Spelling suggestions: "subject:"sapphire"" "subject:"sapphires""
61 |
Atomic Force Microscopy Study of Clay Mineral DissolutionBickmore, Barry Robert 03 February 2000 (has links)
An integrated program has been developed to explore the reactivity of 2:1 phyllosilicates (biotite and the clays montmorillonite, hectorite, and nontronite) with respect to acid dissolution using in situ atomic force microscopy (AFM). Three techniques are described which make it possible to fix these minerals and other small particles to a suitable substrate for examination in the fluid cell of the atomic force microscope. A suite of macros has also been developed for the Image SXM image analysis environment which make possible the accurate and consistent measurement of the dimensions of clay particles in a series of AFM images, so that dissolution rates can be measured during a fluid cell experiment. Particles of biotite and montmorillonite were dissolved, and their dissolution rates normalized to their reactive surface area, which corresponds to the area of their edge surfaces (A<sub>e</sub>). The A<sub>e</sub>-normalized rates for these minerals between pH 1-2 are all ~10E<sup>-8</sup> mol/m<sup>2</sup>*s, and compare very well to other A<sub>e</sub>-normalized dissolution rates in the literature. Differences between the A<sub>e</sub>-normalized rates for biotite and the BET-normalized rates (derived from solution chemical studies) found in the literature can be easily explained in terms of the proportion of edge surface area and the formation of leached layers. However, the differences between the A<sub>e</sub>-normalized montmorillonite rates and the literature values cannot be explained the same way. Rather, it is demonstrated that rates derived from solution studies of montmorillonite dissolution have been affected by the colloidal behavior of the mineral particles. Finally, the dissolution behavior of hectorite (a trioctahedral smectite) and nontronite ( a dioctahedral smectite) were compared. Based on the differential reactivity of their crystal faces, a model of their surface atomic structures is formulated using Hartman-Perdock crystal growth theory, which explains the observed data if it is assumed that the rate-determining step of the dissolution mechanism is the breaking of connecting bonds between the octahedral and tetrahedral sheets of the mineral structure. / Ph. D.
|
62 |
Sapphire Fiber Based Sensing Technologies for High Temperature ApplicationsWang, Jiajun 11 March 2011 (has links)
Sapphire fiber has been studied intensively for harsh environment sensing in the past two decades due to its supreme mechanical, physical and optical properties. It is by far the most reported and likely the best optical fiber based sensing technology for sensing applications in temperature beyond 1000°C.
Several sensing schemes have been proposed and studied to date including sapphire fiber extrinsic and intrinsic Fabry-Perot interferometers, fiber Bragg gratings and long period gratings inscribed in sapphire fibers. Lacking the cladding, sapphire fiber is highly multi-moded which renders sapphire fiber based sensor fabrication much more difficult than those based on silica fibers. Among all the reported work on sapphire fiber sensing, the vast majority is for single point temperature measurement.
In this work, different sensing schemes are proposed to enhance the capability of the sapphire fiber based sensing technology. For the single point sensing, a miniaturized sapphire fiber temperature sensor for embedded sensing applications was proposed and studied. The sensors are no more than 75 µm in diameter and are ideal for non-invasive embedded sensing applications. Unlike existing sapphire fiber sensors, the thin film sensors are batch-fabrication oriented and thus have a potential to permit mass production with low cost. In addition to single point sensors, multiplexed sapphire fiber sensing systems are investigated for the first time. Two multiplexed sensing solutions, named frequency-multiplexing and spatial-multiplexing, are proposed and studied to achieve multiplexed sensing based on sapphire fibers. / Ph. D.
|
63 |
Low Modal Volume Single Crystal Sapphire Optical FiberHill, William Cary 10 March 2016 (has links)
This research provides the first known procedure for cleanly and consistently reducing the diameter of single-crystal sapphire optical fiber (SCSF) below the limits of standard production methods, including the first production of subwavelength-diameter optical fiber (SDF) composed of single-crystal sapphire. The first known demonstration of an air-clad single crystal sapphire optical fiber demonstrating single-mode behavior is also presented, and the single-mode cutoff wavelength and diameter are determined.
Theoretical models describing and predicting the optical behavior of low modal volume sapphire optical fibers are also presented. These models are built upon standard weakly-guiding optical fiber theory, which is found to be accurate once experimentally-determined properties of the SCSF are substituted for theoretical values.
Reduced modal dispersion is also observed in the form of decreased laser pulse broadening in reduced-diameter SCSF. The improvements in spatial resolution for distributed sensing systems such as Raman distributed temperature sensing are also predicted based on the measured decrease in pulse duration.
This research also provides an enhanced understanding of the etching behavior of sulfuric and phosphoric acids on sapphire surfaces, including the first reporting of etching rates and activation energies for a-plane sapphire surfaces. Morphological changes of sulfuric and phosphoric acids at and beyond the temperature ranges used in etching were also tested and discussed in detail, especially regarding their practical impact on observed etching behavior.
The demonstration of LMV single-crystal sapphire optical fibers enables the adaptation of numerous sensing schemes requiring low modal volume or single-mode behavior to be utilized in extreme environments. / Ph. D.
|
64 |
Sapphire Based Fiber-Optic Sensing for Extreme High TemperaturesYu, Guo 13 June 2011 (has links)
Temperature sensing is one of the most common and needed sensing technique, especially in harsh environment like a coal gasifier or an airplane engine. Single crystal sapphire has been studied in the last two decades as a candidate for harsh environment sensing task, due to its excellent mechanical and optical properties under extreme high temperature (over 1000°C).
In this research, a sapphire wafer based Fabry-Perot (FP) interferometer sensor has been proposed, whose functional temperature measurement can go beyond 1600°C. The size of the sensors can be limited to a 2cm-length tube, with 2mm outer diameter, which is suitable for a wide range of harsh environment applications. The sensors have shown linear sensing response during 20~1200°C temperature calibration, with high sensitivity and resolution, and strong robustness, which are ready for the field test in real-world harsh environment. / Master of Science
|
65 |
High Temperature Corrosion of Single Crystal Sapphire and Zirconia in Coal Gasification and Commercial Glass EnvironmentsDicic, Zorana 16 July 2004 (has links)
To meet the requirements of precise temperature monitoring at high temperatures in extremely corrosive environments, such as in coal gasifiers, a new sensor technology has been developed. This optical, ultra high temperature measurement system utilizes single crystal sapphire as a sensing element. A series of experiments was performed to determine the corrosion resistance of single crystal sapphire and single crystal fully stabilized cubic zirconia at high temperatures in coal slag and soda lime glass. The amount of corrosion of sapphire and zirconia in corrosive slags was measured at 1200°C, 1300°C, and 1400°C for different exposure times. The microstructural features at the interface of sapphire and zirconia were investigated using SEM and EDX analysis. The experimental measurements as well as SEM micrographs show very little or no degradation of sapphire and zirconia samples in corrosive slags. An interesting phenomenon was observed in the EDX scans of sapphire in the coal slag: the iron from the slag appears to have completely separated from the silicon and deposited at the sapphire surface. This interesting observation can be further explored to study whether this iron layer can be used to control the corrosion of sapphire. / Master of Science
|
66 |
Sapphire Fiber-based Distributed High-temperature Sensing SystemLiu, Bo 13 October 2016 (has links)
From the monitoring of deep ocean conditions to the imaging and exploration of the vast universe, optical sensors are playing a unique, critical role in all areas of scientific research. Optical fiber sensors, in particular, are not only widely used in daily life such as for medical inspection, structural health monitoring, and environmental surveillance, but also in high-tech, high-security applications such as missile guidance or monitoring of aircraft engines and structures. Measurements of physical parameters are required in harsh environments including high pressure, high temperature, highly electromagnetically-active and corrosive conditions. A typical example is fossil fuel-based power plants. Unfortunately, current optical fiber sensors for high-temperature monitoring can work only for single point measurement, as traditional fully-distributed temperature sensing techniques are restricted for temperatures below 800°C due to the limitation of the fragile character of silica fiber under high temperature.
In this research, a first-of-its-kind technology was developed which pushed the limits of fully distributed temperature sensing (DTS) in harsh environments by exploring the feasibility of DTS in optical sapphire waveguides. An all sapphire fiber-based Raman DTS system was demonstrated in a 3-meters long sapphire fiber up to a temperature of 1400°C with a spatial resolution of 16.4cm and a standard deviation of a few degrees Celsius.
In this dissertation, the design, fabrication, and testing of the sapphire fiber-based Raman DTS system are discussed in detail. The plan and direction for future work are also suggested with an aim for commercialization. / Ph. D. / This project studied the temperature dependence of Raman scattering characteristics in the single-crystal sapphire fiber. Based on these results, we designed and implemented a sapphire fiber-based fully distributed temperature sensing system using a high-power pulsed-laser. Our preliminary results show excellent and consistent temperature resolution from room temperature up to 1400 ºC. To our best knowledge, this is the first demonstration of a sapphire fiber-based distributed temperature sensing of any kind. These sensors are suitable for coal gasifiers in which the environment is corrosive, for aerospace engines and turbines requiring compact sensing elements and boilers with high-pressure environments.
|
67 |
Synthesis of Conceptual Designs for SensorsSarkar, Biplab January 2015 (has links) (PDF)
National Programme on Micro and Smart Materials and Systems (NPMASS) / A computer-aided technique is developed in this thesis to systematically
generate concepts for sensors of a wide variety. A database of building
blocks, based on physical laws and effects that capture the transduction
rules underlying the working principles of sensors, has been developed to
synthesize concepts. The proposed method uses the database to first create
a concept-space graph and then selects concepts that correspond to paths
in the graph. This is in contrast to and more efficient than existing
methods, such as, compositional synthesis and graph-grammar synthesis,
where solution paths are laid out first and then a concept-space graph is
generated. The research also explores an approach for synthesis of
concepts for closed-loop sensors, where a quantity is sensed indirectly
after nullifying its effect by using negative feedback. These sensors use
negative feedback to increase the dynamic range of operation without
compromising the sensitivity and resolution. According to the literature,
generation of un-interesting solutions is a major drawback of the building
block-based synthesis approaches. In the proposed approach, this
shortcoming is mitigated substantially by using some rules. For a number
of the concepts generated, in the sensor problems attempted, we found
that those concepts were already implemented in existing patents; thus
emphasising the usefulness of the concepts produced. The synthesis
approach proposed new, feasible sensor concepts, thereby indicating its
potential as a stimulator for enhancing creativity of designers.
Another important problem is to improve the robustness of designs.
Robustness can be achieved by minimizing the side effects. Side effects
are defined as unwanted effects that affect the intended working of the
sensor. The research presents an algorithm that (a) predicts the potential
side effects for the synthesized concepts of sensors; (b) aids in
quantifying the magnitude of the side effects, thus helping the designer
to predict the significant side effects; and (c) suggests ways to improve
the robustness of the design.
|
68 |
Selective growth of tilted ZnO nanoneedles and nanowires by PLD of patterned sapphire substratesShkurmanov, Alexander, Sturm, Chris, Lenzner, Jörg, Feuillet, Guy, Tendille, Florian, De Mierry, Philippe, Grundmann, Marius 22 September 2016 (has links) (PDF)
We report the possibility to control the tilting of nanoneedles and nanowires by using structured sapphire substrates. The advantage of the reported strategy is to obtain well oriented growth along a single direction tilted with respect to the surface normal, whereas the growth in other directions is suppressed. In our particular case, the nanostructures are tilted with respect to the surface normal by an angle of 58°. Moreover, we demonstrate that variation of the
nanostructures shape from nanoneedles to cylindrical nanowires by using SiO2 layer is observed.
|
69 |
Colères de femmes noires et excès narratifs dans Passing de Nella Larsen, Sula de Toni Morrison et Push de SapphireGibeau, Ariane 11 1900 (has links) (PDF)
Le présent mémoire s'intéresse aux représentations de la colère dans la littérature des femmes africaines-américaines du 20e siècle. Il cherche à comprendre de quelles manières cette émotion taboue et honteuse investit Passing de Nella Larsen, Sula de Toni Monison et Push de Sapphire, trois œuvres écrites à différentes époques-clés de l'histoire littéraire noire états-unienne au féminin (les années 1920 et la Renaissance de Harlem; les années 1970 et l'émergence du féminisme noir et de sa critique littéraire; les années 1990 et la consécration institutionnelle des black women's studies). Il s'agit de voir comment, dans ces romans où prédominent des enjeux liés aux oppressions de sexe, de race et de classe, la colère joue le rôle de moteur textuel, d'émotion-source : elle dirige les actions et propos des personnages, dirige les intrigues, dirige l'écriture. Elle semble ainsi constituer une impulsion, un paradigme traversant la tradition littéraire féministe noire. L'étude d'un corpus diachronique permet d'entrevoir une évolution singulière : le passage d'une colère nommée et thématisée à une colère-discours. La colère constituant une émotion du désordre et du spectaculaire, j'analyse les stratégies narratives qui permettent de faire surgir l'excès et le théâtral dans les œuvres à l'étude. Ma réflexion se décline en quatre temps. Je me penche dans un premier chapitre sur les articulations entre rapports d'oppression et colère. J'interroge les liens entre sexe et colère, puis entre race et colère, pour enfin présenter les fondements théoriques du féminisme noir et les écrits de féministes noires sur la question. Les trois autres chapitres sont consacrés aux romans analysés : le deuxième traite de Passing et de la colère qui prend possession de l'intrigue grâce à quelques stratégies du double; le troisième montre que la colère, dans Sula, se manifeste selon deux mouvements simultanés (une transmission entre plusieurs générations de personnages et un détournement dans la narration) et par le recours à la métaphore du feu; le quatrième s'intéresse à Push et à son esthétique de l'excès, laquelle imprègne à la fois les corps des protagonistes et la narration.
______________________________________________________________________________
MOTS-CLÉS DE L’AUTEUR : colère, excès, violence, littérature afro-américaine, littérature américaine, féminisme noir, Nella Larsen, Toni Morrison, Sapphire.
|
70 |
A 50 K dual-mode sapphire oscillator and whispering spherical mode oscillatorsAnstie, James D. January 2007 (has links)
[Truncated abstract] This thesis is split into two parts. In part one; A 50 K dual mode oscillator, the aim of the project was to build a 50 K precision oscillator with frequency stability on the order of 1014 from 1 to 100 seconds. A dual-mode temperature compensation technique was used that relied on a turning point in the frequency-temperature relationship of the difference frequency between two orthogonal whispering gallery modes in a single sapphire crystal. A cylindrical sapphire loaded copper cavity resonator was designed, modelled and built with a turning point in the difference frequency between an E-mode and H-mode pair at approximately 52.5 K . . . The frequencies and Q-factors of whispering spherical modes in the 3-12 GHz range in the fused silica resonator are measured at 6, 77 and 300 K and the Q-factor is used to determine the loss tangent at these temperatures. The frequency and Q-factor temperature dependence of the TM2,1,2 whispering gallery mode at 5.18 GHZ is used to characterise the loss tangent and relative permittivity of the fused silica from 4-300 K. Below 22 K the frequency-temperature dependence of the resonator was found to be consistent with the combined effects of the thermal properties of the dielectric and the influence of an unknown paramagnetic impurity, with a spin resonance frequency at about 138 ± 31 GHz. Below 8 K the loss tangent exhibited a 9th order power law temperature dependence, which may be explained by Raman scattering of Phonons from the paramagnetic impurity ions. A spherical Bragg reflector resonator made from multiple concentric dielectric layers loaded in a spherical cavity that enables confinement of field in the centre of the resonator is described. A set of simultaneous equations is derived that allow the calculation of the required dimensions and resonance frequency for such a resonator and the solution is confirmed using finite element analysis. A spherical Bragg reflector resonator is constructed using Teflon and free-space as the dielectric materials. A Q-factor of 22,000 at 13.87 GHz was measured and found to compare well with the design values.
|
Page generated in 0.0231 seconds