• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 51
  • 3
  • 1
  • Tagged with
  • 56
  • 56
  • 30
  • 28
  • 22
  • 16
  • 11
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Sobre um teorema de Bernstein e algumas generalizações / On a Bernstein theorem and some generalizations

Min, Lien Kuan 24 February 2006 (has links)
Orientador: Francesco Mercuri / Dissertação (mestrado) - Universidade Estadual de Campinas, Intituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-05T13:33:06Z (GMT). No. of bitstreams: 1 Min_LienKuan_M.pdf: 1157875 bytes, checksum: 65f63453a02a7c1365c0a9b3524a1602 (MD5) Previous issue date: 2006 / Resumo: O teorema de Bernstein é um marco importante na teoria das superfícies mínimas. Nesta dissertação apresentaremos três demonstrações deste teorema, cada uma levando a generalizações em diferentes direções / Abstract: The Bernstein's theorem is an important landmark in the theory of the minimal surfaces. In this dissertation we will present three demonstrations of this theorem, each one leading to generalizations in different directions / Mestrado / Geometria Diferencial / Mestre em Matemática
22

Omissões da aplicação normal de Gauss e o teorema de Mo-Osserman

Ferreira de Oliveira, Darlan January 2006 (has links)
Made available in DSpace on 2014-06-12T18:33:03Z (GMT). No. of bitstreams: 2 arquivo8678_1.pdf: 651005 bytes, checksum: ec2e9b73a9128d7f8de4f13552fd4339 (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2006 / Neste trabalho mostramos alguns dos principais resultados acerca do número de pontos omitidos pela aplicação normal de Gauss de superfícies mínimas regulares completas. Começamos com uma das versões do teorema de Bernstein e citamos os resultados conseguidos, no sentido de seu melhoramento, por Osserman, Xavier e Fujimoto. Por fim introduzimos o teorema de Mo-Osserman o qual se caracteriza como uma extensão do teorema de Fujimoto
23

Superfícies mínimas completas e estáveis em R3

Bandeira, Ivana Soares 14 May 2012 (has links)
Made available in DSpace on 2015-04-22T22:16:14Z (GMT). No. of bitstreams: 1 Ivana Soares Bandeira.pdf: 1022492 bytes, checksum: 3b38c680f7a59ceaf1675ecfe7f7fd0f (MD5) Previous issue date: 2012-05-14 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In this work we are interested in replying the following question: a tridimensional stable minimal surface is a plane? For this, we need to understand three important facts: in R3 minimal graphics are planes (Bernstein s Theorem), next, minimal surfaces which are graphics of differentiable functions are stables (Theorem of J. L. Barbosa and M. Do Carmo), and finally, we have that the only tridimensional stable complete minimal surfaces are planes (Theorem of M. do Carmo and C. K. Peng) / Neste trabalho estamos interessados em responder a seguinte questão: Uma superfície tridimensional mínima, completa e estável é um plano? Para isso precisamos compreender três fatos importantes: os planos são as únicas superfícies mínimas que podem ser obtidas gráficos (Teorema de Bernstein), em seguida, superfícies mínimas que são gráficos de funções diferenciáveis são estáveis (Teorema de J. L. Barbosa e M. Do Carmo), e por fim, temos que as únicas superfícies tridimensionais, mínimas, completas, estáveis e orientáveis são os planos (Teorema de M. do Carmo e C. K. Peng)
24

Representação de Weierstrass em variedades Riemannianas e Lorentzianas / Weierstrass representation in Riemannian and Lorentzian manifolds

Freire, Emanoel Mateus dos Santos 12 April 2018 (has links)
O Teorema de Representação de Weierstrass clássico, que faz uso da análise complexa para descrever uma superfície mínima imersa no espaço Euclidiano em termos de dados holomorfos, tem sido extremamente útil seja para construir novos exemplos de superfícies mínimas, seja para o estudo das propriedades destas superfícies. Em [24], usando a equação harmônica, os autores determinam uma fórmula de representação para superfícies mínimas, simplesmente conexas, imersas em uma variedade Riemanniana qualquer. Neste caso, a condição de holomorficidade dos dados de Weierstrass consiste em um sistema de equações diferenciais parciais com coeficientes não constantes. Logo, em geral, é complicado determinar soluções explícitas. No entanto, escolhendo adequadamente o espaço ambiente, tais equações se simplificam e a fórmula pode ser usada para produzir novos exemplos de imersões mínimas conformes. No espaço de Lorentz-Minkowski tridimensional uma fórmula de representação tipo-Weierstrass foi provada por Kobayashi, para o caso das imersões mínimas de tipo espaço (ver [18]), e por Konderak no caso das imersões mínimas de tipo tempo (ver [20]). Na demonstração destas fórmulas se utilizam as ferramentas da análise complexa e paracomplexa, respectivamente. Recentemente, em [22] os resultados de Kobayashi e Konderak foram generalizados para o caso de superfícies mínimas (de tipo espaço e de tipo tempo) imersas em 3-variedades Lorentzianas. Nesta dissertação estudaremos as fórmulas de representação de Weierstrass para superfícies mínimas imersas em variedades Riemannianas e Lorentzianas, que foram obtidas nos artigos [18], [20], [22] e [24]. / The classic Weierstrass Representation Theorem, which makes use of complex analysis to describe a minimal surface immersed in the Euclidean space in terms of holomorphic data, has been extremely useful either to construct new examples of minimal surfaces, rather than to study structural properties of these surfaces. In [24], using the standard harmonic equation, the authors determine a representation formula for simply connected immersed minimal surfaces in a Riemannian manifold. In this case, the holomorphicity condition of the Weierstrass data is a system of partial differential equations with nonconstant coefficients. Therefore, in geral, it is very difficult to determine explicit solutions. However, for particular ambient spaces, these equations become simpler and the formula can be used to produce new examples of conformal minimal immersions. In the three-dimensional Lorentz-Minkowski space a Weierstrass-type representation formula was proved by Kobayashi for spacelike minimal immersions (see [18]), and by Konderak for the case of timelike minimal immersions (see [20]). In the demonstration of these formulas are used the tools of complex and paracomplex analysis, respectively. Recently, in [22] the results of Kobayashi and Konderak were generalized to the case of (spacelike and timelike) minimal surfaces immersed in 3-Lorentzian manifolds. In this dissertation, we will study the Weierstrass representation formula for immersed minimal surfaces in Riemannian and Lorentzian manifolds, that was obtained in the articles [18], [20], [22] and [24].
25

Representação de Weierstrass em variedades Riemannianas e Lorentzianas / Weierstrass representation in Riemannian and Lorentzian manifolds

Emanoel Mateus dos Santos Freire 12 April 2018 (has links)
O Teorema de Representação de Weierstrass clássico, que faz uso da análise complexa para descrever uma superfície mínima imersa no espaço Euclidiano em termos de dados holomorfos, tem sido extremamente útil seja para construir novos exemplos de superfícies mínimas, seja para o estudo das propriedades destas superfícies. Em [24], usando a equação harmônica, os autores determinam uma fórmula de representação para superfícies mínimas, simplesmente conexas, imersas em uma variedade Riemanniana qualquer. Neste caso, a condição de holomorficidade dos dados de Weierstrass consiste em um sistema de equações diferenciais parciais com coeficientes não constantes. Logo, em geral, é complicado determinar soluções explícitas. No entanto, escolhendo adequadamente o espaço ambiente, tais equações se simplificam e a fórmula pode ser usada para produzir novos exemplos de imersões mínimas conformes. No espaço de Lorentz-Minkowski tridimensional uma fórmula de representação tipo-Weierstrass foi provada por Kobayashi, para o caso das imersões mínimas de tipo espaço (ver [18]), e por Konderak no caso das imersões mínimas de tipo tempo (ver [20]). Na demonstração destas fórmulas se utilizam as ferramentas da análise complexa e paracomplexa, respectivamente. Recentemente, em [22] os resultados de Kobayashi e Konderak foram generalizados para o caso de superfícies mínimas (de tipo espaço e de tipo tempo) imersas em 3-variedades Lorentzianas. Nesta dissertação estudaremos as fórmulas de representação de Weierstrass para superfícies mínimas imersas em variedades Riemannianas e Lorentzianas, que foram obtidas nos artigos [18], [20], [22] e [24]. / The classic Weierstrass Representation Theorem, which makes use of complex analysis to describe a minimal surface immersed in the Euclidean space in terms of holomorphic data, has been extremely useful either to construct new examples of minimal surfaces, rather than to study structural properties of these surfaces. In [24], using the standard harmonic equation, the authors determine a representation formula for simply connected immersed minimal surfaces in a Riemannian manifold. In this case, the holomorphicity condition of the Weierstrass data is a system of partial differential equations with nonconstant coefficients. Therefore, in geral, it is very difficult to determine explicit solutions. However, for particular ambient spaces, these equations become simpler and the formula can be used to produce new examples of conformal minimal immersions. In the three-dimensional Lorentz-Minkowski space a Weierstrass-type representation formula was proved by Kobayashi for spacelike minimal immersions (see [18]), and by Konderak for the case of timelike minimal immersions (see [20]). In the demonstration of these formulas are used the tools of complex and paracomplex analysis, respectively. Recently, in [22] the results of Kobayashi and Konderak were generalized to the case of (spacelike and timelike) minimal surfaces immersed in 3-Lorentzian manifolds. In this dissertation, we will study the Weierstrass representation formula for immersed minimal surfaces in Riemannian and Lorentzian manifolds, that was obtained in the articles [18], [20], [22] and [24].
26

Sobre a busca de superfícies minimais e seu emprego nas estruturas de membrana. / On finding minimal surfaces and their application to membrane structures.

Souza, Diogo Carlos Bernardes de 28 August 2008 (has links)
Esta dissertação apresenta uma revisão histórica dos trabalhos acerca de superfícies minimais, ressaltando a pertinência da analogia entre a busca de superfícies de mínima área e a busca de formas de membranas estruturais sujeitas a um estado de tensões superficiais, homogêneo e isótropo. São colocados alguns conceitos geométricos das superfícies parametrizáveis, com base na geometria diferencial, a fim de realizar o equilíbrio diferencial de membranas e determinar as suas equações de equilíbrio. Além disso, é apresentada uma metodologia puramente geométrica para a determinação de superfícies minimais, baseada na minimização do funcional da área, dado pela soma das áreas das facetas triangulares nas quais a superfície é discretizada. O trabalho discute a formulação matemática do problema e apresenta resultados obtidos tanto por meio das rotinas implementadas no software MATLAB quanto por meio daquelas da biblioteca de otimização deste mesmo software. Finalmente, são realizados alguns exemplos e um teste de convergência, comparando as superfícies resultantes dos métodos numéricos com suas respectivas respostas analíticas. A geometria final de um dos exemplos é verificada por meio da analogia dos filmes de sabão, realizando-se uma análise não-linear de equilíbrio através do software Ansys. As soluções foram bastante satisfatórias, resultando em formas muito próximas das analíticas e com pequenos erros relativos das áreas. O teste de convergência também comprovou que o refinamento da discretização leva a uma solução mais próxima da desejada. Portanto, os procedimentos apresentados podem ser empregados no processo de busca da forma de membranas estruturais. / This dissertation presents a historical review on the theoretical developments on minimal surfaces, highlighting the important analogy between the problems of finding minimal area surfaces and finding membrane surfaces with homogeneous and isotropic stress fields. Some geometric concepts of the parametric surfaces are placed, on the basis of differential geometry, in order to do the differential equilibrium of membranes and to achieve its equilibrium equations. Moreover, a purely geometric methodology for the determination of minimal surfaces is presented, based on the minimization of the area functional, which is computed by the simple addition of a finite number of triangular facet areas in which the surface is divided. It discusses the mathematical formulation of the problem as well as some results obtained with the algorithms implemented in MATLAB and others obtained with the aid of MATLAB optimization routines. Finally, some examples and a convergence test are produced, comparing their analytical and numerical results. The final geometry of one of examples is verified by means of the soap film analogy, with a nonlinear equilibrium analysis through Ansys. The solutions have been sufficiently satisfactory, resulting forms very close to the analytical ones and with small areas relative errors. Convergence test also confirm that the method lead to numerical solutions as close to the analytical one as required, as long as the triangular facets mesh is refined. Therefore, the presented procedures can be used in structural membranes form finding.
27

As superfícies de costa triplamente periódicas

Azevedo, Pablo Vinicius Almeida January 2009 (has links)
Orientador: Prof. Dr. Valério Ramos Batista. / Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Matemática, 2009. / A tese de mestrado versa sobre o artigo A family of triply periodic Costa surfaces, que apresenta uma demonstração completa de unicidade e convergência para uma família contínua a um parâmetro de Superfícies Mínimas Triplamente Periódicas. No artigo, a demonstração é norteada por simulações numéricas em MatLab, que motivam as provas teóricas. Entretanto, o presente trabalho não contemplará esta parte numérica, por dar prioridade aos argumentos Geométricos do artigo. De fato, a Geometria é uma importante ferramenta para outras áreas, mesmo da própria Matemática, não apenas por facilitar demonstrações, mas também por torná-las acessíveis. Dentre as sub-áreas da Matemática, obviamente a mais visual é a Geometria, que mesmo equipada com técnicas como Variáveis Complexas, Diferenciabilidade, Homologia, etc., não perde sua concretividade: curvas, superfícies, rotação, etc. O trabalho [RamosBatista2] é inovador, pois apresenta as primeiras superfícies mínimas triplamente periódicas cuja construção explícita não pode ser realizada pelo Método de Conjugação de Plateau. Além da unicidade e convergência mencionadas acima, traz uma descrição explícita dos membros-limite. É raro encontrar um estudo tão completo como neste artigo. A família de superfícies é obtida pelo método de construção reversa introduzido por Karcher em 1989. Tal método consiste dos seguintes passos: 1) esboço da superfície; 2) compacticação; 3) hipóteses de simetria; 4) equação algébrica; 5) obtenção dos dados de Weierstraÿ; 6) vericação de involuções e hipóteses de simetria; 7) análise de períodos; e 8) mergulho. As ferramentas teóricas deste método são apresentadas no Capítulo 2 da presente Tese de Mestrado. / This present work deals with the article A family of triply periodic Costa surfaces, which brings a complete demonstration for including uniqueness and convergence of a continuous one-parameter family of Triply Periodic Minimal Surfaces. In the paper, the theoretical proofs are motivated by numerical evidences obtained through the software MatLab. However, this present work will not include the numerics, because we give preference to the geometric arguments of the paper. Indeed, Geometry is an important tool for other research areas, even inside Mathematics itself, not just for easing demonstrations a lot, but also because it makes them accessible. Among the sub-areas in Mathematics, obviously the most visually appealing is the Geometry. Even equipped with techniques like Complex Variables, Dierentiability and Homology, it never loses its concreteness: curves, surfaces, rotations, etc. The paper [RamosBatista2] is innovative because presents the rst triply periodic minimal surfaces of which the explicit construction cannot be accomplished by Plateau's Conjugate Method. Besides uniqueness and convergence mentioned above, it brings an explicit description of the limit-members. Such a complete study is rare to nd. The family of surfaces is obtained via the reverse construction method introduced by Karcher in 1989. This method consists of the following steps: 1) drafting the soughtafter surface; 2) compactication; 3) symmetry hypotheses; 4) algebraic equation; 5) Weierstraÿ data; 6) checking involutions from symmetry hypotheses; 7) period analysis; 8) embeddedness. The main theoretical tools for this method are presented in Chapter 2 of this Master Thesis.
28

Teorema fundamental das imersões e superfícies mínimas em espaços produto / Fundamental theorem of immersions and minimal surfaces in product spaces

Escobosa, Fernando Maia Nardelli 22 February 2017 (has links)
Neste trabalho demonstramos o Teorema Fundamental das Imersões para S^m x R e H^m x R, dando condições necessárias e suficientes para que uma variedade Riemanniana simplesmente conexa seja isometricamente imersa nestes ambientes. Para isto, utilizamos referenciais móveis e distribuições integráveis. Como aplicação do Teorema Fundamental, provamos a existência de uma família a um parâmetro de deformações isométricas mínimas de uma dada superfície mínima em S² x R e H² x R, chamada de família associada. Além disso, relacionamos o problema de encontrar uma imersão isométrica mínima para uma dada superfície Riemanniana simplesmente conexa nestes espaços a um sistema de duas equações diferenciais parciais. Construímos exemplos de superfícies conjugadas em ambos os ambientes e de superfícies admitindo duas imersões mínimas isométricas não associadas em H² x R. / In this work we give a proof of the Fundamental Theorem of Immersions for S^m x R and H^m x R, providing necessary and sufficient conditions for a simply connected Riemannian manifold to be isometrically immersed on this ambient spaces. In order to do this, we use moving frames and integrable distributions. As an application of the Fundamental Theorem, we proof the existence of a one parameter family of minimal isometric deformations of a given minimal surface in S² x R and H² x R, which is called the associated family. Furthermore, we relate the problem of finding an minimal isometric immersion for a given simply connected Riemannian surface in this spaces to a system of two partial differential equations. Also, we construct examples of conjugated surfaces in both ambient spaces and surfaces admitting two non associated minimal isometric immersions in H² x R.
29

Superfícies de curvatura média constante um no espaço hiperbólico / Surfaces of Constant mean curvature one in hyperbolic space

Santos, Márcio Silva 28 February 2011 (has links)
In this work the crucial point is to obtain a holomorphic representation for mean curvature one surfaces in hyperbolic space. This representation has a great resemblance to the Weierstrass representation for minimal surfaces in R3: From this, we obtain a range of results about the theory of mean curvature one surfaces complete and finite total curvature in H3. / Fundação de Amparo a Pesquisa do Estado de Alagoas / O ponto crucial do trabalho é a obtenção de uma representação holomorfa para superfícies de curvatura média um no espaço hiperbólico. Esta representação possui uma grande semelhança com a representação de Weierstrass para superfícies mínimas em R3: A partir disso, obteremos uma gama de resultados acerca da teoria de superfícies de curvatura média um, completas e de curvatura total finita em H3.
30

Torres de sela Scherk com gênero par arbitrário em R^3

Hancco, Alvaro Julio Yucra 25 February 2014 (has links)
Made available in DSpace on 2016-06-02T20:27:40Z (GMT). No. of bitstreams: 1 5775.pdf: 3630663 bytes, checksum: 88c8bb34e865095deb48e758bbf86a4b (MD5) Previous issue date: 2014-02-25 / Financiadora de Estudos e Projetos / Starting from works by Scherk (1835) and by Enneper-Weierstraß (1863), new minimal surfaces with Scherk ends were found only in 1988 by Karcher (see [16, 17]). In the singly periodic case, Karcher s examples of positive genera had been unique until Traizet obtained new ones in 1996 (see [41]). However, Traizet s construction is implicit and excludes towers, namely the desingularisation of more than two concurrent planes. Then, new explicit towers were found only in 2006 by Martin and Ramos Batista (see [24]), all of them with genus one. For genus two, the first such towers were constructed in 2010 (see [40]). Back to 2009, implicit towers of arbitrary genera were found in [11]. In our present work we obtain explicit minimal Scherk saddle towers, for any given genus 2k, k ≥ 3, that we denote ST2k. We also present the MATLAB and Evolver programming that make it possible to generate the surfaces ST2k. MATLAB is an abbreviation forMatrix Laboratory, a program developed and distributed by MathWorks. Evolver is a free iterative program developed by Kenneth A. Brakke, a professor at Susquehanna University (see [3, 34]). / Partindo dos trabalhos de Scherk (1835) e Enneper-Weierstraß (1863), novas superfícies mínimas com fins Scherk foram encontradas em 1988 por Karcher (vide [16, 17]). No caso simplesmente periódico, os exemplos de gênero positivo de Karcher haviam sido únicos até que Traizet obteve novos em 1996 (vide [41]). No entanto, a construção de Traizet é implícita e exclui torres, ou seja a desingularização de mais do que dois planos concorrentes. Então novas torres explícitas foram encontradas somente em 2006 por Martin e Ramos Batista (vide [24]), todos eles com gênero um. Para gênero dois, as primeiras torres foram construidas em 2010 (vide [40]). De volta a 2009, torres implícitas de gênero arbitrário foram encontradas em [11]. No presente trabalho obtemos torres de sela Scherk mínimas explícitas, para qualquer gênero 2k, k ≥ 3, que denotamos ST2k. Apresentamos também a programação MATLAB e em Evolver que fazem possível gerar as superfícies ST2k. MATLAB é uma abreviação de MATrix LABoratory, programa desenvolvido e distribuído pela MathWorks. Evolver é um programa iterativo gratuito desenvolvido por Kenneth A. Brakke, professor da Susquehanna University (vide [3, 34]).

Page generated in 0.0162 seconds