281 |
Classification multisource par la fusion évidentielle avec une nouvelle approche statistique floueGermain, Mickaël. January 1900 (has links)
Thèse (Ph.D.)--Université de Sherbrooke (Canada), 2006. / Titre de l'écran-titre (visionné le 27 févr. 2008). In ProQuest dissertations and theses. Publié aussi en version papier.
|
282 |
Discrete shape modeling for geometrical product specification : contributions and applications to skin model simulation / Shape modeling discrets pour la spécification géométrique des produits : contributions et applications à la simulation sur le skin modelZhang, Min 17 October 2011 (has links)
La gestion et le contrôle des variations géométriques des produits pendant les processus de développement représentent une préoccupation importante pour la réduction des coûts, l’amélioration de la qualité et la compétitivité des entreprises dans un contexte de mondialisation. Pendant la phase de conception, les exigences fonctionnelles et les tolérances géométriques sont issues de l'intention de conception. La modélisation des formes et le dimensionnement des produits sont aujourd'hui largement supportés par des outils de modélisation géométrique. Toutefois, les variations géométriques ne peuvent pas être évaluées en utilisant intuitivement les outils de modélisation existants. En outre, les étapes de fabrication et de mesure sont les deux principaux générateurs de variations géométriques desquels découlent les deux axiomes bien connus de l'imprécision de la fabrication et de l'incertitude de la mesure. Une vision globale des spécifications géométriques des produits (GPS) devrait considérer non seulement le processus complet de tolérancement, la modélisation des tolérances, et la représentation des tolérances mais aussi les représentations des formes géométriques et les techniques de traitement appropriées ainsi que les algorithmes associés. GeoSpelling, solution considérée comme fondement des normes ISO GPS, offre un langage non ambigu et un cadre complet pour la modélisation et la description des variations géométriques sur le cycle de vie des produits. GeoSpelling s’appuie sur un ensemble de concepts forts dont celui du "Skin Model". Cependant, l’«opérationnalisation» de GeoSpelling n'a pas été réalisée et peu de recherches ont porté sur la génération du Skin Model. Le Skin Model, vu comme un modèle de forme discrète est l'objectif principal de cette thèse. Dans ce travail, les fondamentaux de la géométrie discrète sont appliqués à GeoSpelling, les techniques de simulation de Monte Carlo et les méthodes statistiques d'analyse de formes sont développées pour simuler et analyser les "formes réalistes" prenant en compte, les contraintes géométriques dérivées de spécifications fonctionnelles et de considérations de fabrication. En plus de cartographier les concepts fondamentaux et les opérations de GeoSpelling avec la géométrie discrète, ce travail propose un modèle de forme discrète intégrant les erreurs aléatoires et systématiques approchées du second ordre. Le concept d'un Skin Model moyen et ses statistiques robustes sont également développés. Une étude de cas plus complète, basée sur un embouti de tôle en forme de croix pour lequel le processus de fabrication est simulé avec des variations stochastiques, permet d’illustrer les résultats des simulations du skin model. Les performances de la méthode sont ensuite évaluées. / The management and the control of product geometrical variations during the whole development process is an important issue for cost reduction, quality improvement and company competitiveness in the global manufacturing era. During the design phase, geometric functional requirements and tolerances are derived from the design intent. Geometric modeling tools, now largely support the modeling of product shapes and dimensions. However, permissible geometrical variations cannot be intuitively assessed using existing modeling tools. In addition, the manufacturing and measurement stages are two main geometrical variations generators according to the two well know axioms of manufacturing imprecision and measurement uncertainty. A comprehensive view of Geometrical Product Specifications should consider not only the complete tolerancing process, tolerance modeling and tolerance representation but also shape geometric representations, and suitable processing techniques and algorithms. GeoSpelling as the basis of the GPS standard enables a comprehensive modeling framework and an unambiguous language to describe geometrical variations covering the overall product life cycle thanks to a set of concepts and operations based on the fundamental concept of the “Skin Model”. However, the “operationalization” of GeoSpelling has not been successfully completed and few research studies have focused on the skin model simulation. The skin model as a discrete shape model is the main focus of this dissertation. We investigate here discrete geometry fundamentals of GeoSpelling, Monte Carlo Simulation Techniques and Statistical Shape Analysis methods to simulate and analyze “realistic shapes” when considering geometrical constraints requirements (derived from functional specifications and manufacturing considerations). In addition to mapping fundamental concepts and operations to discrete geometry one’s, the work presented here investigates a discrete shape model for both random and systematic errors when taking into account second order approximation of shapes. The concept of a mean skin model and its robust statistics are also developed. The results of the skin model simulations and visualizations are reported. By means of a case study based on a cross-shaped sheet metal part where the manufacturing process is simulated using Finite Element Analysis considering stochastic variations, the results of the skin model simulations are shown, and the performances of the method are described.
|
283 |
L'impact des méthodes de traitement des valeurs manquantes sur les qualités psychométriques d'échelles de mesure de type LikertRousseau, Michel 12 April 2018 (has links)
La présence de réponses manquantes pour certains items d’une échelle de mesure est un phénomène que tout chercheur est susceptible de rencontrer au cours de ses travaux. Bien que les biais que peut causer un traitement inadéquat de cette non-réponse soient connus depuis près de 30 ans (Rubin, 1976), les connaissances quant à l’efficacité des diverses méthodes de traitement des valeurs manquantes sont encore très restreintes. La présente étude vise à faire évoluer les connaissances et les pratiques concernant le traitement des valeurs manquantes dans le contexte d’utilisation d’échelles de type Likert. Le problème fondamental que posent les valeurs manquantes est qu’il est impossible de ne pas en tenir compte lors de l’application d’une méthode d’analyse statistique. La majorité de ces méthodes ayant été développées pour traiter des matrices de données complètes. Les modèles de mesure utilisés dans le traitement des données issues d’échelles de type Likert n’échappent pas à cette réalité. Deux modèles de mesure sont étudiés plus en profondeur dans ce projet soit, le modèle classique et le modèle gradué de Samejima. La recherche entreprise avait comme objectif d’évaluer l’efficacité de cinq méthodes de traitement des valeurs manquantes, dont la méthode d’imputation multiple. De plus, il était visé d’évaluer l’impact du nombre de sujets, du nombre d’items et de la proportion des valeurs manquantes sur l’efficacité des méthodes. Les résultats issus de cette recherche semblent suggérer que la méthode d’imputation multiple présente une efficacité supérieure aux autres méthodes bien que, tout dépendant du modèle de mesure considéré, d’autres méthodes plus simples semblent aussi efficaces. Il importe de noter en conclusion qu’aucune méthode de traitement ne peut éliminer complètement les biais causés par les valeurs manquantes et qu’à ce sujet, il serait préférable de prévenir plutôt que de guérir. / The presence of missing answers for some items of a scale of measurement is a phenomenon which any researcher is suitable to meet during his work. Although bias that an inadequate treatment of this non-response can cause are known since nearly 30 years (Rubin, 1976), knowledge of the effectiveness of the various missing values treatment is still very restricted. The present study aims at making knowledge and practices concerning the treatment of the missing values evolve in the context of Likert type scale. The fundamental problem that missing values pose is that it is impossible not to take it into account at the time of the application of a method of statistical analysis, the majority of these methods having been developed to treat matrices of complete data. The models of measurement used in the analysis of Likert type scale data do not escape from this reality. Two models of measurement are studied more in-depth in this project, the classical test model and the Samejima graded model. The main objective of the research undertaken is to evaluate the effectiveness of five missing values treatment, including the multiple imputation method. Moreover, it was aimed to evaluate the impact of the number of subjects, the number of items and the proportion of the missing values on the effectiveness of the methods. The results of this research seem to suggest that the effectiveness of multiple imputation is higher than the other methods, although depending on the model of measurement considered, other simpler methods seem also effective. In conclusion, it is important to note that because no method of treatment can eliminate completely the bias caused by the presence of missing values, it would be preferable to prevent rather than to cure.
|
284 |
Modélisation de la dépendance à l'aide des mélanges communs et applications en actuariatMtalai, Itre 19 December 2018 (has links)
Tableau d'honneur de la Faculté des études supérieures et postdoctorales, 2018-2019 / La modélisation de la dépendance entre les risques pour un portefeuille d’une assurance ou d’une entité financière est devenue de plus en plus importante pour la solvabilité des institutions financières et l’examen de solvabilité dynamique et l’analyse financière dynamique des compagnies d’assurance. L’hypothèse d’indépendance entre les risques est parfois réaliste et facilite l’évaluation, l’agrégation et l’allocation des risques. Cependant, dans la majorité des cas, les risques individuels sont influencés par un ou plusieurs facteurs communs, tels que l’environnement économique, les régions géographiques ou les conditions climatiques et il est donc moins réaliste, voire dangereux, de supposer l’indépendance entre les risques d’un même portefeuille. Dans la littérature, un tel cas peut être modélisé par des modèles avec mélange commun. Ces modèles ont de nombreuses applications en assurance et en finance. L’objectif de cette thèse est donc d’explorer les modèles de dépendance construits à l’aide des mélanges communs et de faire sortir, à l’aide de plusieurs applications, la dangerosité de considérer l’indépendance entre les risques au sein d’un portefeuille. En particulier, la focalisation est mise sur un modèle souvent considéré pour modéliser le montant de sinistres, notamment la loi exponentielle mélange. Cette thèse considère les modèles de risque basés sur la loi exponentielle mélange. Le premier chapitre constitue une introduction générale aux modèles avec mélanges communs et introduit les notions qui seront utilisées dans les autres chapitres. Dans le deuxième chapitre, nous considérons un portefeuille de risques représentés par un vecteur de variables aléatoires dont la fonction de répartition conjointe est définie par une copule Archimédienne ou une copule Archimédienne imbriquée. Nous examinons le calcul de la fonction de répartition de la somme ou une variété de fonctions de ces variables aléatoires. En nous basant sur la méthodologie computationnelle présentée dans ce chapitre, nous examinons plusieurs problèmes reliés à différents modèles de risque en actuariat, tels que l’agrégation et l’allocation du capital. De plus, en utilisant une telle structure de dépendance avec des marginales spécifiques, nous obtenons des expressions explicites pour plusieurs quantités relatives au risque agrégé telles que sa fonction de masse de probabilité, sa fonction de répartition, sa TVaR, etc. L’échangeabilité des copules Archimédiennes implique que toutes les marginales sont égales. Afin de généraliser les copules Archimédiennes pour permettre les asymétries, plusieurs chercheurs utilisent une structure hiérarchique obtenue en imbriquant plusieurs copules Archimédiennes. Toutefois, il est difficile de valider la condition d’imbrication permettant d’assurer que la structure résultante est une copule, lorsque les copules impliquées appartiennent à des familles Archimédiennes différentes. Afin de remédier à ce problème, nous présentons, au troisième chapitre, une nouvelle méthode d’imbrication basée sur la construction des lois composées multivariées exponentielles mélange. En introduisant plusieurs paramètres, un large spectre de structures de dépendance peut être couvert par cette nouvelle construction, ce qui semble être très intéressant pour des applications pratiques. Des algorithmes efficients de simulation et d’agrégation sont également présentés. En nous inspirant à la fois des chapitres 2 et 3, nous proposons et examinons en détail au quatrième chapitre une nouvelle extension au modèle collectif de risque en supposant une certaine dépendance entre la fréquence et la sévérité des sinistres. Nous considérons des modèles collectifs de risque avec différentes structures de dépendance telles que des modèles impliquant des lois mélanges d’Erlang multivariées ou, dans un cadre plus général, des modèles basés sur des copules bivariées ou multivariées. Nous utilisons également les copules Archimédiennes et Archimédiennes hiérarchiques afin de modéliser la dépendance entre les composantes de la somme aléatoire représentant le montant de sinistre global. En nous basant encore une fois sur la représentation de notre modèle sous forme d’un mélange commun, nous adaptons la méthodologie computationnelle présentée au chapitre 2 pour calculer la fonction de masse de probabilité d’une somme aléatoire incorporant une dépendance hiérarchique. Finalement, dans le cinquième chapitre, nous soulignons l’utilité des modèles avec mélange commun et nous étudions plus en détail les lois exponentielles mélange dans leurs versions univariée et multivariée et nous expliquons leur lien étroit avec les copules Archimédiennes et Archimédiennes hiérarchiques. Nous proposons également plusieurs nouvelles distributions et nous établissons leurs liens avec des distributions connues. / Risk dependence modelling has become an increasingly important task for the solvency of financial institutions and insurance companies. The independence assumption between risks is sometimes realistic and facilitates risk assessment, aggregation and allocation. However, in most cases individual risks are influenced by at least one common factor, such as the economic environment, geographical regions or climatic conditions, and it is therefore less realistic or even dangerous to assume independence between risks. In the literature, such a case can be modelled by common mixture models. These models have many applications in insurance and finance. The aim of this thesis is to explore the dependence models constructed using common mixtures and to bring out, with the use of several applications, the riskiness of considering the independence between risks within an insurance company or a financial institution. In particular, the focus is on the exponential mixture. Exponential mixture distributions are on the basis of this thesis. The first chapter is a general introduction to models with common mixtures and introduces the concepts that will be used in the other chapters. In the second chapter, we consider a portfolio of risks represented by a vector of random variables whose joint distribution function is defined by an Archimedean copula or a nested Archimedean copula. We examine the computation of the distribution of the sum function or a variety of functions of these random variables. Based on the computational methodology presented in this chapter, we examine risk models regarding aggregation, capital allocation and ruin problems. Moreover, by using such a dependency structure with specific marginals, we obtain explicit expressions for several aggregated risk quantities such as its probability mass function, its distribution function, and its TVaR. The exchangeability of the Archimedean copulas implies that all margins are equal. To generalize Archimedean copulas to allow asymmetries, several researchers use a hierarchical structure obtained by nesting several Archimedean copulas. However, it is difficult to validate the nesting condition when the copulas involved belong to different Archimedean families. To solve this problem, we present, in the third chapter, a new imbrication method via the construction of the multivariate compound distributions. By introducing several parameters, a large spectrum of dependency structures can be achieved by this new construction, which seems very interesting for practical applications. Efficient sampling and aggregation algorithms are also presented. Based on both Chapters 2 and 3, we propose and examine in detail, in the fourth chapter, a new extension to the collective risk model assuming a certain dependence between the frequency and the severity of the claims. We consider collective risk models with different dependence structures such as models based on multivariate mixed Erlang distributions, models involving bivariate or multivariate copulas, or in a more general setting, Archimedean and hierarchical Archimedean copulas. Once again, based on the common mixture representation, we adapt the computational methodology presented in Chapter 2 to compute the probability mass function of a random sum incorporating a hierarchical Archimedean dependency. Finally, in the last chapter, we study, in more details, the exponential mixture distributions in their univariate and multivariate versions and we explain their close relationship to Archimedean and hierarchical Archimedean copulas. We also derive several new distributions, and we establish their links with pre-existent distributions. Keywords : Common mixture models, Exponential mixture, Bernoulli mixture, Archimedean copulas, Nested Archimedean copulas, Compounding, Marshall-Olkin, Hierarchical dependence structures.
|
285 |
Contributions à l'apprentissage statistique dans les modèles parcimonieuxAlquier, Pierre 06 December 2013 (has links) (PDF)
Ce mémoire d'habilitation a pour objet diverses contributions à l'estimation et à l'apprentissage statistique dans les modeles en grande dimension, sous différentes hypothèses de parcimonie. Dans une première partie, on introduit la problématique de la statistique en grande dimension dans un modèle générique de régression linéaire. Après avoir passé en revue les différentes méthodes d'estimation populaires dans ce modèle, on présente de nouveaux résultats tirés de (Alquier & Lounici 2011) pour des estimateurs agrégés. La seconde partie a essentiellement pour objet d'étendre les résultats de la première partie à l'estimation de divers modèles de séries temporelles (Alquier & Doukhan 2011, Alquier & Wintenberger 2013, Alquier & Li 2012, Alquier, Wintenberger & Li 2012). Enfin, la troisième partie présente plusieurs extensions à des modèles non param\étriques ou à des applications plus spécifiques comme la statistique quantique (Alquier & Biau 2013, Guedj & Alquier 2013, Alquier, Meziani & Peyré 2013, Alquier, Butucea, Hebiri, Meziani & Morimae 2013, Alquier 2013, Alquier 2008). Dans chaque section, des estimateurs sont proposés, et, aussi souvent que possible, des inégalités oracles optimales sont établies.
|
286 |
Apprentissage statistique multi-tâchesSolnon, Matthieu 25 November 2013 (has links) (PDF)
Cette thèse a pour objet la construction, la calibration et l'étude d'estimateurs multi-tâches, dans un cadre fréquentiste non paramétrique et non asymptotique. Nous nous plaçons dans le cadre de la régression ridge à noyau et y étendons les méthodes existantes de régression multi-tâches. La question clef est la calibration d'un paramètre de régularisation matriciel, qui encode la similarité entre les tâches. Nous proposons une méthode de calibration de ce paramètre, fondée sur l'estimation de la matrice de covariance du bruit entre les tâches. Nous donnons ensuite pour l'estimateur obtenu des garanties d'optimalité, via une inégalité oracle, puis vérifions son comportement sur des exemples simulés. Nous obtenons par ailleurs un encadrement précis des risques des estimateurs oracles multi-tâches et mono-tâche dans certains cas. Cela nous permet de dégager plusieurs situations intéressantes, où l'oracle multi-tâches est plus efficace que l'oracle mono-tâche, ou vice versa. Cela nous permet aussi de nous assurer que l'inégalité oracle force l'estimateur multi-tâches à avoir un risque inférieur à l'estimateur mono-tâche dans les cas étudiés. Le comportement des oracles multi-tâches et mono-tâche est vérifié sur des exemples simulés.
|
287 |
Sommes et extrêmes en physique statistique et traitement du signal : ruptures de convergences, effets de taille finie et représentation matricielle / Sums and extremes in statistical physics and signal processing : Convergence breakdowns, finite size effects and matrix representationsAngeletti, Florian 06 December 2012 (has links)
Cette thèse s'est développée à l'interface entre physique statistique et traitement statistique du signal, afin d'allier les perspectives de ces deux disciplines sur les problèmes de sommes et maxima de variables aléatoires. Nous avons exploré trois axes d'études qui mènent à s'éloigner des conditions classiques (i.i.d.) : l'importance des événements rares, le couplage avec la taille du système, et la corrélation. Combinés, ces trois axes mènent à des situations dans lesquelles les théorèmes de convergence classiques sont mis en défaut.Pour mieux comprendre l'effet du couplage avec la taille du système, nous avons étudié le comportement de la somme et du maximum de variables aléatoires indépendantes élevées à une puissance dépendante de la taille du signal. Dans le cas du maximum, nous avons mis en évidence l'apparition de lois limites non standards. Dans le cas de la somme, nous nous sommes intéressés au lien entre effet de linéarisation et transition vitreuse en physique statistique. Grâce à ce lien, nous avons pu définir une notion d'ordre critique des moments, montrant que, pour un processus multifractal, celui-ci ne dépend pas de la résolution du signal. Parallèlement, nous avons construit et étudié, théoriquement et numériquement, les performances d'un estimateur de cet ordre critique pour une classe de variables aléatoires indépendantes.Pour mieux cerner l'effet de la corrélation sur le maximum et la somme de variables aléatoires, nous nous sommes inspirés de la physique statistique pour construire une classe de variable aléatoires dont la probabilité jointe peut s'écrire comme un produit de matrices. Après une étude détaillée de ses propriétés statistiques, qui a montré la présence potentielle de corrélation à longue portée, nous avons proposé pour ces variables une méthode de synthèse en réussissant à reformuler le problème en termes de modèles à chaîne de Markov cachée. Enfin, nous concluons sur une analyse en profondeur du comportement limite de leur somme et de leur maximum. / This thesis has grown at the interface between statistical physics and signal processing, combining the perspectives of both disciplines to study the issues of sums and maxima of random variables. Three main axes, venturing beyond the classical (i.i.d) conditions, have been explored: The importance of rare events, the coupling between the behavior of individual random variable and the size of the system, and correlation. Together, these three axes have led us to situations where classical convergence theorems are no longer valid.To improve our understanding of the impact of the coupling with the system size, we have studied the behavior of the sum and the maximum of independent random variables raised to a power depending of the size of the signal. In the case of the maximum, we have brought to light non standard limit laws. In the case of the sum, we have studied the link between linearisation effect and glass transition in statistical physics. Following this link, we have defined a critical moment order such that for a multifractal process, this critical order does not depend on the signal resolution. Similarly, a critical moment estimator has been designed and studied theoretically and numerically for a class of independent random variables.To gain some intuition on the impact of correlation on the maximum or sum of random variables, following insights from statistical physics, we have constructed a class of random variables where the joint distribution probability can be expressed as a matrix product. After a detailed study of its statistical properties, showing that these variables can exhibit long range correlations, we have managed to recast this model into the framework of Hidden Markov Chain models, enabling us to design a synthesis procedure. Finally, we conclude by an in-depth study of the limit behavior of the sum and maximum of these random variables.
|
288 |
Plans sphériques de force t et applications en statistiqueBertrand, Frédéric 07 December 2007 (has links) (PDF)
Ce travail comporte deux parties, l'une théorique et l'autre pratique, et porte sur l'utilisation combinée d'outils combinatoires et algébriques pour la construction et l'analyse de plans d'expérience. Nous nous intéressons en particulier à des caractérisations polynomiales des propriétés d'invariance faible d'un plan expérimental et proposons une définition ainsi qu'un cadre de résolution d'un problème de construction de type polynomial à l'aide de la géométrie algébrique réelle et du lien entre l'optimisation semi-définie positive et le théorème des zéros réels. Nous nous intéresserons ici également à la méthodologie des surfaces de réponse et plus particulièrement à la propriété d'isovariance statistique, ce qui nous amène à étudier plus particulièrement des plans dont le support est inclus dans une sphère. Les principaux avantages de l'approche développée dans ce travail sont sa grande généralité, son automatisation et l'obtention des coordonnées exactes des points support du plan ce qui permet une détermination complète des confusions d'effets contrairement à la construction numérique de plans d'expérience euclidiens qui ne permet pas l'analyse exacte des confusions d'effets qui apparaissent nécessairement lorsque nous nous intéressons à des plans euclidiens de petite taille. Or une connaissance précise des confusions d'effets est nécessaire pour rendre possible l'utilisation de modèles polynomiaux qui ne seront plus limités au degré 2 comme c'est trop souvent le cas dans la théorie et dans la pratique. De nombreux exemples de construction de plans isovariants, l'étude de leurs caractéristiques ainsi que les programmes ayant permis d'obtenir ces résultats sont également présentés.
|
289 |
Recherche de biomarqueurs et études lipidomiques à travers diverses applications en santé / Biomarker research and lipidomics studies through various health applicationsLanzini, Justine 21 November 2016 (has links)
La notion de biomarqueurs est définie comme « une caractéristique mesurée objectivement et évaluée comme indicateur de processus biologiques normaux ou pathologiques, ou de réponses pharmacologiques à une intervention thérapeutique ». L'intérêt scientifique pour les biomarqueurs est de plus en plus important. Ils permettent, entre autres,une meilleure compréhension des processus pathologiques et de diagnostiquer, voire pronostiquer ces pathologies. Les études « omiques » telles que la lipidomique jouent un rôle essentiel dans la découverte de nouveaux biomarqueurs. La lipidomique consiste à explorer le lipidome d'un échantillon biologique et à déceler l'impact de la pathologie sur ce dernier. Les lipides constituent une vaste et importante famille de métabolites retrouvés dans toutes les cellules vivantes, dont leur nombre est estimé à plus de 100 000 espèces chez les mammifères. Ils sont impliqués, notamment, dans le stockage d'énergie et la transduction de signal. Mon travail de thèse a reposé sur la réalisation d'approches lipidomiques en LC-MS sur diverses applications en santé telles que le syndrome de déficit immunitaire combiné sévère associé à une alopécie et une dystrophie des ongles, le syndrome du nystagmus infantile et le rejet de greffe rénale. A cette fin, des analyses statistiques multivariées et univariées ont été employées pour déceler des potentiels lipides biomarqueurs. / Biomarker was defined as "a characteristic that is objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes, or pharmacological responses to therapeutic intervention". The scientific interest in biomarkers is more and more important. They allow, in particular, to better understand pathogenic processes and to diagnose, even to predict pathologies. "Omics" studies, such as lipidomics, play an essential role in the new biomarkers discovery. Lipidomics consist in exploring biological samples lipidome and in detecting pathogenic impact on this latter. Lipids are a large and important metabolite family found in all living cells. Their quantity is estimated to more than 100,000 species in mammals. They are involved, in particular, in the energy storage and the signal transduction. My PhD thesis involved carrying out lipidomics approaches with LC-MS through various health applications such as severe combined immunodeficiency associated with alopecia syndrome, infantile nystagmus syndrome and renal graft rejection. For this purpose, multivariate and univariate statistical analyses were carried out in order to detect potential lipid biomarkers.
|
290 |
Three Essays in Functional Time Series and Factor AnalysisNisol, Gilles 20 December 2018 (has links) (PDF)
The thesis is dedicated to time series analysis for functional data and contains three original parts. In the first part, we derive statistical tests for the presence of a periodic component in a time series of functions. We consider both the traditional setting in which the periodic functional signal is contaminated by functional white noise, and a more general setting of a contaminating process which is weakly dependent. Several forms of the periodic component are considered. Our tests are motivated by the likelihood principle and fall into two broad categories, which we term multivariate and fully functional. Overall, for the functional series that motivate this research, the fully functional tests exhibit a superior balance of size and power. Asymptotic null distributions of all tests are derived and their consistency is established. Their finite sample performance is examined and compared by numerical studies and application to pollution data. In the second part, we consider vector autoregressive processes (VARs) with innovations having a singular covariance matrix (in short singular VARs). These objects appear naturally in the context of dynamic factor models. The Yule-Walker estimator of such a VAR is problematic, because the solution of the corresponding equation system tends to be numerically rather unstable. For example, if we overestimate the order of the VAR, then the singularity of the innovations renders the Yule-Walker equation system singular as well. Moreover, even with correctly selected order, the Yule-Walker system tends be close to singular in finite sample. We show that this has a severe impact on predictions. While the asymptotic rate of the mean square prediction error (MSPE) can be just like in the regular (non-singular) case, the finite sample behavior is suffering. This effect turns out to be particularly dramatic in context of dynamic factor models, where we do not directly observe the so-called common components which we aim to predict. Then, when the data are sampled with some additional error, the MSPE often gets severely inflated. We explain the reason for this phenomenon and show how to overcome the problem. Our numerical results underline that it is very important to adapt prediction algorithms accordingly. In the third part, we set up theoretical foundations and a practical method to forecast multiple functional time series (FTS). In order to do so, we generalize the static factor model to the case where cross-section units are FTS. We first derive a representation result. We show that if the first r eigenvalues of the covariance operator of the cross-section of n FTS are unbounded as n diverges and if the (r+1)th eigenvalue is bounded, then we can represent the each FTS as a sum of a common component driven by r factors and an idiosyncratic component. We suggest a method of estimation and prediction of such a model. We assess the performances of the method through a simulation study. Finally, we show that by applying our method to a cross-section of volatility curves of the stocks of S&P100, we have a better prediction accuracy than by limiting the analysis to individual FTS. / Doctorat en Sciences économiques et de gestion / info:eu-repo/semantics/nonPublished
|
Page generated in 0.02 seconds