• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 179
  • 37
  • 27
  • 16
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 342
  • 58
  • 50
  • 47
  • 42
  • 39
  • 38
  • 36
  • 36
  • 32
  • 31
  • 29
  • 29
  • 29
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
331

Hybrid Silicon and Lithium Niobate Integrated Photonics

Chen, Li 19 May 2015 (has links)
No description available.
332

Fibre-Loop Ring-Down Spectroscopy Using Liquid Core Waveguides

Bescherer-Nachtmann, Klaus 23 April 2013 (has links)
Cavity ring-down spectroscopy has been used over the last twenty years as a highly sensitive absorption spectroscopic technique to measure light attenuation in gases, liquids, and solid samples. An optical cavity is used as a multi-pass cell, and the decay time of the light intensity in the cavity is measured, thereby rendering the techniques insensitive to light intensity fluctuations. Optical waveguides are used to build the optical cavities presented in this work. The geometries of such waveguides permit the use of very small liquid sample volumes while retaining the advantages of cavity ring-down spectroscopy. In this thesis cavity ring-down measurements are conducted, both, in the time domain and by measuring phase-shifts of sinusoidally modulated light, and the two methods are theoretically connected using a simple mathematical model, which is then experimentally confirmed. A new laser driver, that is compatible with high powered diode lasers, has to be designed to be able to switch from time domain to frequency domain measurements. A sample path length enhancement within the optical cavity is explored with the use of liquid core waveguides. The setup was optimised with respect to the matrix liquid, the geometrical matching of waveguide geometries, and the shape of liquid core waveguide ends. Additionally, a new technique of producing concave lenses at fibre ends has been developed and the output of a general fibre lens is simulated. Finally, liquid core waveguides are incorporated into a fibre-loop ring-down spectroscopy setup to measure the attenuation of two model dyes in a sample volume of <1 µL. The setup is characterized by measuring concentrations of Allura Red AC and Congo Red from 1 µM to a limit of detection of 5 nM. The performance of the setup is compared to other absorption techniques measuring liquid samples. / Thesis (Ph.D, Chemistry) -- Queen's University, 2013-04-23 14:08:16.33
333

Theorie macroscopique de propagation du son dans les milieux poreux 'à structure rigide permettant la dispersion spatiale: principe et validation

Nemati, Navid 11 December 2012 (has links) (PDF)
Ce travail présente et valide une théorie nonlocale nouvelle et généralisée, de la propagation acoustique dans les milieux poreux à structure rigide, saturés par un fluide viscothermique. Cette théorie linéaire permet de dépasser les limites de la théorie classique basée sur la théorie de l'homogénéisation. Elle prend en compte non seulement les phénomènes de dispersion temporelle, mais aussi ceux de dispersion spatiale. Dans le cadre de la nouvelle approche, une nouvelle procédure d'homogénéisation est proposée, qui permet de trouver les propriétés acoustiques à l'échelle macroscopique, en résolvant deux problèmes d'action-réponse indépendants, posés à l'échelle microscopique de Navier-Stokes-Fourier. Contrairement à la méthode classique d'homogénéisation, aucune contrainte de séparation d'échelle n'est introduite. En l'absence de structure solide, la procédure redonne l'équation de dispersion de Kirchhoff-Langevin, qui décrit la propagation des ondes longitudinales dans les fluides viscothermiques. La nouvelle théorie et procédure d'homogénéisation nonlocale sont validées dans trois cas, portant sur des microgéométries significativement différentes. Dans le cas simple d'un tube circulaire rempli par un fluide viscothermique, on montre que les nombres d'ondes et les impédances prédits par la théorie nonlocale, coïncident avec ceux de la solution exacte de Kirchhoff, connue depuis longtemps. Au contraire, les résultats issus de la théorie locale (celle de Zwikker et Kosten, découlant de la théorie classique d'homogénéisation) ne donnent que le mode le plus attenué, et encore, seulement avec le petit désaccord existant entre la solution simplifiée de Zwikker et Kosten et celle exacte de Kirchhoff. Dans le cas où le milieu poreux est constitué d'un réseau carré de cylindres rigides parallèles, plongés dans le fluide, la propagation étant regardée dans une direction transverse, la vitesse de phase du mode le plus atténué peut être calculée en fonction de la fréquence en suivant les approches locale et nonlocale, résolues au moyen de simulations numériques par la méthode des Eléments Finis. Elle peut être calculée d'autre part par une méthode complètement différente et quasi-exacte, de diffusion multiple prenant en compte les effets viscothermiques. Ce dernier résultat quasi-exact montre un accord remarquable avec celui obtenu par la théorie nonlocale, sans restriction de longueur d'onde. Avec celui de la théorie locale, l'accord ne se produit que tant que la longueur d'onde reste assez grande.
334

Rolled-up Microtubular Cavities Towards Three-Dimensional Optical Confinement for Optofluidic Microsystems

Bolaños Quiñones, Vladimir Andres 15 September 2015 (has links) (PDF)
This work is devoted to investigate light confinement in rolled-up microtubular cavities and their optofluidic applications. The microcavities are fabricated by a roll-up mechanism based on releasing pre-strained silicon-oxide nanomembranes. By defining the shape and thickness of the nanomembranes, the geometrical tube structure is well controlled. Micro-photoluminescence spectroscopy at room temperature is employed to study the optical modes and their dependence on the structural characteristics of the microtubes. Finite-difference-time-domain simulations are performed to elucidate the experimental results. In addition, a theoretical model (based on a wave description) is applied to describe the optical modes in the tubular microcavities, supporting quantitatively and qualitatively the experimental findings. Precise spectral tuning of the optical modes is achieved by two post-fabrication methods. One method employs conformal coating of the tube wall with Al2O3 monolayers by atomic-layer-deposition, which permits a mode tuning over a wide spectral range (larger than one free-spectral-range). An average mode tuning to longer wavelengths of 0.11nm/ Al2O3-monolayer is obtained. The other method consists in asymmetric material deposition onto the tube surface. Besides the possibility of mode tuning, this method permits to detect small shape deformations (at the nanometer scale) of an optical microcavity. Controlled confinement of resonant light is demonstrated by using an asymmetric cone-like microtube, which is fabricated by unevenly rolling-up circular-shaped nanomembranes. Localized three-dimensional optical modes are obtained due to an axial confinement mechanism that is defined by the variation of the tube radius and wall windings along the tube axis. Optofluidic functions of the rolled-up microtubes are explored by immersing the tubes or filling their core with a liquid medium. Refractive index sensing of liquids is demonstrated by correlating spectral shift of the optical modes when a liquid interacts with the resonant light of the microtube. In addition, a novel sensing methodology is proposed by monitoring axial mode spacing changes. Lab-on-a-chip methods are employed to fabricate an optofluidic chip device, allowing a high degree of liquid handling. A maximum sensitivity of 880 nm/refractive-index-unit is achieved. The developed optofluidic sensors show high potential for lab-on-a-chip applications, such as real-time bio/chemical analytic systems.
335

Rolled-Up Vertical Microcavities Studied by Evanescent Wave Coupling and Photoluminescence Spectroscopy

Böttner, Stefan 20 May 2015 (has links) (PDF)
Vertically rolled-up microcavities are fabricated using differentially strained nanomembranes by employing rate and temperature gradients during electron beam evaporation of SiO2. The geometry of the rolled-up tubes is defined by a photo-lithographically patterned polymer sacrificial layer beneath the SiO2 layers that is dissolved to start the rolling. Rolled-up tubes support resonances formed by constructive interference of light propagating along the circumference. Optical studies are performed in the visible spectral range using a micro-photoluminescence (µPL) setup to excite and detect optical modes. Record high quality factors (Q factors) of 5400 for rolled-up resonators probed in PL-emission mode are found and their limits are theoretically investigated. Axial modes can also be supported when an increased winding number in the center is realized by appropriate pattern designs. In addition, higher order radial modes can be confined when atomic layer deposition (ALD) coatings are applied. Both types of modes are identified using polarization and spatially resolved µPL maps. Evanescent-wave coupling by tapered fibers and tubes on substrates is the second method used to study light confinement and to demonstrate frequency filtering in ALD coated rolled-up microcavities. Scans are performed by monitoring light from a tunable laser in the range of 1520-1570 nm after transmission through the tapered fiber. Dips in the spectrum are found and attributed to fundamental and axial resonant modes. Moreover, by coupling two tapered fibers to a lifted rolled-up microcavity, a four-port add-drop filter is demonstrated as a future component for vertical resonant light transfer in on-chip optical networks. Simulations show that the subwavelength tube wall thickness limits the Q factor at infrared wavelengths and ALD coatings are necessary to enhance the light confinement. After coating, two linear polarization states are found in experiment and fundamental and axial modes can be selectively excited by coupling the fiber to different positions along the tube axis. Spatially and polarization resolved transmission maps reveal a polarization dependent axial mode distribution which is verified theoretically. The results of this thesis are important for lab-on-chip applications where rolled-up microcavities are employed as high resolution optofluidic sensors as well as for future uses as waveguide coupled components in three-dimensional multi-level optical data processing units to provide resonant interlayer signal transfer.
336

Utilisation des non-linéarités Kerr et Brillouin dans les résonateurs à mode de galerie cristallins pour la synthèse de micro-ondes / Kerr and Brillouin nonlinear effect in crystalline whispering gallery mode resonators for microwaves generation

Diallo, Souleymane 25 November 2016 (has links)
Les résonateurs à modes de galerie sont des cavités diélectriques qui supportent des modes à très haut facteur de qualité et à faible volume qui demeurent confinés à l'interface air-diélectrique pour des durées pouvant atteindre voire dépasser la microseconde. L'intérêt de ce fort confinement des modes pour de longues durées est l'accentuation de l'interaction lumière-matière. Par conséquent, de nombreuses interactions non-linéaires telles que l'effet Kerr ou encore l'effet Brillouin à des puissances seuil inversement proportionnelles au carré voire au cube du facteur de qualité du résonateur ont lieu en son sein. Ces propriétés donnent accès à de nombreuses applications dans des domaines divers et variés tels que la spectroscopie, les télécommunications ou encore les micro-ondes. Les travaux de cette thèse ont pour but d'exploiter les non-linéarités Kerr et Brillouin dans les résonateurs à mode galerie à la longueur d'onde de 1550 nm afin de générer des micro-ondes ultra-stables à des fréquences comprises entre 5 et 30 GHz. Le premier chapitre introduit la théorie, la fabrication, le couplage et la caractérisation de résonateurs à des modes de galerie. Le second chapitre concerne la génération de micro-ondes. Nous y présentons nos résultats expérimentaux, la modélisation numérique de peignes de Kerr, ainsi que l'analyse d'instabilités oscillatoires d'origine thermique observées lors de nos travaux expérimentaux, puis nous concluons. Le dernier chapitre traite de l'interaction photons-phonons via le processus de diffusion Brillouin stimulée dans ces mêmes expérimentaux ainsi que le modèle temporel que nous avons développé pour suivre la dynamique de l'onde transmise et de celle rétrodiffusée. Le dernier chapitre conclue nos travaux. Les travaux présentés dans ce manuscrit ont été financé par l'European Research Council dans le cadre du projet NextPhase. / Whispering galery mode resonators are dielectric cavities that support modes with ultra-high quality factor and small volume that remain confined in their inner periphery for time duratioons that can be as long as few microseconds. The strong confinement of these modes for such long durations strongly enhances nonlinear effect suchs as Kerr effect or Brillouin effect. These resonators can therefore be used for several applications such as spectroscopy, telecommunications or microwave generation. The objective of this thesis is to use Kerr and Brillouin nonlinearities in these resonators at the laser wavelength of 1550 nm, in order to generate high spectral purity microwave signals with frequencies rangong fros 5 to 30 GHz. The first chapter oh the thesis intriduces the theory, fabrication, coupling and characterisation of whispering gallery mode resonators. The second chapter is about the generation of Kerr optical frequency combs in these resonators and their application to the generation of microwave signals. We present our experimental resuktsdn the numerical modelling of Kerr combs, the analysis of oscillatory instabilities (due to thermal effect) observed during our experiments, and conclue. The third chapter concerns photon-phonon interactions via stimulated Brillouin scattering in these resonators and their application to the generation of microwave signals. We present our experimental results and the temporal model that we developed to track the dynamics of the forward and backscattered fields. The last chapter conclude the thesis. The research presented in this thesis has benne funded by the European Research Council through the project Nextphase.
337

Modelling of Pulse Propagation in Nonlinear Photonic Structures / Modelling of Pulse Propagation in Nonlinear Photonic Structures

Sterkhova, Anna January 2014 (has links)
V současnosti jsme svědky stále zvyšujících se nároku na rychlost přenosu a zpracování signálu a kapacitu pamet’ových zařízení. Proto se pozornost výzkumných pracovníku zaměřuje k plně optickým zařízením, která by mohla splnit zmíněné požadavky. Jednou z intenzívně zkoumaných možností je využití mikroprstencových optických rezonátoru. Při výzkumu je nutné využít numerických metod, které simulují šíření optického záření v dané struktuře. K tomuto účelu existuje celá rada metod, které se liší v efektivitě výpočtu, použitých aproximacích, i možnostech použití. Cílem této práce bylo vyvinout dvě jednoduché a praktické numerické metody pro modelování šíření pulzního záření v nelineárních vlnovodných strukturách. Přítom bylo požadováno, aby, na rozdíl od obecně známé a často využívané metody konečných diferencí v časové oblasti (FD-TD), bylo možné metody snadno aplikovat při studiu nelineárních struktur založených na mikroprstencových rezonátorech. Proto vyvinuté metody používají některé aproximace, zejména aproximaci pomalu proměnné obálky. Výhodou metod je vysoká rychlost a skromné požadavky na výpočetní zdroje. Obě metody vycházejí ze zkutečnosti, že naprostá většina nelineárních struktur založených na mikroprstencových rezonátorech se skládá ze dvou základních prvku: obyčejných vlnovodu a vlnovodných vazebních clenu. První metoda řeší vázané parciální diferenciální rovnice, které popisují šíření obálky pulzu ve struktuře. Přitom je použito tzv. „up-wind“ schéma vhodné pro parciální diferenciální rovnice popisující šíření vln. Druhá metoda vychází z první; rozdíl je v popisu vazby mezi dvěma vlnovody. Pokud se v první metodě uvažuje realistická vazba rozložená na určité délce, pak druhá metoda je založena na představě vazby nacházející se v jednom místě. Díky tomu je možné integrovat příslušné rovnice a dosáhnout výrazného urychlení výpočtu. Kvazianalytický charakter druhé metody umožňuje dále snadnou klasifikaci různých typu ustálených řešení. Vzhledem k těmto vlastnostem byla druhá metoda využita k výzkumu samovolné generace optických pulzu ve strukturách skládajících se z vázaných prstencových rezonátoru. Obě metody, které byly vyvinuty během této práce, představují rychlé a fyzikálně názorné alternativy k metodě FD-TD, a tak lze očekávat, že mohou hrát důležitou roli při výzkumu nelineárních vlnovodných struktur.
338

MIKROPÁSKOVÉ FILTRY S VYUŽITÍM NARUŠENÉ ZEMNÍ PLOCHY / MICROSTRIP FILTERS USING DEFECTED GROUND STRUCTURE

Vágner, Petr January 2009 (has links)
The thesis deals with the microstrip filter design using defected ground structure (DGS). The difference between standard asymmetric microstrip technique and DGS is in using the structures etched in the microwave substrate ground plane. The DGS resonant characteristics are then used in filter design. The thesis consists of three factual parts. The first one (chapter 4) introduces the use of the DGS resonators in the lowpass filter design. It involves experimental analysis of one type of the lowpass filter. The second part (chapter 5) deals with a novel microstrip lowpass filter design method using DGS. The proposed method is verified by simulations and several samples are realized and measured. Finally, the third part (chapters 7 and 8) deals with the bandpass filter design using specific defected ground structure as a resonator. The resonators are used in a coupled resonator structure. Filters of various orders and resonator configurations are designed and simulated. A combination of the DGS resonators and half-wavelength microstrip resonators is introduced as well. Selected samples are realized and measurement results are compared with simulations.
339

Rolled-Up Vertical Microcavities Studied by Evanescent Wave Coupling and Photoluminescence Spectroscopy

Böttner, Stefan 07 May 2015 (has links)
Vertically rolled-up microcavities are fabricated using differentially strained nanomembranes by employing rate and temperature gradients during electron beam evaporation of SiO2. The geometry of the rolled-up tubes is defined by a photo-lithographically patterned polymer sacrificial layer beneath the SiO2 layers that is dissolved to start the rolling. Rolled-up tubes support resonances formed by constructive interference of light propagating along the circumference. Optical studies are performed in the visible spectral range using a micro-photoluminescence (µPL) setup to excite and detect optical modes. Record high quality factors (Q factors) of 5400 for rolled-up resonators probed in PL-emission mode are found and their limits are theoretically investigated. Axial modes can also be supported when an increased winding number in the center is realized by appropriate pattern designs. In addition, higher order radial modes can be confined when atomic layer deposition (ALD) coatings are applied. Both types of modes are identified using polarization and spatially resolved µPL maps. Evanescent-wave coupling by tapered fibers and tubes on substrates is the second method used to study light confinement and to demonstrate frequency filtering in ALD coated rolled-up microcavities. Scans are performed by monitoring light from a tunable laser in the range of 1520-1570 nm after transmission through the tapered fiber. Dips in the spectrum are found and attributed to fundamental and axial resonant modes. Moreover, by coupling two tapered fibers to a lifted rolled-up microcavity, a four-port add-drop filter is demonstrated as a future component for vertical resonant light transfer in on-chip optical networks. Simulations show that the subwavelength tube wall thickness limits the Q factor at infrared wavelengths and ALD coatings are necessary to enhance the light confinement. After coating, two linear polarization states are found in experiment and fundamental and axial modes can be selectively excited by coupling the fiber to different positions along the tube axis. Spatially and polarization resolved transmission maps reveal a polarization dependent axial mode distribution which is verified theoretically. The results of this thesis are important for lab-on-chip applications where rolled-up microcavities are employed as high resolution optofluidic sensors as well as for future uses as waveguide coupled components in three-dimensional multi-level optical data processing units to provide resonant interlayer signal transfer.
340

Rolled-up Microtubular Cavities Towards Three-Dimensional Optical Confinement for Optofluidic Microsystems

Bolaños Quiñones, Vladimir Andres 12 August 2015 (has links)
This work is devoted to investigate light confinement in rolled-up microtubular cavities and their optofluidic applications. The microcavities are fabricated by a roll-up mechanism based on releasing pre-strained silicon-oxide nanomembranes. By defining the shape and thickness of the nanomembranes, the geometrical tube structure is well controlled. Micro-photoluminescence spectroscopy at room temperature is employed to study the optical modes and their dependence on the structural characteristics of the microtubes. Finite-difference-time-domain simulations are performed to elucidate the experimental results. In addition, a theoretical model (based on a wave description) is applied to describe the optical modes in the tubular microcavities, supporting quantitatively and qualitatively the experimental findings. Precise spectral tuning of the optical modes is achieved by two post-fabrication methods. One method employs conformal coating of the tube wall with Al2O3 monolayers by atomic-layer-deposition, which permits a mode tuning over a wide spectral range (larger than one free-spectral-range). An average mode tuning to longer wavelengths of 0.11nm/ Al2O3-monolayer is obtained. The other method consists in asymmetric material deposition onto the tube surface. Besides the possibility of mode tuning, this method permits to detect small shape deformations (at the nanometer scale) of an optical microcavity. Controlled confinement of resonant light is demonstrated by using an asymmetric cone-like microtube, which is fabricated by unevenly rolling-up circular-shaped nanomembranes. Localized three-dimensional optical modes are obtained due to an axial confinement mechanism that is defined by the variation of the tube radius and wall windings along the tube axis. Optofluidic functions of the rolled-up microtubes are explored by immersing the tubes or filling their core with a liquid medium. Refractive index sensing of liquids is demonstrated by correlating spectral shift of the optical modes when a liquid interacts with the resonant light of the microtube. In addition, a novel sensing methodology is proposed by monitoring axial mode spacing changes. Lab-on-a-chip methods are employed to fabricate an optofluidic chip device, allowing a high degree of liquid handling. A maximum sensitivity of 880 nm/refractive-index-unit is achieved. The developed optofluidic sensors show high potential for lab-on-a-chip applications, such as real-time bio/chemical analytic systems.

Page generated in 0.0788 seconds