíduos e o número de observações por indivíduo aumenta. Estes estudos também mostraram que o resíduo quantil aleatorizado segue uma distribuição aproximadamente normal. A metodologia apresentada é uma ferramenta completa para analisar dados longitudinais contínuos que estão restritos ao intervalo limitado (0; 1). / The class of beta regression models has been studied extensively. However, there are few studies on the inclusion of random effects and models with flexible random effects distributions besides prediction and diagnostic methods. In this work we proposed a beta regression models with normal and not normal random effects for longitudinal data. The maximum likelihood method and the empirical Bayes approach are used to obtain the estimates and the best prediction. Also, the Gauss-Hermite quadrature is used to approximate the likelihood function. Model selection methods and residual analysis were also proposed.We implemented a BLMM package in R to perform all procedures. The estimation procedure and the empirical distribution of residuals were analyzed through simulation studies considering differents random effects distributions, values for the number of individuals, number of observations per individual and covariance structures for the random effects. The results of simulation studies showed that the estimation procedure obtain better results when the number of individuals and the number of observations per individual increase. These studies also showed that the empirical distribution of the quantile randomized residual follows a normal distribution. The methodolgy presented is a tool for analyzing longitudinal data restricted to a interval (0; 1).
|
795 |
Redes Bayesianas aplicadas a estimação da taxa de prêmio de seguro agrícola de produtividade / Bayesian networks applied to estimation of yield insurance premiumPolo, Lucas 08 July 2016 (has links)
Informações que caracterizam o risco quebra de produção agrícola são necessárias para a precificação de prêmio do seguro agrícola de produção e de renda. A distribuição de probabilidade da variável rendimento agrícola é uma dessas informações, em especial aquela que descreve a variável aleatória rendimento agrícola condicionada aos fatores de risco climáticos. Este trabalho objetiva aplicar redes Bayesianas (grafo acíclico direcionado, ou modelo hierárquico Bayesiano) a estimação da distribuição de probabilidade de rendimento da soja em alguns municípios do Paraná, com foco na analise comparativa de riscos. Dados meteorológicos (ANA e INMET, período de 1970 a 2011) e de sensoriamento remoto (MODIS, período de 2000 a 2011) são usados conjuntamente para descrever espacialmente o risco climático de quebra de produção. Os dados de rendimento usados no estudo (COAMO, período de 2001 a 2011) requerem agrupamento de todos os dados ao nível municipal e, para tanto, a seleção de dados foi realizada nas dimensões espacial e temporal por meio de um mapa da cultura da soja (estimado por SVM - support vector machine) e os resultados de um algoritmo de identificação de ciclo de culturas. A interpolação requerida para os dados de temperatura utilizou uma componente de tendência estimada por dados de sensoriamento remoto, para descrever variações espaciais da variável que são ofuscadas pelos métodos tradicionais de interpolação. Como resultados, identificou-se relação significativa entre a temperatura observada por estações meteorológicas e os dados de sensoriamento remoto, apoiando seu uso conjunto nas estimativas. O classificador que estima o mapa da cultura da soja apresenta sobre-ajuste para safras das quais as amostras usadas no treinamento foram coletadas. Além da seleção de dados, a identificação de ciclo também permitiu obtenção de distribuições de datas de plantio da cultura da soja para o estado do Paraná. As redes bayesianas apresentam grande potencial e algumas vantagens quando aplicadas na modelagem de risco agrícola. A representação da distribuição de probabilidade por um grafo facilita o entendimento de problemas complexos, por suposições de causalidade, e facilita o ajuste, estruturação e aplicação do modelo probabilístico. A distribuição log-normal demonstrou-se a mais adequada para a modelagem das variáveis de ambiente (soma térmica, chuva acumulada e maior período sem chuva), e a distribuição beta para produtividade relativa e índices de estado (amplitude de NDVI e de EVI). No caso da regressão beta, o parâmetro de precisão também foi modelado com dependência das variáveis explicativas melhorando o ajuste da distribuição. O modelo probabilístico se demonstrou pouco representativo subestimando bastante as taxas de prêmio de seguro em relação a taxas praticadas no mercado, mas ainda assim apresenta contribui para o entendimento comparativo de situações de risco de quebra de produção da cultura da soja. / Information that characterize the risk of crop losses are necessary to crop and revenue insurance underwriting. The probability distribution of yield is one of this information. This research applies Bayesian networks (direct acyclic graph, or hierarchical Bayesian model) to estimate the probability distribution of soybean yield for some counties in Paraná state (Brazil) with focus on risk comparative analysis. Meteorological data (ANA and INMET, from 1970 to 2011) and remote sensing data (MODIS, from 2001 to 2011) were used to describe spatially the climate risk of production loss. The yield data used in this study (COAMO, from 2001 to 2011) required grouping to county level and, for that, a process of data selection was performed on spatial and temporal dimensions by a crop map (estimated by SVM - support vector machine) and by the results of a crop cycle identification algorithm. The interpolation required to spatialize temperature required a trend component which was estimated by remote sensing data, to describe the spatial variations of the variable obfuscated by traditional interpolation methods. As results, a significant relation between temperature from meteorological stations and remote sensing data was found, sustaining the use of the supposed relation between the two variables. The soybean map classifier shown over-fitting for the crop seasons for which the training samples were collected. Besides the data collection, a seeding dates distribution of soybean in Paraná state was obtained from the crop cycle identification process. The Bayesian networks showed big potential and some advantages when applied to agronomic risk modeling. The representation of the probability distribution by graphs helps the understanding of complex problems, with causality suppositions, and also helps the fitting, structuring and application of the probabilistic model. The log-normal probability distribution showed to be the best to model environment variables (thermal sum, accumulated precipitation and biggest period without rain), and the beta distribution to be the best to model relative yield and state indexes (NDVI and EVI ranges). In the case of beta regression, the precision parameter was also modeled with explanation variables as dependencies increasing the quality of the distribution fitting. In the overall, the probabilistic model had low representativity underestimating the premium rates, however it contributes to understand scenarios with risk of yield loss for the soybean crop.
|
796 |
"Uma aplicação industrial de regressão binária com erros na variável explicativa" / "An industrial application of binary regression with errors-in-variable explanatory"Favari, Daniel Fernando de 22 June 2006 (has links)
Neste trabalho, aplicamos um modelo de regressão binária com erros de medição na variável explicativa para analisar sistemas de medição do tipo atributo. Para isto, utilizamos o modelo logístico com erros na variável, para o qual obtemos as estimativas de máxima verossimilhança via o algoritmo EM e a matriz de informação de Fisher observada. Além disso, fizemos um estudo de simulação para compararmos o método analítico e os modelos logístico sem erros na variável (ingênuo) e logístico com erros na variável. Finalmente, aplicamos nossa metodologia para avaliarmos um sistema de medição passa/não passa da maior montadora de motores Diesel (MWM International). / In this work, we apply a study of binary regression model with errors-in-variable to analyze attributive measurement systems. For this, we use the logistic model with errors-in-variable to obtain parameter estimates of maximum likelihood through EM algorithm and the observed Fisher information matrix. In addition we do a simulation study to compare analytic method and the logistic model with and without measurement errors-in-variable. Finally, we apply our methodology to evaluate a attributive measurement system for the largest Diesel motor company of the world (MWM International).
|
797 |
Modelagem da evapotranspiração de referência e da evapotranspiração de limeira ácida com aplicação de técnicas de regressão e redes neurais artificiais / Modelling evapotranspiration for reference crop and acid lime orchard based on regression and artificial neural network tecniquesIrigoyen, Andrea Inés 05 July 2010 (has links)
O objetivo principal deste trabalho foi testar redes neurais artificiais (RNAs) do tipo multilayer perceptron (MLP) na estimativa da evapotranspiração de referência e da evapotranspiração na linha de plantio de limeira ácida. As RNAs foram treinadas sob algoritmo de gradiente conjugado de erros, com funções de ativação sigmóide na camada intermediária e linear na camada de saída. Foram conduzidas análises comparativas com modelos de regressão. Valores diários de evapotranspiração de referência foram calculados usando o modelo Penman-Monteith (EToPM) a partir de dados meteorológicos (1997-2006) observados em Piracicaba, estado de São Paulo, Brasil (latitude: 22º 42 30 S; longitude: 47º 38 30 W; altitude: 546 m). Os modelos foram desenvolvidos a partir de dados de radiação solar global (Rg), saldo de radiação (Rn) ou radiação no topo da atmosfera (RTA) em combinação com temperatura do ar (Tar), déficit de pressão de vapor no ar (DPV) e velocidade do vento (u). Bom desempenho foi obtido quando os dados de Rg ou Rn estavam disponíveis, mesmo com a falta de uma ou mais das outras variáveis exigidas pelo modelo Penman- Monteith. As RNAs mostraram melhor desempenho do que os modelos de regressão, especialmente quando RTA foi considerada na entrada. O erro absoluto médio (MAE) das RNAs variou de 0,1 a 0,2 mm d-1, representando de 4 a 6 % dos valores médios de EToPM. A evapotranspiração na linha de plantio, condutância difusiva e transpiração foliar foram obtidas em pomar adulto de limeira ácida (Citrus latifolia Tan.), com espaçamento 7 m × 4 m , orientação Leste-Oeste das linhas de plantio e sem limitação hídrica, em Piracicaba, Brasil. A condutância à difusão de vapor (gs) e transpiração foliar (T) foram determinadas com porômetro de equilíbrio constante e balanço nulo, em folhas completamente expandidas, na parte média da copa nas faces expostas da linha de plantio, a intervalos horários ao longo de 42 dias. A densidade de fluxo de fótons fotossintéticos (DFFF) incidentes sobre a folha, temperatura e déficit de pressão de vapor no ar (Tar e DPV) no interior do pomar e o horário de observação (h) foram combinados nos modelos de estimativa de gs e T. Somente os modelos ajustados para o inverno apresentaram bom desempenho. Medidas lisimétricas foram utilizadas na determinação da evapotranspiração diurna na linha de plantio (ETli 9-17h). Saldo de radiação (Rn), temperatura do ar (Tar), déficit de pressão de vapor (DPV), evapotranspiração de referência estimada pelo modelo Penman-Monteith (EToPM) e dia do ano foram combinados na estimativa de ETli 9-17h. O desempenho das RNAs foi superior ao dos modelos com base em regressão. O erro médio absoluto (MAE) nos modelos RNAs variou entre 3,6 e 10,6 L planta-1, representando de 6 a 18% dos valores médios de ETli 9-17h. Os modelos incluindo o efeito temporal apresentaram melhor desempenho. A estimativa da evapotranspiração de referência na escala diária e da evapotranspiração diurna na linha de plantio pelos modelos propostos mostrou-se adequada. Ficou evidente a existência de outros efeitos temporais operando concomitantemente com o ambiente atmosférico na determinação de gs e ETli 9-17h. / The main objective of this study was to test artificial neural networks (ANNs) of multilayer perceptron type (MLP) for estimating reference evapotranspiration, diffusive leaf conductance and crop evapotranspiration of a mature and irrigated citrus orchard. The ANNs were trained under conjugate gradient algorithm. The sigmoid and linear activation functions were used for the hidden and output nodes, respectively. Comparative analyses with regression models were carried out. Daily values of reference evapotranspiration were computed using the Penman-Monteith method (EToPM) from climatic data (1997-2006) at Piracicaba, Brazil. All models were developed considering global radiation (Rg), net radiation (Rn) or extraterrestrial radiation (Ra) in combination with air temperature (Tar), air vapor pressure deficit (VPD) and wind velocity (u) as input data. Good performance was obtained for any model when net radiation or solar radiation were available, even missing one or more of other variables required by the Penman-Monteith equation. The performance of ANNs were improved when compared to those obtained with regression model basis, especially when Ra was considered as input data. Mean absolute error (MAE) from ANNs varied from 0.1 to 0.2 mm d-1, representing between 4 and 6 % of the mean EToPM values. Crop evapotranspiration, leaf diffusive conductance and leaf transpiration data were obtained from an acid lime (Citrus latifolia Tan.) mature orchard, located at the same region. The orchard, with East-West planting rows and 7 m × 4 m spacing, was drip irrigated to maintain non-limiting water conditions. Leaf diffusive conductance to water vapor (gs) and transpiration (T) were measured on fully expanded leaves, in the middle height of the canopy, at Northen and Southern exposed faces, in hourly intervals along 42 selected days, using a steady-state null-balance porometer. Variability of gs and T values were described as function of the exposition faces of the planting rows, time of day and season. Significant differences between exposition faces for gs and T values were only observed in the spring. The relationship between gs or T values and leaf environmental conditions varied according to the season. Photosynthetic photon flux density (PPFD) incident on the leaf, air temperature (Tar) and vapor pressure deficit (VPD) and time of day (h) were used as inputs. Adequate performance was only observed for winter models. Lysimetric data were used to determine diurnal evapotranspiration from orchard row (ETli 9-17h). Net radiation (Rn), air temperature and deficit pressure vapor (Tar, DPV) and Penman-Monteith reference evapotranspiration (EToPM) data were combined in the regression analyses and developing process of ANNs. Also any other temporal effect was taken into account by including day of the year (DOY). Mean absolute error (MAE) for ANNs models varied from 3.6 to 10.6 L plant-1, representing between 6 and 18% of mean ETli 9-17h values. Errors decreased when DOY was included. According to the results, it can be concluded that it is possible to estimate daily EToPM and diurnal citrus orchard evapotranspiration (ETli 9-17h) accurately by the proposed models. Relevance of other temporal effects operating on gs and ETli 9-17h determination, in addition to environmental variations, was evident.
|
798 |
Extensions of the normal distribution using the odd log-logistic family: theory and applications / Extensões do normal distribuição utilizando a família odd log-logística: teoria e aplicaçõesBraga, Altemir da Silva 23 June 2017 (has links)
In this study we propose three new distributions and a study with longitudinal data. The first was the Odd log-logistic normal distribution: theory and applications in analysis of experiments, the second was Odd log-logistic t Student: theory and applications, the third was the Odd log-logistic skew normal: the new distribution skew-bimodal with applications in analysis of experiments and the fourth regression model with random effect of the Odd log-logistic skew normal distribution: an application in longitudinal data. Some have been demonstrated such as symmetry, quantile function, some expansions, ordinary incomplete moments, mean deviation and the moment generating function. The estimation of the model parameters were approached by the method of maximum likelihood. In applications were used regression models to data from a completely randomized design (CRD) or designs completely randomized in blocks (DBC). Thus, the models can be used in practical situations for as a completely randomized designs or completely randomized blocks designs, mainly, with evidence of asymmetry, kurtosis and bimodality. / A distribuição normal é uma das mais importantes na área de estatística. Porém, não é adequada para ajustar dados que apresentam características de assimetria ou de bimodalidade, uma vez que tal distribuição possui apenas os dois primeiros momentos, diferentes de zero, ou seja, a média e o desvio-padrão. Por isso, muitos estudos são realizados com a finalidade de criar novas famílias de distribuições que possam modelar ou a assimetria ou a curtose ou a bimodalidade dos dados. Neste sentido, é importante que estas novas distribuições tenham boas propriedades matemáticas e, também, a distribuição normal como um submodelo. Porém, ainda, são poucas as classes de distribuições que incluem a distribuição normal como um modelo encaixado. Dentre essas propostas destacam-se: a skew-normal, a beta-normal, a Kumarassuamy-normal e a gama-normal. Em 2013 foi proposta a nova família X de distribuições Odd log-logística-G com o objetivo de criar novas distribuições de probabildade. Assim, utilizando as distribuições normal e a skew-normal como função base foram propostas três novas distribuições e um quarto estudo com dados longitudinais. A primeira, foi a distribuição Odd log-logística normal: teoria e aplicações em dados de ensaios experimentais; a segunda foi a distribuição Odd log-logística t Student: teoria e aplicações; a terceira foi a distribuição Odd log-logística skew-bimodal com aplicações em dados de ensaios experimentais e o quarto estudo foi o modelo de regressão com efeito aleatório para a distribuição distribuição Odd log-logística skew-bimodal: uma aplicação em dados longitudinais. Estas distribuições apresentam boas propriedades tais como: assimetria, curtose e bimodalidade. Algumas delas foram demonstradas como: simetria, função quantílica, algumas expansões, os momentos incompletos ordinários, desvios médios e a função geradora de momentos. A flexibilidade das novas distrições foram comparada com os modelos: skew-normal, beta-normal, Kumarassuamy-normal e gama-normal. A estimativas dos parâmetros dos modelos foram obtidas pelo método da máxima verossimilhança. Nas aplicações foram utilizados modelos de regressão para dados provenientes de delineamentos inteiramente casualizados (DIC) ou delineamentos casualizados em blocos (DBC). Além disso, para os novos modelos, foram realizados estudos de simulação para verificar as propriedades assintóticas das estimativas de parâmetros. Para verificar a presença de valores extremos e a qualidade dos ajustes foram propostos os resíduos quantílicos e a análise de sensibilidade. Portanto, os novos modelos estão fundamentados em propriedades matemáticas, estudos de simulação computacional e com aplicações para dados de delineamentos experimentais. Podem ser utilizados em ensaios inteiramente casualizados ou em blocos casualizados, principalmente, com dados que apresentem evidências de assimetria, curtose e bimodalidade.
|
799 |
Fatores sociodemográficos e proporção de crianças que deixam de ter baixo peso para idade, em programa governamental de distribuição de leite fortificado, nas idades de 6 a 23 meses / Sociodemographic factors and proportion of children who stop having low weight for age in program government distribution of fortified milk in ages 6-23 months.Ortelan, Naiá 12 June 2013 (has links)
INTRODUÇÃO: É importante que programas de intervenção nutricional sejam avaliados. Estudo anterior mostrou que o Projeto Vivaleite, programa de distribuição de leite fortificado no Estado de São Paulo, é efetivo quando se comparam as médias dos escores z do indicador de peso para idade (P/I) de crianças ainda fora do programa com as crianças no programa, na faixa etária de 6 a 23 meses, independentemente de variáveis sociodemográficas. OBJETIVO: Estudar a associação entre fatores sociodemográficos e a proporção de crianças que deixam de ter baixo P/I, nas idades de 6 a 23 meses, durante sua participação, no período de janeiro/2003 a setembro/2008, em programa governamental de distribuição de leite fortificado. MÉTODOS: Estudo de coorte prospectiva com dados de 327 crianças residentes no interior do Estado de São Paulo que ingressaram, aos seis meses de idade, com baixo P/I (escore z P/I <-2) no Vivaleite. Foram selecionadas as seguintes variáveis: a) Resposta: baixo P/I, indicadora da situação de baixo P/I (escore z P/I < -2) apresentado pela criança durante as pesagens após a criança ingressar no programa (dicotômica, sim=0|não=1); b) Explanatórias: aleitamento materno (não recebe=0|recebe=1), condição conjugal da mãe (sem companheiro=0|com companheiro=1), idade materna (adolescente=0|não adolescente=1), peso ao nascer (contínua: 1400g a 4400g), sexo (masculino=0|feminino=1), situação de trabalho materno (não trabalha=0|trabalha=1), escolaridade materna (0-4 anos=1|5-8anos=2|9 anos ou mais=3), idade da criança na pesagem (contínua: 6 a 23 meses). Foram realizadas modelagens com regressão logística e regressão logística múltipla mista, esta última para ajuste de observações repetidas da mesma criança, usando a variável de identificação de cada criança. O processamento foi realizado com o pacote Stata 10.1. RESULTADOS: A categoria da variável que se associou positivamente ao ganho de peso das crianças foi não receber aleitamento materno (OR=0,20, p=0,001), ter um maior peso ao nascimento (OR=1,0011; p=0,022), além da maior idade da criança na pesagem (OR=1,20; p=0,001). As variáveis que não se associaram estatisticamente com o ganho de peso das crianças foram: condição conjugal da mãe (com companheiro: p=0,972), idade materna (não adolescente: p=0,935), sexo (feminino: p=0,805), situação de trabalho materno (trabalha: p=0,235) e escolaridade materna (5-8 anos: p=0,965; 9 anos ou mais: p=0,828). CONCLUSÃO: Os fatores associados positivamente à maior proporção de crianças que deixaram a condição de baixo P/I foram não receber aleitamento materno ao ingressar no programa e ter um maior peso ao nascimento, além da maior idade da criança na pesagem / BACKGROUND: It is important that nutritional intervention programs are evaluated. A previous study showed that the Project Vivaleite, a fortified milk distribution program in the State of São Paulo, is effective when comparing the means of weight-for- age z scores indicator of children aged 6 to 23 months out of the program with the children in the program, independently of sociodemographic variables. OBJECTIVES: To study the associations between sociodemographic factors and the proportion of children who no longer have low weight-for-age, in the ages of 6 to 23 months, while participating, in the period from September/2008 to January/2003, in the government program of fortified milk distribution. METHODS: Prospective cohort study with data from 327 children residents of the State of São Paulo who joined the Vivaleite at six months of age, with low weight-for-age (z score weightfor-age < -2). The following variables were selected: a) outcome variable: low weight-for-age, indicative of the situation of low weight-for-age presented by the child after joining the program (dichotomous, yes=0|no=1); b) independent variables: breastfeeding when entering the program (not receive=0|receive=1), mothers marital status (no partner=0|with partner=1), maternal age (teenager=0|no teenager=1), birth weight (continuous: 1400 to 4400 grams), gender (male=0|female=1), maternal job status (does not work=0|works=1), maternal education (0-4 years|5-8 years| 9 or more years), age of the child at each weighing occasion (continuous: 6 to 23 months). Logistic regression and mixed multiple logistic regression were done, the last in order to adjust for repeated observations of the same child, using the variable that identifies each one. Processing was carried out with software Stata 10.0. RESULTS: The category of the variable that was positively associated with the weight gain of the children was not receiving breastfeeding (OR=0,20, p=0,001), have a higher birth weight (OR=1,0011; p=0,022), and the higher age of the child at weighing (OR=1,20; p=0,001). The variables that were not statistically associated with weight gain were: mothers marital status (no partner: p=0,972), maternal age (no teenager: p=0,935), gender (female: p=0,805), maternal job status (works: p=0=235) and maternal education (5-8 years: p=0,965; 9 or more years: p=0,828). CONCLUSION: Factors positively associated with a greater proportion of children who have left the condition of low weight-for-age were not receiving breastfeeding when joining the program, having a higher birth weight and higher age of the child at weighing
|
800 |
Uma abordagem Forward-Looking para estimar a PD segundo IFRS9 / A Forward Looking Approach to estimate PD according to IFRS9Kauffmann, Luiz Henrique Outi 20 November 2017 (has links)
Este trabalho tem por objetivo discutir as metodologias de estimação da PD utilizadas na indústria financeira. Além disso, contextualizar a aplicação do trabalho ao IFRS9 e seu direcionamento para o tema de Risco de Crédito. Historicamente os grandes bancos múltiplos utilizam variadas metodologias econométricas para modelar a Probabilidade de Descumprimento (PD),um dos métodos mais tradicionais é a regressão logística, entretanto com a necessidade do cálculo da Perda Esperada de Crédito através do IFRS9, se torna necessário mudar o paradigma de estimação para uma abordagem forward-looking, isto está sendo interpretado por muitas instituições e consultorias como a inclusão de fatores e variáveis projetadas dentro do processo de estimação, ou seja, não serão utilizados apenas os dados históricos para prever o descumprimento ou inadimplência. Dentro deste contexto será proposto uma abordagem que une a estimação da Probabilidade de Descumprimento com a inclusão de um fator foward-looking. / This paper aims to discuss the methodologies used to estimate the Probability Of Default used in the financial industry. In addition, contextualize the application of the work to IFRS9 requirements and its targeting to the Credit Risk theme. Historically large multi-banks use a variety of econometric methodologies to model the Probability of Default, one of the more traditional methods is logistic regression. However, with the need to calculate the expected credit loss through IFRS9, it becomes necessary to change the estimation paradigm to a forwardlooking approach, this is being interpreted by many institutions and consultancies companies as the inclusion of factors and variables projected within the estimation process, that is, not only historical data are used to predict the default. Within this context will be proposed an approach that joins the estimation of Probability of Default with the inclusion of a forward-looking factor.
|
Page generated in 0.0844 seconds