• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 283
  • 62
  • 37
  • 28
  • 26
  • 25
  • 24
  • 23
  • 21
  • 16
  • 10
  • 7
  • 7
  • 3
  • 2
  • Tagged with
  • 662
  • 146
  • 62
  • 41
  • 40
  • 40
  • 38
  • 33
  • 33
  • 32
  • 32
  • 31
  • 31
  • 30
  • 30
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
371

Study of the formation of Kelvin-Helmholtz instability and shocks in coronal mass ejections / Estudo da formação da instabilidade Kelvin-Helmholtz e choques em ejeções de massa coronal

Murcia, Miguel Andres Paez 31 August 2018 (has links)
The coronal mass ejections (CMEs) are phenomena that evidence the complex solar activity. During the CME evolution in the solar wind (SW) the shock and sheath (Sh) are established. With these, the transfer of energy and shock thermalization have origin through several processes like instabilities and particle acceleration. Here, we present two studies related to CMEs. In the first study, we analyze the existence of the KelvinHelmholtz instability (KHI) at the interfaces CMESh and ShSW. For this purpose, we assumed two CMEs that propagate independently in the slow and fast SW. We model velocities, densities and magnetic field strengths of sheaths, and SW in the CMEs flanks, in order to solve the Chandrasekhar condition for the magnetic KHI existence. Our results reveal that KHI formation is more probably in the CME that propagate in the slow SW than in CME propagating in the fast SW. It is due to large shear flow between the CME and the slow SW. Besides we find that the interface ShSW is more susceptible to the instability. In the second study, we examine the distributions of particle acceleration and turbulence regions around CME-driven shocks with wave-like features. We consider these corrugated shock as the result of disturbances from the bimodal SW, CME deflection, irregular CME expansion, and the ubiquitous fluctuations in the solar corona. We model smooth CME-driven shocks using polar Gaussian profiles. With the addition of wave-like functions, we obtain the corrugated shocks. For both shock types are calculated the shock normal angles between the shock normal and the radial upstream coronal magnetic field in order to classify the quasi-parallel and quasi-perpendicular regions linked to the particle acceleration and turbulence regions, respectively. Our calculations show the predisposition of the shock to the particle acceleration and indicate that the irregular CME expansion is the relevant factor in the particle acceleration process. We consider that these wave-like features in shocks may be essential in the study of current problems as injection particle, instabilities, downstream-jets, and shock thermalization. / As ejeções de massa coronal (do inglês coronal mass ejections, CMEs) são consideradas traçadores da atividade solar. Durante a evolução das CMEs no vento solar (do inglês solar wind, SW), o choque e o envoltório (do inglês sheath, Sh) são estabelecidos. Nesta fase, a transferência da energia e a termalização do choque podem ter origem através de vários processos, entre eles instabilidades e aceleração de partculas. Aqui nós apresentamos dois estudos relacionados às CMEs. No primeiro estudo, analisamos a existência da instabilidade KelvinHelmholtz (KHI) nas interfaces CMESh e ShSW. Para isto, supomos duas CMEs que se propagam independentemente no SW lento e rápido. Modelamos as velocidades, densidades e a intensidade do campo magnético dos envoltórios e SW nos flancos das CMEs, a fim de resolver a condição de Chandrasekhar para a existência da KHI magnética. Nossos resultados revelam que a formação da KHI pode ser mais provável na CME que se propaga no SW lento do que na CME que se propaga no SW rápido. Isto é devido a um maior cisalhamento entre a CME e o SW lento. Além disso, encontramos que a interface ShSW é ser mais suscetvel à instabilidade. No segundo estudo, examinamos as distribuições das regiões de aceleração de partculas e turbulência em choques ondulados com caractersticas semelhantes a ondas. Assumimos choques ondulados como resultado de perturbações do SW bimodal, deflexão da CME, expansão irregular da CME, e flutuações onipresentes na coroa solar. Construmos choques sem ondulações usando perfis Gaussianos. Com adição de funções semelhantes a ondas, obtemos os choques ondulados. Para ambos tipos de choques, calculamos os ângulos entre o vector normal ao choque e o campo magnético coronal radial, assim classificamos as regiões como quase-paralelas e quase-perpendiculares que são ligadas às regiões de aceleração de partculas e turbulência, respectivamente. Nossos cálculos mostram a predisposição do choque para o fenômeno de acceleração de partculas, e indicam que a expansão irregular da CME é o fator de maior relevância neste processo. Consideramos que assumir ondulações nos choques pode ser essencial nos estudos de problemas atuais como injeção de partculas, instabilidades, jatos e termalização dos choques.
372

Study of the formation of Kelvin-Helmholtz instability and shocks in coronal mass ejections / Estudo da formação da instabilidade Kelvin-Helmholtz e choques em ejeções de massa coronal

Miguel Andres Paez Murcia 31 August 2018 (has links)
The coronal mass ejections (CMEs) are phenomena that evidence the complex solar activity. During the CME evolution in the solar wind (SW) the shock and sheath (Sh) are established. With these, the transfer of energy and shock thermalization have origin through several processes like instabilities and particle acceleration. Here, we present two studies related to CMEs. In the first study, we analyze the existence of the KelvinHelmholtz instability (KHI) at the interfaces CMESh and ShSW. For this purpose, we assumed two CMEs that propagate independently in the slow and fast SW. We model velocities, densities and magnetic field strengths of sheaths, and SW in the CMEs flanks, in order to solve the Chandrasekhar condition for the magnetic KHI existence. Our results reveal that KHI formation is more probably in the CME that propagate in the slow SW than in CME propagating in the fast SW. It is due to large shear flow between the CME and the slow SW. Besides we find that the interface ShSW is more susceptible to the instability. In the second study, we examine the distributions of particle acceleration and turbulence regions around CME-driven shocks with wave-like features. We consider these corrugated shock as the result of disturbances from the bimodal SW, CME deflection, irregular CME expansion, and the ubiquitous fluctuations in the solar corona. We model smooth CME-driven shocks using polar Gaussian profiles. With the addition of wave-like functions, we obtain the corrugated shocks. For both shock types are calculated the shock normal angles between the shock normal and the radial upstream coronal magnetic field in order to classify the quasi-parallel and quasi-perpendicular regions linked to the particle acceleration and turbulence regions, respectively. Our calculations show the predisposition of the shock to the particle acceleration and indicate that the irregular CME expansion is the relevant factor in the particle acceleration process. We consider that these wave-like features in shocks may be essential in the study of current problems as injection particle, instabilities, downstream-jets, and shock thermalization. / As ejeções de massa coronal (do inglês coronal mass ejections, CMEs) são consideradas traçadores da atividade solar. Durante a evolução das CMEs no vento solar (do inglês solar wind, SW), o choque e o envoltório (do inglês sheath, Sh) são estabelecidos. Nesta fase, a transferência da energia e a termalização do choque podem ter origem através de vários processos, entre eles instabilidades e aceleração de partculas. Aqui nós apresentamos dois estudos relacionados às CMEs. No primeiro estudo, analisamos a existência da instabilidade KelvinHelmholtz (KHI) nas interfaces CMESh e ShSW. Para isto, supomos duas CMEs que se propagam independentemente no SW lento e rápido. Modelamos as velocidades, densidades e a intensidade do campo magnético dos envoltórios e SW nos flancos das CMEs, a fim de resolver a condição de Chandrasekhar para a existência da KHI magnética. Nossos resultados revelam que a formação da KHI pode ser mais provável na CME que se propaga no SW lento do que na CME que se propaga no SW rápido. Isto é devido a um maior cisalhamento entre a CME e o SW lento. Além disso, encontramos que a interface ShSW é ser mais suscetvel à instabilidade. No segundo estudo, examinamos as distribuições das regiões de aceleração de partculas e turbulência em choques ondulados com caractersticas semelhantes a ondas. Assumimos choques ondulados como resultado de perturbações do SW bimodal, deflexão da CME, expansão irregular da CME, e flutuações onipresentes na coroa solar. Construmos choques sem ondulações usando perfis Gaussianos. Com adição de funções semelhantes a ondas, obtemos os choques ondulados. Para ambos tipos de choques, calculamos os ângulos entre o vector normal ao choque e o campo magnético coronal radial, assim classificamos as regiões como quase-paralelas e quase-perpendiculares que são ligadas às regiões de aceleração de partculas e turbulência, respectivamente. Nossos cálculos mostram a predisposição do choque para o fenômeno de acceleração de partculas, e indicam que a expansão irregular da CME é o fator de maior relevância neste processo. Consideramos que assumir ondulações nos choques pode ser essencial nos estudos de problemas atuais como injeção de partculas, instabilidades, jatos e termalização dos choques.
373

Urban street as public space: alternative design of large residential areas to encompass new urban streets casestudies related to Shenzhen, PRC

潘亮, Pan, Liang. January 2002 (has links)
published_or_final_version / Urban Design / Master / Master of Urban Design
374

Dynamo Magnétohydrodynamique en champ moyen

Simard, Corinne 06 1900 (has links)
De nos jours, il est bien accepté que le cycle magnétique de 11 ans du Soleil est l'oeuvre d'une dynamo interne présente dans la zone convective. Bien qu'avec la puissance de calculs des ordinateurs actuels il soit possible, à l'aide de véritables simulations magnétohydrodynamiques, de résoudre le champ magnétique et la vitessse dans toutes les directions spatiales, il n'en reste pas moins que pour étudier l'évolution temporelle et spatiale de la dynamo solaire à grande échelle, il reste avantageux de travailler avec des modèles plus simples. Ainsi, nous avons utilisé un modèle simplifié de la dynamo solaire, nommé modèle de champ moyen, pour mieux comprendre les mécanismes importants à l'origine et au maintien de la dynamo solaire. L'insertion d'un tenseur-alpha complet dans un modèle dynamo de champ moyen, provenant d'un modèle global-MHD [Ghizaru et al., 2010] de la convection solaire, nous a permis d'approfondir le rôle que peut jouer la force électromotrice dans les cycles magnétiques produits par ce modèle global. De cette façon, nous avons pu reproduire certaines caractéristiques observées dans les cycles magnétiques provenant de la simulation de Ghizaru et al., 2010. Tout d'abord, le champ magnétique produit par le modèle de champ moyen présente deux modes dynamo distincts. Ces modes, de périodes similaires, sont présents et localisés sensiblement aux mêmes rayons et latitudes que ceux produits par le modèle global. Le fait que l'on puisse reproduire ces deux modes dynamo est dû à la complexité spatiale du tenseur-alpha. Par contre, le rapport entre les périodes des deux modes présents dans le modèle de champ moyen diffère significativement de celui trouvé dans le modèle global. Par ailleurs, on perd l'accumulation d'un fort champ magnétique sous la zone convective dans un modèle où la rotation différentielle n'est plus présente. Ceci suggère que la présence de rotation différentielle joue un rôle non négligeable dans l'accumulation du champ magnétique à cet endroit. Par ailleurs, le champ magnétique produit dans un modèle de champ moyen incluant un tenseur-alpha sans pompage turbulent global est très différent de celui produit par le tenseur original. Le pompage turbulent joue donc un rôle fondamental au sein de la distribution spatiale du champ magnétique. Il est important de souligner que les modèles dépourvus d'une rotation différentielle, utilisant le tenseur-alpha original ou n'utilisant pas de pompage turbulent, parviennent tous deux à produire une dynamo oscillatoire. Produire une telle dynamo à l'aide d'un modèle de ce type n'est pas évident, a priori. Finalement, l'intensité ainsi que le type de profil de circulation méridienne utilisés sont des facteurs affectant significativement la distribution spatiale de la dynamo produite. / It is generally agreed upon that the 11-year magnetic cycle of the Sun arises through the action of an internal dynamo operating in the convective zone, and perhaps also immediately beneath it. Although the computing power of current supercomputers is sufficient to allow fairly realistic magnetohydrodynamical simulations of this dynamo process, to study the temporal and spatial evolution of the large-scale solar magnetic field over long timescales, it remains advantageous to work with simpler models. Thus, to better understand the physical mechanisms at the origin and maintenance of the solar dynamo, we used a simplified formulation, known as a mean-field model. By using a complete alpha-tensor extracted from a global MHD model of solar convection [Ghizaru et al., 2010] as input to a kinematic axisymmetric mean-field dynamo model [Charbonneau & MacGregor, 1997], it becomes possible to study the effect of the electromotive force on the magnetic cycles produced by the global model. In this way, we are able to reproduce some of the observed characteristics of the Ghizaru et al., 2010 simulation, in particular magnetic cycles. The axisymmetric magnetic field produced by the mean-field dynamo model exhibits two distincts dynamo modes. These modes, with similar periods, are present and peak at substantially at the same radii and latitudes as the sonlly-averaged magnetic fields extracted from the global model. Thanks to the spatial complexity of the alpha-tensor, we can reproduce these two dynamo modes. In contrast, the ratio of the periods of the two modes present in the mean field model differs significantly from that found in the global model. In addition, the accumulation of strong magnetic fields at the base of the convective zone disappears in a model where differential rotation has been removed. This suggests that differential rotation plays a significant role in the accumulation of magnetic fields in this region. Furthermore, removing the turbulent pumping component of the alpha-tensor produces a very different magnetic field cycle. Therefore, turbulent pumping plays a crucial role in the spatial distribution of the magnetic field. It is important to underline that the models without differential rotation, with or without turbulent pumping, both succeed in producing an oscillatory dynamo using only the turbulent electromotive force. However, the dynamos materializing in these modified models are significantly different from that using the full alpha-tensor. Finally, both the intensity and form of meridional circulation profiles are significant factors affecting the dynamo modes.
375

Principen om marin överraskning i princip

Steén, Linus January 2018 (has links)
The principle of war, surprise, has long been criticized for being imprecise and in need of interpretation. Some believe it is because of this ambiguity that the principle has survived in military doctrine. The purpose of the study is thereby to empirically test the principle of surprise to investigate its validity in modern naval warfare. Due to the lack of precision in doctrine, the surprise has been interpreted into an analytical instrument based on the compiled thoughts written by theoreticians; Sun Zi, Carl Von Clausewitz, Raoul Castex and Milan Vego. The analytical instrument aims to identify whether criteria for surprise are represented or not in a context of successful surprise. This was achieved through a two-case study based on a qualitative text analysis of the methods used by the Sea Tigers of Sri Lanka and the attack on ARA General Belgrano during the Falklands War. The study shows that all the criteria were met in some way in both cases and that the military principal surprise is valid as a principle of war in modern naval warfare. Further research is recommended to investigate more cases and not to limit the research to a tactical level.
376

Design and Development of a Three-degree-of-freedom Parallel Manipulator to Track the Sun for Concentrated Solar Power Towers

Ashith Shyam, R Babu January 2017 (has links) (PDF)
In concentrated solar power (CSP) stations, large arrays of mirrors which are capable of changing its orientation are used to reflect the incident solar energy to a stationary receiver kept at a distance. Such mirrors are often called as heliostats. The receiver contains a heat absorbing medium like molten salt. By absorbing the thermal energy reflected from thousands of heliostats, the temperature would reach around 6000C and the heat can be used in thermal power plants to generate steam and thus run a turbine to produce electricity. One of the biggest advantages of CSP over conventional energy harvesting from Sun is that it can generate electricity during night for long hours of time from the thermal energy stored during daytime. This eliminates the usage of batteries or any other energy storing methods. The conversion efficiency is also high in CSP due to the high temperature achieved. With prior knowledge of the station coordinates, viz., the latitude and longitude, the day of the year and time, the direction or the path of sun can be fully determined. Typically, the sun's motion is tracked by the azimuth-elevation (Az-El) or the target-aligned configuration heliostats. In both these approaches, the mirror needs to be moved about two axes independently using two actuators in series with the mirror effectively mounted at a single point at the centre. This arrangement causes the mirror to deform in presence of gusty winds in a solar field which results in loss of pointing accuracy. Typically a beam error of less than 2-3 mrad is desirable in a large solar field and this value also includes other sources of loss of pointing accuracy like gravity and wind loading. In order to prevent this, a rigid support frame is required for each of the heliostats. In this work, two three degree-of-freedom parallel manipulators, viz., the 3-UPU wrist and 3-RPS, have been proposed to track the sun in central receiver systems. The main reasons for choosing a parallel manipulator as heliostat are its desirable characteristics like large load carrying capacity, high accuracy in positioning the mirror and easy to obtain the inverse kinematics and convenient for real time control. The proposed parallel manipulators support the load of the mirror, structure and wind loading at three points resulting in less deflection and thus a much larger mirror can be moved with the required tracking accuracy and without increasing the weight of the support structure. The algorithm for sun tracking is developed, extensive simulation study with respect to actuations required, variation of joint angles, spillage loss and leg intersection has been carried out. Using FEA, it is shown that for same sized mirror, wind loading of 22 m/s and maximum deflection requirement (2 mrad), the weight of the support structure is between 15% and 60% less with the parallel manipulators when compared to azimuth-elevation or the target-aligned configurations. A comprehensive study on stroke minimization of prismatic joints is carried out. It is found that a stroke of 700 mm is required for a 2 m x 2 m heliostat at Bangalore when the farthest heliostat is at a distance of 300 m from the tower. Although, there is an extra motor required to track the sun, the 3-RPS manipulator is better than the conventional methods if the mirror area per actuator criteria is taken into consideration. Prototypes of the Az-El and 3-RPS heliostats were made with a mirror size of 1 m x 1 m. A PID controller implemented using MATLAB-Simulink and a low cost, custom made motor driver circuit is used to control the motion of the 3-RPS heliostat. The algorithm developed is tested on the prototype by tracking a point marked on the wall of the lab space and is found to have a tracking error of only 7.1 mrad. Finally, the actual sun tracking is carried out on the roof of a building reflecting the sun-light to a wall situated 6.72 m above and a distance of 15.87 m from the heliostats. The images are captured at various instances of time from 11:30 a.m. to 3:30 p.m. on October 15th and November 10th, 2016, tracking errors are quantified and it is demonstrated that the proposed 3-RPS parallel manipulator can indeed work as a heliostat in concentrated solar power plants.
377

Spektrální vlastnosti denního světla jako časoprostorová funkce / Spectral properties of daylight as time-spatial function

Mayer, Jan January 2009 (has links)
Graduation thesis describes basic data about Sun, suns constant, solar radiation thoroughfare by the earth's atmosphere. Thesis describes effects of components of optical radiation and physical character of solar radiation. Thesis also describes character of day lighting in nature, spectral distribution of natural lighting, average time of sunshine. The next point of thesis is description of measuring equipment Konica Minolta. In chapter measuring procedure is described measuring process of the sky radiance. Measurement analysis is mentioned in conclusion.
378

Gerillakrigets traditioner & Sveriges föreställning av det fria kriget

Heljebrand Bohn, Kristofer January 2020 (has links)
In the 1940s, Sweden adopted a policy known as Det fria kriget (approximately translated to The Free War) which was a conceptualization of a war in which its homeland had suffered a major invasion by a malignant and far stronger opponent. Det fria kriget remains, to this day, mostly a set of instructions outlining how the military were to reorganize itself, at that point, to uphold the nations military resilience. This paper compares, contrasts, and discusses established conceptualizations of guerrilla warfare along the traditions of Sun Tzu, Lenin, Mao, and Che Guevara and concludes that Det fria kriget is in fact a conceptualization of Swedish guerrilla warfare. This paper calls to action a deeper understanding of the tradition and how it might have changed up until today, if it is to serve the nation’s interests come tomorrow as well.
379

Current sheets in the solar corona : formation, fragmentation and heating

Bowness, Ruth January 2011 (has links)
In this thesis we investigate current sheets in the solar corona. The well known 1D model for the tearing mode instability is presented, before progressing to 2D where we introduce a non-uniform resistivity. The effect this has on growth rates is investigated and we find that the inclusion of the non-uniform term in η cause a decrease in the growth rate of the dominant mode. Analytical approximations and numerical simulations are then used to model current sheet formation by considering two distinct experiments. First, a magnetic field is sheared in two directions, perpendicular to each other. A twisted current layer is formed and we find that as we increase grid resolution, the maximum current increases, the width of the current layer decreases and the total current in the layer is approximately constant. This, together with the residual Lorentz force calculated, suggests that a current sheet is trying to form. The current layer then starts to fragment. By considering the parallel electric field and calculating the perpendicular vorticity, we find evidence of reconnection. The resulting temperatures easily reach the required coronal values. The second set of simulations carried out model an initially straight magnetic field which is stressed by elliptical boundary motions. A highly twisted current layer is formed and analysis of the energetics, current structures, magnetic field and the resulting temperatures is carried out. Results are similar in nature to that of the shearing experiment.
380

MHD evolution of magnetic null points to static equilibria

Fuentes Fernández, Jorge January 2011 (has links)
In magnetised plasmas, magnetic reconnection is the process of magnetic field merging and recombination through which considerable amounts of magnetic energy may be converted into other forms of energy. Reconnection is a key mechanism for solar flares and coronal mass ejections in the solar atmosphere, it is believed to be an important source of heating of the solar corona, and it plays a major role in the acceleration of particles in the Earth's magnetotail. For reconnection to occur, the magnetic field must, in localised regions, be able to diffuse through the plasma. Ideal locations for diffusion to occur are electric current layers formed from rapidly changing magnetic fields in short space scales. In this thesis we consider the formation and nature of these current layers in magnetised plasmas. The study of current sheets and current layers in two, and more recently, three dimensions, has been a key field of research in the last decades. However, many of these studies do not take plasma pressure effects into consideration, and rather they consider models of current sheets where the magnetic forces sum to zero. More recently, others have started to consider models in which the plasma beta is non-zero, but they simply focus on the actual equilibrium state involving a current layer and do not consider how such an equilibrium may be achieved physically. In particular, they do not allow energy conversion between magnetic and internal energy of the plasma on their way to approaching the final equilibrium. In this thesis, we aim to describe the formation of equilibrium states involving current layers at both two and three dimensional magnetic null points, which are specific locations where the magnetic field vanishes. The different equilibria are obtained through the non-resistive dynamical evolution of perturbed hydromagnetic systems. The dynamic evolution relaxes via viscous damping, resulting in viscous heating. We have run a series of numerical experiments using LARE, a Lagrangian-remap code, that solves the full magnetohydrodynamic (MHD) equations with user controlled viscosity and resistivity. To allow strong current accumulations to be created in a static equilibrium, we set the resistivity to be zero and hence simply reach our equilibria by solving the ideal MHD equations. We first consider the relaxation of simple homogeneous straight magnetic fields embedded in a plasma, and determine the role of the coupling between magnetic and plasma forces, both analytically and numerically. Then, we study the formation of current accumulations at 2D magnetic X-points and at 3D magnetic nulls with spine-aligned and fan-aligned current. At both 2D X-points and 3D nulls with fan-aligned current, the current density becomes singular at the location of the null. It is impossible to be precisely achieve an exact singularity, and instead, we find a gradual continuous increase of the peak current over time, and small, highly localised forces acting to form the singularity. In the 2D case, we give a qualitative description of the field around the magnetic null using a singular function, which is found to vary within the different topological regions of the field. Also, the final equilibrium depends exponentially on the initial plasma pressure. In the 3D spine-aligned experiments, in contrast, the current density is mainly accumulated along and about the spine, but not at the null. In this case, we find that the plasma pressure does not play an important role in the final equilibrium. Our results show that current sheet formation (and presumably reconnection) around magnetic nulls is held back by non-zero plasma betas, although the value of the plasma pressure appears to be much less important for torsional reconnection. In future studies, we may consider a broader family of 3D nulls, comparing the results with the analytical calculations in 2D, and the relaxation of more complex scenarios such as 3D magnetic separators.

Page generated in 0.0273 seconds