• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 9
  • 3
  • Tagged with
  • 36
  • 36
  • 36
  • 27
  • 24
  • 20
  • 12
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Multivalency in the interaction of biological polymers

Reiter-Scherer, Valentin D. 14 September 2020 (has links)
Diese Dissertation konzentriert sich auf die Untersuchung multivalenter Wechselwirkungen zwischen Hämagglutinin (HA) sowie Neuraminidase (NA) zweier Stämme des Influenzavirus (H1N1 und H3N2) und dem zellulären Liganden Sialinsäure (SA) unter Verwendung von Rasterkraftmikroskopie und Einzelmolekülkraftspektroskopie (SMFS). Bindungskräfte sowie Dissoziations- und Assoziationskinetiken, zusammen mit den intermolekularen Potentiallandschaften wurden, nach bestem Wissen erstmalig, auf Einzelmolekülebene mittels SMFS quantifiziert. Zu diesem Zweck wurden mono- und multivalente SA-Liganden (SAPEGLA und dPGSA) eingesetzt. Abweichungen der experimentellen Kraftspektren vom klassischen Kramers-Bell-Evans-Modell vorhergesagten Verhalten wurden durch das Friddle-Noy-De Yoreo-Model berücksichtigt. NA beider Virusstämme zeigte trotz ähnlicher Bindungskräfte eine stabilere Bindung mit SA als HA und dissoziierte 3 – 7 mal langsamer. Es wird vermutet, dass die höhere Stabilität die geringere Oberflächendichte von NA auf der Virushülle im Vergleich zu HA ausgleicht. Die Bindungskräfte eines SAPEGLA-Clusters nehmen mit der Anzahl der Bindungen und die Dissoziationskinetik folgt dem theoretisch vorhergesagten Trend. Die Dissoziationsrate von NA ist etwa 6-mal höher ist als ihre katalytische Rate, weshalb Mehrfachbindungen zur Spaltung von SA erforderlich sind. Die Dissoziationsrate von N1 in der gleichen Größenordnung wie die von H3 und es wird vermutet, dass derartige Ähnlichkeiten die Übertragbarkeit des Virus begünstigen. Darüber hinaus wird gezeigt, dass die thermische Stabilität von HA-dPGSA höher ist als von HA-SAPEGLA und im Bereich von 3 - 4 Einzelbindungen liegt, was für NA-dPGSA nicht beobachtet werden konnte. Daher bindet dPGSA spezifisch und kooperativ multivalent an HA. Kompetitive Bindungstests zeigen, dass SMFS zum Screening von antiviralen Inhibitoren verwendet werden und Zugang zu deren Design auf Einzelmolekülebene liefern könnte. / This thesis focuses on studying multivalent interactions between influenza virus hemagglutinin (HA) as well as neuraminidase (NA) of two viral strains (H1N1 and H3N2) and the cellular ligand sialic acid (SA) by using scanning force microscopy and single molecule force spectroscopy (SMFS). Unbinding forces as well as dissociation and association kinetics together with the free energy landscapes were, to the best knowledge for the first time, individually quantified on the single molecule level using SMFS. To this extent, designed synthetic monovalent (SAPEGLA) and multivalent (dPGSA) SA displaying ligands were employed. Surprisingly, the experimental force spectra did not show the log-linear trend predicted by the classical Kramers-Bell-Evans model, but rather follow the more recent Friddle-Noy-De Yoreo model. NA of both viral strains forms a more stable bond with SA than HA, and dissociates 3 to 7 times slower. It is reasoned that the higher stability compensates for the lesser amount of NA compared to HA that is typically found on the viral envelope. The unbinding forces of the cluster of SAPEGLA increased gradually with the number of bonds in the cluster and the dissociation kinetics follow the theoretically predicted trend. The dissociation rate of NA was found to be about 6 times higher than its catalytic rate, indicating that multiple bonds are needed for cleavage of SA. The dissociation rate of N1 is on the same order as that of H3, suggesting that these similarities between the two strains favor transmissibility. The thermal stability of the HA-dPGSA bond is higher than the HA-SAPEGLA reaching that of three to four single bonds, proving specificity and cooperativity. Such an enhancement could not be observed for the binding of NA. This thesis also shows that SMFS could be used as a tool to screen antiviral inhibitors in competitive binding assays, which may contribute insight into the design of antiviral inhibitors on the single molecule level.
22

Optical spectroscopy and scanning force microscopy of small molecules intercalated within graphene and graphene oxide interfaces

Rezania, Bita 06 January 2022 (has links)
Das Verhalten von durch Graphen oder Graphenoxid (GO) begrenzten Molekülen hat sich, bedingt durch die bemerkenswerten strukturellen und optischen Eigenschaften dieser quasi-zweidimensionalen Materialien, als vielversprechendes Forschungsfeld erwiesen. Die vorliegende Arbeit konzentriert sich auf das Hydrationsverhalten von GO und das Verhalten kleiner, von Graphen begrenzter Moleküle. In dieser Arbeit wurde auf Rasterkraftmikroskopie (SFM) zurückgegriffen, um die GO-Hydration zu untersuchen. Die Ergebnisse zeigen ein graduelles bzw. stufenweises Ansteigen des durchschnittlichen Schichtabstands für relative Luftfeuchtigkeiten (RH) unter halb von 80%, beziehungsweise in flüssigem Wasser. Diese experimentellen Beobachtungen stimmen mit den XRD an vielschichtigem GO in der Literatur überein. Die hier gezeigten Ergebnisse lassen jedoch den angenommenen Einlagerungseffekt, bei der Hydrierung von GO bei geringer RH, außen vor. Stattdessen wird die allmähliche Ausdehnung der kontinuierlichen Einlagerung von Wassermolekülen in den einzelnen GO-Schichten zugeschrieben, während die stufenweise Ausdehnung im komplett in Wasser getauchten Zustand auf das Eindringen einer ganzen Wassermonolage zurückgeführt wird. Andererseits könnte die Grenzfläche zwischen Graphen und dem Substrat ein begrenztes elektrisches Feld aufweisen, das ein weit verbreitetes, auf Ladungstransfer an Grenzflächen zurückzuführendes Phänomen darstellt. Die vorliegende Arbeit behandelt dieses Thema unter Nutzung von Rhodamin 6G (R6G) als Molekül zwischen Graphen und Glimmer, die es begrenzen. Eine Rot-Verschiebung der R6G-Maxima bei geringer RH wird sowohl auf elektrische Felder, die sich auf die Moleküle auswirken, als auch auf mechanische Deformationen der R6G-Struktur an der Grenzschicht zurückgeführt. Die Stärke des elektrischen Feldes wird anhand des Graphen-Raman-Spektrums auf etwa 1 V/nm abgeschätzt. / The behavior of molecules confined by graphene or graphene oxide (GO) has proven to be a promising area of research owing to the remarkable structural and optical properties of these quasi two-dimensional materials. This thesis focuses on the hydration behavior of GO and the behavior of small molecules confined by graphene. In this work, scanning force microscopy (SFM) has been employed to investigate the hydration of GO. The results show a gradual and a step-like increase of the average interlayer distance for relative humidities (RH) below 80% and in liquid water, respectively. These experimental observations are consistent with XRD results on multilayered graphite oxide as reported in the literature. However, the results presented here exclude the postulated interstratification effect, for hydration of GO at low RH. Instead, the gradual expansion is attributed to the continuous incorporation of water molecules into single GO layers, while the step-like expansion when completely immersed in water, is attributed to the insertion of a full monolayer of water. On the other hand, the interface between graphene and its substrate may exhibit a confined electric field, a common phenomenon due to charge transfer at interfaces. In this work, this subject is addressed using Rhodamine 6G (R6G) as a probe molecule confined between graphene and mica. A red shift of the RG6 peaks at low RH is argued to be due to both, electric fields acting on the molecules and mechanical deformation of the R6G structure at the interface. The strength of the field is estimated from the graphene Raman spectra to be on the order of 1 V/nm.
23

Fluid Molecular Layers at the Interface between Mica and 2D Materials Investigated by Optical Spectroscopy and Scanning Force Microscopy

Lin, Hu 06 July 2022 (has links)
Die Art der zwischen den 2D-Materialien und den festen Substraten eingeschlossenen Wasserschichten ist umstritten, sowie auch ihr Einfluss auf die Eigenschaften der 2D-Materialien. In-situ-Rasterkraftmikroskopie (SFM) wurde eingesetzt, um den Benetzungsprozess von Wasser an der Grenzfläche zwischen trockenem graphen- und molybdändisulfid (MoS2)- und Glimmer zu visualisieren. In-situ Raman- und Photolumineszenzmessungen (PL) wurden durchgeführt, um zu untersuchen, wie sich die Ladungsdotierung von Graphen und die Dehnung von Graphen und MoS2 bei der Benetzung verändern. SFM-Ergebnisse zeigen, dass Wassermoleküle, die die trockene Grenzfläche benetzen, bei hoher relativer Luftfeuchtigkeit eine homogene monomolekulare Schicht ausbilden. Aus Raman-Messungen kann man schließen, dass die Wasserschicht vorhandenen Ladungstransfer an der trockenen Grenzfläche blockiert, während eine Schicht aus Ethanolmolekülen dafür nicht ausreicht. Der Austausch von Ethanol gegen Wasser und umgekehrt ermöglicht eine reversible Umschaltung des Ladungstransfers an der Grenzfläche. Dehnungsänderungen von 2D-Materialien auf Glimmer mit eingeschlossenen Flüssigkeitsschichten wird in dieser Arbeit durch Dehnung eines Glimmersubstrats mit darauf exfoliertem 2D-Material untersucht. Die dadurch induzierte Dehnung in Graphen und MoS2 wird durch die Analyse der Veränderungen in den Raman- bzw. PL-Spektren ermittelt. Dabei kann eine Dehnungsrelaxation in Graphen beobachtet werden, die sich von einer „Stick-Slip-Bewegung“ bei trockener Grenzfläche zu viskosem Relaxationsverhalten verändert, wenn Wasser in die Grenzfläche interkaliert. Im Gegensatz dazu findet man in MoS2 unabhängig von der Hydratation keine viskose Relaxation. / The nature of the water layers confined between 2D materials and solid substrates is disputed, also their influences on properties of 2D materials are in debate. I employ In-situ scanning force microscopy (SFM) to visualize wetting of water at the dry graphene-/molybdenum disulfide (MoS2) - mica interface. In-situ Raman and photoluminescence (PL) measurements probe charge-doping and strain change of graphene and MoS2 upon wetting. SFM results show that water molecules wetting the dry interface form a monomolecular layer at high relative humidity (RH). Raman results imply that the water layer blocks charge transfer from mica to graphene, while an ethanol monolayer allows for it. Strain changes of both 2D materials on mica with confined liquid layers are investigated by stretching a mica substrate with the 2D material exfoliated on it. The strain induced in graphene and MoS2 is inferred by analyzing changes in Raman and PL spectra, respectively. Strain relaxation in graphene changes from stick-slip for dry interface to viscous when intercalated by water. In contrast, there is no viscous relaxation in MoS2 regardless of hydration.
24

Structures and mechanical properties of single macromolecules at surfaces

Liang, Hua 28 September 2015 (has links)
Drei ausgewählt makromolekulare Systeme: DNA, amphiphile Block-Bürstenpolymere, und amphiphile, hyperverzweigte Polyglycerine wurden untersucht, um die Zusammenhang zwischen Struktur, Eigenschaften, und potentiellen Anwendung auf der Ebene einzelner Moleküle zu widmen. Unterschiedliche DNA Konformationen: (i) supercoiled DNA, (ii) gestreckte doppelsträngige DNA, die teilweise in zwei Einzelstränge aufgeschmolzen ist, (iii) DNA mit einem überdehnten Rückgrat, (iv) entspannter, ungedehnter Ring und (v) kompaktes Knäuel wurden untersucht, um direkt DNA Konformationen mit mechanischen Eigenschaften, wie der Kopplung von Streckung und Verdrillung zu korrelieren. Mit Hilfe eines Kraftmikroskops, mit dem man eine Kraft parallel zur Oberfläche anlegen kann, wurden die plasmidischen DNA Moleküle auf bis zum 2.1-fachen der ursprünglichen B-Form Länge gestreckt und dann gerissen. Die Strukturen einzelner Amphiphilen Block-Bürstenpolymere auf unterschiedlichen Oberflächen wurden investigiert. Aus Chloroform-Lösung auf Glimmer abgeschiedene Polymere wiesen wurmartige Konformationen auf. Wegen der unterschiedlichen Oberflächenaffinitäten der Seitenketten sind diese zu einem Teil kollabiert, während sich ein anderer Teil ausstreckt. Das an Kaulquappen erinnernde Ergebnis ist eine Struktur mit rückgefalteten Kettenteilen. Aus wässriger Lösung abgeschieden bilden diese amphiphilen Block-Bürstenpolymere supramolekulare Aggregate auf der Oberfläche. Die amphiphile Kern-Schale-Strukturen der hyperverzweigten Polyglycerinen und ihre Verkapselungs- und Transportkapazität für typische Gastmoleküle wie Nil Rot und Pyren wurden mit Hilfe von SFM, Lichtstreu-, und Spektroskopie-Methoden examiniert. Die Ergebnisse zeigen, dass die Polymere verschiedene Gastmoleküle sowohl in unimolekulan Mizellen wie auch in polymeren Mizellen verkapseln und transportieren. Das Polymer ist ein vielversprechender Kandidat für die gleichzeitige Bereitstellung von zwei hydrophoben Pharmaka. / Three macromolecular systems: DNA, amphiphilic cylindrical polymer brushes, and amphiphilic core-shell structured hyperbranched polyglycerol (hPG) were investigated in order to investigate correlations between structure, properties and potential applications at the single molecule level. Different single DNA conformations: (i) supercoiled DNA, (ii) stretched DNA, partially melted into two single strands, (iii) DNA with an overstretched backbone, (iv) relaxed circles without stretching, and (v) compact coils were studied on the surface to directly correlate DNA conformations to mechanical properties such as twist-stretch coupling. The plasmid DNA molecules were stretched further, up to 2.1 times their original length and ruptured with a Scanning Force Microscope (SFM), exerting a force parallel to the surface. The structures of single cylindrical polymer brushes adsorbed on different surfaces were explored. The brush polymers reveal worm-like chain conformations on mica, after being deposited from a chloroform solution. Due to different affinities of the side chains to the surface, parts of the side chains collapsed, while others fully extended on the surface, resulting in a “tadpole like” or a back-folding structure. Deposited from an aqueous solution, the dual cylindrical polymer brushes form supramolecular aggregates on the surface. The supramolecular structure of hyperbranded polyglycerol and its encapsulation and transportation capacities for typical guest molecules, such as nile red and pyrene were examined by SFM, light scattering and spectroscopy methods. The polymer showed bi-functional carrier properties: it encapsulates and transports guest molecules in both, a “unimolecular micelle” and polymeric micelle type mechanism. The capacity of co-loading of two drugs and controlled release makes it a promising candidate for simultaneous delivery of two hydrophobic drugs in cancer combination therapy.
25

Etablierung der Rasterkraftmikroskopie an kardiovaskulär relevanten Zellen, Proteinen und Materialien

Richter, Christoph 20 October 2003 (has links)
1981 entwickelten Gerd Binnig und Heinrich Rohrer bei IBM in Zürich das "Scanning Tunneling Microscope". Damit wurde erstmalig das lokal hochaufgelöste Erfassen (bis in den atomaren Auflösungsbereich) von Objekteigenschaften im Nahfeld inerter Oberflächen möglich. Dies und insbesondere die Weiterentwicklung der Technologie und die spätere (1986) Etablierung der Rasterkraftmikroskopie (Atomic Force Microscopy - AFM), die diese Auflösungsmöglichkeiten der Rastersondenmikroskope auch an Non-Konduktoren (nicht leitende Untersuchungsoberflächen) realisieren konnte, stellte die Geburtsstunde einer neuen mikroskopischen Ära auf dem Gebiet der biomedizinischen Grundlagenforschung dar (Kapitel 1.3). Das Studium der umfangreichen Literaturquellen zu diesem Thema und der direkte wissenschaftliche Kontakt und Erfahrungsaustausch mit anderen AFM- Arbeitsgruppen ließen im Initialstadium dieser vorliegenden Arbeit bereits erkennen, dass in der kardiovaskulären Grundlagenforschung zunehmend rasterkraftmikroskopische Versuchsansätze bearbeitet und kardiologisch interessante Fragestellungen mittels dieser Methode begleitend untersucht wurden (Kapitel 1.4). Das Ziel dieser vorliegenden Arbeit bestand darin, kardiovaskulär relevante Zellen und Einzelproteine in vivo und interventionelle Materialien (Stents) rasterkraftmikroskopisch zu untersuchen, wobei die Etablierung und technisch aufwendige Optimierung dieser neuen mikroskopischen (Kapitel 3.1) und der zellspezifisch präparatorischen Methoden (Kapitel 3.2) an diesen Untersuchungsobjekten im Mittelpunkt stehen sollte. Die im Rahmen dieser Arbeit untersuchten endothelialen Zellen und H9C2-Myozyten stammten aus, in unserem Forschungslabor etablierten, immortalen Kulturzelllinien. Die adulten und Kardiomyozyten neonataler Ratten, die kardial- fibrozytären Zellen sowie die Thrombozyten wurden primär isoliert und als Primärkulturzellen kultiviert (Kapitel 3.2.3 und 3.2.4). Außerdem wurden vitale aortale Endothelzellen unterschiedlicher Tiere (Ratte, Meerschwein, Kaninchen) im Gewebsverband der thorakalen Aorta untersucht (Kapitel 4.2). Die Zellen wurden initial, im Rahmen der Etablierungsphase mittels unterschiedlicher Methoden fixiert und nachfolgend rasterkraftmikroskopisch untersucht und dargestellt. Der Etablierungsprozess der Methodik begann mit der Abbildung luftgetrockneter Zellen (Kapitel 4.1.1) unter Raumbedingungen und setzte sich über verschiedene Modifikationen der Zellpräparation (z.B. Glutardialdehydfixation, Cryofixation), des Abbildungsmodus (Contact-, Non-Contact-, Tapping-Mode) und der Abbildungsbedingungen (Raumbedingungen, zellphysiologische Umgebung) fort, so dass schließlich die Abbildung vitaler Zellen (Kapitel 4.1.2 und Kapitel 4.2 - 4.5) in ihrer strukturellen und funktionellen Umgebung (z.B. aortale Endothelzellen im Gewebsverband) etabliert werden konnte und routinemäßig reproduzierbar war. An stabilen oder künstlich stabilisierten Strukturen der o.g. vitalen Zellen wurden erste orientierende Messungen der bioelastischen Eigenschaften (Kraft-Abstands-Kurven, Kapitel 4.1.2.1) durchgeführt. Außerdem haben wir im Einzelfall, wenn technisch und apparativ möglich, andere hochauflösende strukturanalytische Verfahren (z.B. TEM) als mikroskopische Referenzuntersuchungen herangezogen (Kapitel 4.1.2; 4.4.1; 4.6), wobei z.T. erstaunliche Übereinstimmung zwischen den AFM- Daten und den strukturanalytischen Daten der Referenzmethoden nachweisbar waren. Ein strukturell durch Elektronenmikroskopie und Röntgendiffraktionsanalyse sehr gut beschriebenes komplexes Funktionsprotein, das 20-S-Proteasom, wurde mittels der Rasterkraftmikroskopie abgebildet und vermessen und die so gewonnenen strukturanalytischen Daten mit den bekannten strukturellen Abmessungen des Proteins verglichen (Kapitel 4.6). Die hierbei detektierten dimensionalen Abweichungen zwischen den AFM- assoziierten Daten und den bekannten strukturanalytischen Daten der Elektronenmikroskopie wurden im Kontext der funktionellen Integrität des Proteins und hinsichtlich möglicher methodischer Fehlereinflüsse (Kapitel 3.1.4.3) diskutiert. Interventionelle Materialien (Stents), die in der täglichen kardiologischen Praxis Anwendung finden, sind hinsichtlich ihrer Ultrastruktur mittels dieser hochsensitiven Abbildungsmethode im Nahfeld von Objektoberflächen untersucht worden. Bezüglich ihrer nativen Oberflächenbeschaffenheit und ihrer mechanischen Alteration durch den Ballon- Dilatationsprozess wurden die Stents sehr detailliert qualitativ und quantitativ (Kapitel 4.7) beschrieben, wobei Prädilektionsstellen der prozedural- assoziierten mechanischen Beanspruchung der Stents durch die hier beschriebene, oberflächensensitive AFM- Methode sehr genau diskriminiert werden konnten. Die präparierten Stents wurden weiterführend mit humanen Thrombozytenkonzentraten inkubiert und die Zell- Stentoberflächenkontakte sowie mögliche Stentoberflächen- induzierte Veränderungen der Thrombozyten sind morphologisch ausführlich beschrieben worden. Letztendlich wurde im Rahmen der vorliegenden Arbeit die spezifische Aktivierung der vitalen Thrombozyten durch pharmakologische Stimulantien (z.B. ADP) mit der, durch den AFM-Abbildungsprozess induzierten Thrombozytenaktivierung (Kapitel 4.5) unter AFM-Bedingungen verglichen und diskutiert. Die Ergebnisse dieser Arbeit weisen, dass mit der AFM-Technologie und objektorientiert optimierten Mess- und Präparationsmethoden ein neues mikroskopisches Analyseverfahren vorliegt, dass zum einen real-dreidimensionale morphologische Bildgebung bis in den submolekularen Auflösungsbereich an vitalen Zellen und präparierten Proteinkomplexen, zum anderen aber gleichermaßen Funktionsanalytik in Form von Messungen zelldynamischer Prozesse wie Migrationsbewegungen und Kontraktionen sowie visko- elastische Quantifizierung von Zellmembranen erlaubt. Der Vorteil gegenüber den meisten gegenwärtig verfügbaren mikroskopischen Methoden liegt in der neu eröffneten Möglichkeit der seriellen, wiederholten und stabil reproduzierbaren Messung an vitalen Zellen und zellulären Substrukturen. Insofern könnte in Zukunft diese neue Technologie eine methodische Bereicherung der mikroskopisch-morphologisch und funktionell orientierten Analysetechnik darstellen. / In 1981 Binnig and Rohrer invented the "Scanning Tunneling Microscope". Thereby it became feasible to high-resolution record the surface-properties of specimens (up to atomic resolution) at the nearfield of inert surfaces. This and in detail the further development of this technology and the establishment of "Atomic Force Microscopy" (1986), that allows implementation of this resolution capabilities in non-conductors or insulating materials represent the birth of a new microscopic era in the field of biomedical basic research (chapter 1.3). The promise of atomic (scanning) force microscopy (AFM) for cardiovascular research is enormous. The perusal of the extensive literature concerning this topic and scientific contact with other researchers reveals initial the capabilities of this method in cardiovascular basic research. Intriguing questions of cardiology may investigate concomitantly with help of scanning-force-micoscopic approaches (chapter 1.4). The aim of this study was to investigate relevant cardiovascular cells and single proteins in-vivo and specific materials (coronary artery stents) with scanning-force-micoscopic setup. The establishment and expensive optimization of this new microscopic method (chapter 3.1) and of the cell specific preparatory methods (chapter 3.2) represented the center of interest of our inevestigations. The endothelial cells and H9C2-myocytes stem from established imortal cell culture lines. The adult cardiomyocytes and cardiomyocytes of neonatal rats, the fibrocytes and the thrombocytes were primarily cultivated (chapter 3.2.3 and 3.2.4). In addition we investigated aortic endothelial cells of intact aortic tissue of different animals (rat, guinea pig, rabbit - chapter 4.2). During the establish experiments cells underlied different methods of cell-fixation. The primary investigations was performed using air-dried cells (chapter 4.1.1) analyzed in room ambient conditions and were continued by different modifications of cell-preparation. (e.g. glutardialdehyde-fixation, cryo-fixation), of microscopic mode (contact-, non-contact-, tapping-mode) and of cell-specific environmental conditions (from room ambient to cellphysiological medium and temperature). As result we became enabled to investigate (reproducible and routinely) vital cells (chapter 4.1.2 and chapter 4.2 - 4.5) embedded in physiological normal structural und functional ambient conditions (e.g. endothelial cells of intact aortic tisue in-vivo). Additionally, we performed measurements of bio-elastic properties of stable or artificial stabilized structures of named cells (force-distances-curves - chapter 4.1.2.1). If posibble, depending of available technical equipment, we compared our microscopic results with other high-resolution analytical procedures of reference (e.g. TEM - Kapitel 4.1.2; 4.4.1; 4.6) and detected astonishing congruence between the data. Furthermore we analyzed the well-described (electron-microscopy and x-ray-diffraction data) complex 20-S-proteasome using a specific atomic force microscopic setup. Analytical and structural data of these AFM-scans and abovementioned methods were likened (chapter 4.6). The deviations concerning the detected proportions were discussed regarding functional integrity of the protein and with respect to potential methodically determined artifacts. (chapter 3.1.4.3). Assaying (qualitative and quantitative) the surface roughness properties of coronary artery stents, we found significant alterations of stent material induced by balloondilatation. We suppose, that changes in roughness of inner surface of coronary artery stents might induce clinical problems like acute stent-thrombosis and in-stent-restenosis. Finally these stents were coated with human thromboytes to investigate cell-stent-surface interactions. Surface-roughness correllated triggering of thrombocyte adhesion was evaluated by morphological analysis of AFM-scans. Finishing, we have investigated and concluding discussed the specific activation of vital thrombocytes by pharmacological substances (e.g. ADP) and by mechanical stimulation (due to AFM-associated tip-surface-interaction). The results of this work demonstrate, AFM-technology using optimized microscopic setup and object-specific adjusted measurement- and preparation- methods, is an new, powerful, microscopic technique, that allow real-3-dimensional morphological mapping up to submolecular range of resolution in vital cells and protein complexes. Moreover, this technology opens new dimensions in functional analytic of cell migration processes or cellular contractions and in evaluation of visco-elastic quantification of cell membranes. The advantage owed to the most currently available microscopic methods is the option of serial and reproducible measurement of vital cells and subcellular structures. In this respect, this new method might represent a methodical enrichment of the microscopic-morphological and functional oriented analysis-technique in future.
26

Aufbau nanoskopischer Netzwerke aus DNA und Bindeproteinen

Benke, Annegret 12 November 2007 (has links) (PDF)
Zusammenfassung Die vorliegende Arbeit beschäftigt sich mit Grundlagenuntersuchungen zum Aufbau von nanoskopischen Netzwerken aus DNA. Dabei werden zwei Wege verfolgt: Das Stempeln von DNA-Molekülen auf ein Substrat und die Herstellung von Verknüpfungen aus DNA mit Hilfe von Bindeproteinen. Stempeln von DNA-Molekülen In dieser Arbeit wurde ein Beitrag zu den materialwissenschaftlichen Grundlagen des Übertragens von DNA mit der Stempel-Technik erbracht. Hierbei wurden sowohl das Beladen des Stempels durch Molecular Combing als auch die Übertragung der Moleküle durch Transfer Printing unter den speziellen Bedingungen der Verwendung von DNA-Molekülen vertieft untersucht. Es konnte gezeigt werden, dass es möglich ist, gestreckte DNA-Moleküle zielgerichtet in eine mikroelektronische Struktur mit Goldkontakten zu übertragen. Dazu wurde ein Verfahren erarbeitet, bei dem die Kontaktstruktur und ein dazu passender, strukturierter PDMS (Polydimethylsiloxan)-Stempel exakt positioniert werden können. Das Adsorptionsverhalten von DNA auf PDMS wurde in Abhängigkeit vom pH-Wert des Puffers untersucht. Im gesamten pH-Bereich von 4 bis 10 wurde Adsorption mit hoher Belegungsdichte und vollständiger Streckung der Moleküle beobachtet. Diese Beobachtung kann im Rahmen eines phänomenologischen Modells erklärt werden, das auf einer Bilanz der Adsorptionskraft und der für die Streckung der DNA notwendigen Kraft beruht. In der Literatur wird hingegen berichtet, dass bisher nur in einem kleinen pH-Bereich um 5,5 diese hohe Adsorptionsrate gestreckter Moleküle auf einer hydrophoben Oberfläche erreicht werden konnte. Das Adsorptionsverhalten von DNA auf PDMS wurde in Abhängigkeit von der NaCl-Molarität des Puffers untersucht. Es wurde festgestellt, dass mit steigender Salzkonzentration die Belegungsdichte an Molekülen zunimmt und bei ca. 100 mM ein Maximum aufweist. Aus dem Gang der Anzahl der adsorbierten Moleküle mit der Salzkonzentration ist erkennbar, dass dieser Prozess zumindest durch zwei konkurrierende Mechanismen bestimmt ist: der Zunahme der Bindungen zwischen DNA und Substrat aufgrund steigender Adsorption von Na+- Ionen auf der DNA bzw. dem Substrat und von Cl-- Ionen auf dem Substrat (dies führt zu einer Zunahme der Adsorptionsrate) und der Stabilisierung des Doppelstranges (dies führt zu einer Abnahme der Adsorptionsrate). Die hohe Adsorptionsrate geschlossener Plasmide zeigte, dass die Adsorption auf PDMS auch bei DNA-Molekülen möglich ist, die keinen bevorzugten Ort für das Aufschmelzen des Doppelstranges haben. Experimentell konnten die Ergebnisse einer Modellrechnung bestätigt werden, wonach bei doppelsträngiger DNA bereits zwei aufgeschmolzene Basenpaare ausreichen, damit die Adsorption über hydrophobe Wechselwirkungen beginnen kann. Der Nachweis der vollständigen Übertragung der DNA-Moleküle während des Transfers vom Stempel auf das Substrat wurde rasterkraftmikroskopisch geführt. Der Transferprozess wurde experimentell untersucht und daraus resultierend seine Darstellung als zweistufiger Mechanismus vorgeschlagen. Es wurde gezeigt, dass Wassermolekülen beim Übertragungsprozess die entscheidende Rolle zukommt: Wassermoleküle, die sich entlang der DNA befinden, müssen den Kontakt zum Wasserlayer auf dem Glas vermitteln, so dass die DNA nach dem Prinzip des kapillaren Greifens übertragen werden kann. DNA-Verknüpfungen mittels Tet-Repressor-Protein Die aus der bakteriellen Genregulation bekannte sequenzspezifische Bindung zwischen der tetO-Sequenz auf der DNA und dem TetR-Protein wurde genutzt, um definierte Konstrukte aus DNA und Bindeproteinen herzustellen. Mit dem modifizierten Protein scTetRtDL, das zwei Bindedomänen für tetO besitzt, konnten jeweils zwei DNA-Moleküle verknüpft werden. Aus 568 bp-Fragmenten, die leicht außermittig die tetO-Sequenz tragen, wurden durch die Bindung mit scTetRtDL kreuzförmige DNA-Strukturen hergestellt. Das ca. 1 µm lange, linearisierte und tetO-tragende Plasmid pUC19/AV16 wurde verwendet, um größere Strukturen herzustellen. Durch Schneiden des Plasmides mit verschiedenen Restriktionsenzymen und der daraus resultierenden Variation der Position von tetO ist die Konstruktion von unterschiedlichen Strukturen möglich. Mittels Proteinbindung wurden Kreuzungen und aneinander gekettete Moleküle (so genannte Verlängerungen) erzeugt. Die konstruierten DNA-Protein-Komplexe wurden mit dem Rasterkraftmikroskop abgebildet. Mittels Gelelektrophorese wurde der Einfluss der sequenzinduzierten Biegungen im Plasmid pUC19/AV16 auf das Laufverhalten im Gel untersucht.
27

Ferroelektrische Lithografie auf magnesiumdotierten Lithiumniobat-Einkristallen

Haußmann, Alexander 06 April 2011 (has links) (PDF)
Die Ferroelektrische Lithografie ist ein im letzten Jahrzehnt entwickeltes Verfahren zur gezielten Steuerung des Aufbaus von Nanostrukturen auf ferroelektrischen Oberflächen. Hierbei wird ausgenutzt, dass die unterschiedlich orientierte Spontanpolarisation des Materials in den einzelnen Domänen zu einer charakteristischen Variation der Oberflächenchemie führt. Die vorliegende Dissertation behandelt die Umsetzung dieses Ansatzes zur gezielten und steuerbaren Deposition von Nanostrukturen aus Edelmetallen oder organischen Molekülen. Diese Deposition erfolgte mittels einer nasschemischen Prozessierung unter UV-Beleuchtung auf magnesiumdotierten, einkristallinen Lithiumniobat-Substraten. Als typisches Ergebnis zeigte sich sowohl für in Wasser gelöste Silber-, Gold- und Platinsalze als auch für wässrige Lösungen des organischen Fluoreszenzfarbstoffs Rhodamin 6G eine bevorzugte Abscheidung des Materials an den 180°-Domänenwänden auf der Substratoberfläche. Dabei beginnt die Abscheidung in Form einzelner Nanopartikel innerhalb eines 150−500 nm breiten Streifens parallel zur Domänenwand. Bei fortgesetzter Beleuchtung erfolgt ein weiteres Wachstum der Kristallite bis zur ihrer gegenseitigen Berührung. Damit ermöglicht dieser Abscheideprozess den Aufbau organischer oder metallisch polykristalliner Nanodrähte mit Abmessungen um 100 nm in Breite und Höhe. Die Länge ist lediglich durch die Probenabmessungen begrenzt. Die so erzeugten Strukturen wurden im Rahmen der experimentellen Arbeiten topografisch, elektrisch und optisch charakterisiert. Am Beispiel einzeln kontaktierter Platindrähte konnte dabei deren annähernd ohmsches Leitfähigkeitsverhalten nachgewiesen werden. Zudem reagiert der Widerstand eines solchen Platin-Nanodrahtes sehr sensitiv auf Änderungen des umgebenden Gasmediums, was die Eignung solcher Strukturen für die Integration in künftige Sensorbauelemente unterstreicht. Weitergehende Untersuchungen beschäftigten sich mit der Klärung der Ursachen dieser sogenannten Domänenwanddekoration. Hierzu wurde die Lage der abgeschiedenen Strukturen mit dem zu Grunde liegenden Domänenmuster verglichen. Bis auf wenige Ausnahmen wurde dabei eine auf die Domänengrenze zentrierte, symmetrische Bedeckung nachgewiesen. Als Erklärungsansatz wird die Trennung der photoinduzierten Elektron-Loch-Paare durch das elektrostatische Feld der Polarisations- und Abschirmladungen diskutiert. Diese führt zur Ladungsträgerakkumulation und erhöhten chemischen Reaktivität an den Domänengrenzen. / Ferroelectric lithography is a method for a controlled assembly of nanostructures on ferroelectric surfaces, which has has been established throughout the last decade. It exploits the characteristic variations in surface chemistry arising from the different orientations of the spontaneous polarisation within the separate domains. The scope of this thesis is the application of that approach for the directed and controlled deposition of nanostructures consisting of noble metals or organic molecules. For this deposition, a wet chemical processing under UV illumination was carried out on magnesium doped lithium niobate single crystals. As a typical result, the decoration of 180° domain walls was observed for aqueous solutions of silver, gold and platinum salts as well as for the dissolved organic fluorescent dye Rhodamine 6G. The deposition starts within a stripe of 150−500 nm in width parallel to the domain wall. Under continuing illumination, the crystallites grow further until they finally touch each other. Using this technique, organic or metallic polycrystalline nanowires with dimensions in the range of 100nm in width and height can be assembled. Their length is only limited by the sample size. These nanostructures were characterised in respect of their topographical, electrical and optical properties. In the case of contacted single platinum wires an electrical conduction was measured, which showed approximately ohmic behaviour. It was also shown that the resistance of such a platinum nanowire is very sensitive to changes in the surrounding gas medium. This emphasises the suitability of such structures for integration in future sensor devices. Further experiments were carried out to investigate the physical background of the observed domain wall decoration. For this, the positions of the deposited structures were compared with the underlying domain structure. Apart from few exceptions, a symmetric deposition centered at the domain wall was observed. As a starting point for explanation, the separation of electron-hole-pairs by the electrostatic field from polarisation and screening charges is discussed. This process leads to charge carrier accumulation at the domain boundaries, thus enhancing the local chemical reactivity.
28

Laterale Organisation von Shiga Toxin gebunden an Gb3-haltige Modellmembranen / Lateral Organisation of Shiga Toxin Bound to Model Membranes Containing Gb3

Windschiegl, Barbara 23 January 2009 (has links)
No description available.
29

Structural Analysis of Reconstituted Collagen Type I - Heparin Cofibrils

Stamov, Dimitar 15 March 2010 (has links)
Synthetic biomaterials are constantly being developed and play central roles in contemporary strategies in regenerative medicine and tissue engineering as artificial extracellular microenvironments. Such scaffolds provide 2D- and 3D-support for interaction with cells and thus convey spatial and temporal control over their function and multicellular processes, such as differentiation and morphogenesis. A model fibrillar system with tunable viscoelastic properties, comprised of 2 native ECM components like collagen type I and the GAG heparin, is presented here. Although the individual components comply with the adhesive, mechanical and bioinductive requirements for artificial reconstituted ECMs, their interaction and structural characterization remains an intriguing conundrum. The aim of the work was to analyze and structurally characterize a xenogeneic in vitro cell culture scaffold reconstituted from two native ECM components, collagen type I and the highly negatively charged glycosaminoglycan heparin. Utilizing a broad spectrum of structural analysis it could be shown that pepsin-solubilized collagen type I fibrils, reconstituted in vitro in the presence of heparin, exhibit an unusually thick and straight shape, with a non-linear dependence in size distribution, width-to-length ratio, and morphology over a wide range of GAG concentrations. The experiments imply a pronounced impact of the nucleation phase on the cofibril morphology as a result of the strong electrostatic interaction of heparin with atelocollagen. Heparin is assumed to stabilize the collagen-GAG complexes and to enhance their parallel accretion during cofibrillogenesis, furthermore corroborated by the heparin quantitation data showing the GAG to be intercalated as a linker molecule with a specific binding site inside the cofibrils. In addition, the exerted morphogenic effect of the GAG, appears to be influenced by factors as degree of sulfation, charge, and concentration. Further detailed structural analysis of the PSC-heparin gels using TEM and SFM showed a hierarchy involving 3 different structural levels and banding patterns in the system: asymmetric segment longspacing (SLS) fibrils and symmetric segments with an average periodicity (AP) of 250 - 260 nm, symmetric fibrous longspacing (FLS IV) nanofibrils with AP of 165 nm, and cofibrils exhibiting an asymmetric D-periodicity of 67 nm with a striking resemblance to the native collagen type I banding pattern. The intercalation of the high negatively charged heparin in the cofibrils was suggested as the main trigger for the hierarchical formation of the polymorphic structures. We also proposed a model explaining the unexpected presence of a symmetric and asymmetric form in the system and the principles governing the symmetric or asymmetric fate of the molecules. The last section of the experiments showed that the presence of telopeptides and heparin both had significant effects on the structural and mechanical characteristics of in vitro reconstituted fibrillar collagen type I. The implemented structural analysis showed that the presence of telopeptides in acid soluble collagen (ASC) impeded the reconstitution of D-periodic collagen fibrils in the presence of heparin, leaving behind only a symmetric polymorphic form with a repeating unit of 165 nm (FLS IV). Further x-ray diffraction analysis of both telopeptide-free and telopeptide-intact collagen fibrils showed that the absence of the flanking non-helical termini in pepsin-solubilized collagen (PSC) resulted in a less compact packing of triple helices of atelocollagen with an increase of interhelical distance from 1.0 to 1.2 nm in dried samples. The looser packing of the triple helices was accompanied by a decrease in bending stiffness of the collagen fibrils, which demonstrated that the intercalated heparin cannot compensate for the depletion of telopeptides. Based on morphological, structural and mechanical differences between ASC and PSC-heparin fibrils reported here, we endorsed the idea that heparin acts as an intrafibrillar cross-linker which competed for binding sites at places along the atelocollagen helix that are occupied in vivo by telopeptides in the fibrillar collagen type I. The performed studies are of particular interest for understanding and gaining control over a rather versatile and already exploited xenogeneic cell culture system. The reconstituted cofibrils with their unusual morphology and GAG intercalation – a phenomenon not reported in vivo – are expected to exhibit interesting biochemical behavior as a biomaterial for ECM scaffolds. Varying the experimental conditions, extent of telopeptide removal, and heparin concentration provides powerful means to control the kinetics, structure, dimensions, as well as mechanical properties of the system which is particularly important for predicting a certain cell behavior towards the newly developed matrix. The GAG intercalation could be interesting for studies with required long-term 'release upon demand' of the GAG, as well as native binding and stabilization of growth factors, cytokines, chemokines, thus providing a secondary tool to control cell signaling and fate, and later on tissue morphogenesis. / Synthetische Biomaterialien werden stetig weiterentwickelt und spielen als künstliche Mikroumgebungen eine zentrale Rolle in den modernen Strategien der regenerativen Medizin und des Tissue Engineerings. Solche sogenannten Scaffolds liefern eine 2D- und 3D-Struktur zur Interaktion mit Zellen und üben somit eine räumliche und zeitliche Kontrolle auf ihre Funktion und multizelluläre Prozesse aus, wie die Differenzierung und Morphogenese. Obwohl häufig die adhäsiven, mechanischen und bioinduzierenden Eigenschaften von Einzelkomponenten aus natürlichen Bestandteilen der extrazellulären Matrix (ECM) rekonstituierten Trägerstrukturen bekannt sind, bleiben die funktionalen und strukturellen Auswirkungen in Mehrkomponentensystemen eine faszinierende Fragestellung. Das Ziel der Arbeit war die Analyse und die strukturelle Charakterisierung einer xenogenen in vitro Zellkultur-Trägerstruktur, die aus den zwei nativen ECM Komponenten Kollagen Typ I und das stark negativ geladene Glykosaminoglykan (GAG) Heparin rekonstituiert wurde. Unter Nutzung eines breiten Spektrums von Methoden zur strukturellen Analyse konnte gezeigt werden, dass im Beisein von Heparin rekonstituierte Pepsin-gelöste Kollagen Typ I Fibrillen eine ungewöhnlich dicke und gerade Form, mit nichtlinearen Abhängigkeiten der Größenverteilung, des Breite-zu-Länge Verhältnises und der Morphologie für eine Reihe von GAG Konzentrationen, aufweisen. Die Experimente deuten auf eine besondere Wirkung der Nukleierungsphase auf die Kofibrillmorphologie hin, als Folge der starken elektrostatischen Inteaktionen Heparins mit Atelokollagen. Es wird angenommen, dass Heparin die Komplexe aus Kollagen-GAG stabilisiert, die parallele Anlagerung während der Kofibrillogenese verbessert und dass überdies, belegt durch Heparin Quantitätsdaten, als Verbindungsmolekül mit einer spezifischen Anbindungsstelle innerhalb der Kofibrillen eingelagert wird. Darüber hinaus scheint der ausgeübte morphogene Effekt des GAGs Heparins von Faktoren wie Grad der Sulfatierung, Ladung und Konzentration abzuhängen. Weitere detailierte Strukturanalysen der PSC - Heparin Gele mit TEM und SFM zeigten eine Hierarchie mit drei unterschiedlichen strukturellen Ebenen und Bandmustern im System: asymmetrisch segmentierte, weitabständige Fibrillen (SLS) und symmetrische Segmente mit einem AP von 250-260 nm, symmetrische fibrose weitabständige (FLS IV) Nanofibrillen mit einem AP von von 165 nm und Kofibrillen asymmetrischer D-Periodizität von 67 nm, die eine erstaunliche Ähnlichkeit zum natürlichen Kollagen Typ I Bandmuster haben. Die Einlagerung des sehr negativ geladenen Heparins in die Kofibrillen wurde als Hauptauslöser der hierarchischen Formation der polymorphen Strukturen betrachtet. Wir schlugen ebenso ein Model vor, welches sowohl das unerwartete Vorhandensein symmetrischer und asymmetrischer Formen im System als auch die Regeln erklärt, die das symmetrische oder asymmetrische Schicksal der Moleküle steuern. Der letzte Abschnitt der Experimente zeigte, dass die Anwesenheit der Telopeptide und Heparins eine signifikante Wirkung auf die strukturellen und mechanischen Charakteristika der in vitro rekonstituierten Kollagen Typ I Fibrillen hatte. Die durchgeführten Strukturanalysen zeigten außerdem, dass die Anwesenheit der Telopeptide in säurelöslichem Kollagen (ASC) die Rekonstitution D-periodischer Kollagenfibrillen mit Heparin verhinderte, sodass nur symmetrisch polymorphe Formen mit einer Wiederholeinheit von 165 nm möglich waren (FLS IV). Weitere Messungen der Telopeptid-freien und Telopeptid-intakten Kollagenfibrillen mit Röntgendiffraktometrie ergaben, dass die Abwesenheit der nicht-helix-strukturierten Enden in Pepsin-gelöstem Kollagen (PSC) zu einer weniger kompakten Anordnung der Tripelhelices von Atelokollagen führte. Der interhelix Abstand erhöhte sich von 1,0 zu 1,2 nm für getrocknete Proben. Das zeigt, dass die losere Anordnung der Tripelhelices einhergeht mit der Verringerung der Biege-Elastizitäts-module der Kollagenfibrillen,. Basierend auf den hier vorgestellten morphologischen, strukturellen und mechanischen Unterschieden zwischen ASC und PSC-Heparin Fibrillen wird die Idee unterstützt, dass Heparin als intrafibrillärer Vernetzer fungiert und an Bindungsstellen der Helix bindet, welche in vivo bei Kollagen Typ I Fibrillen durch Telopeptide besetzt sind. Die durchgeführten Studien sind von besonderem Interesse für das Verständnis und die Steuerung eines sehr vielseitigen und bereits verwendeten xenogenes Zellkultursystem für das Tissue Engineering. Von den rekonstituierten Kofibrillen mit ihrer ungewöhnlichen Morphologie und GAG Einlagerung - ein in vivo nicht bekanntes Phänomen - erwartet man, dass sie ein intressantes biochemisches Verhalten als Biomaterial für ECM Scaffolds zeigen. Variationen der experimentellen Bedingungen, des Ausmaßes der Telopeptidentfernung und der Heparinkonzentration liefern vielfältige Möglichkeiten um die Kinetik, Struktur, Dimension sowie die mechanischen Eigenschaften des Systems zu kontrollieren. Damit sollte es möglich sein, ein bestimmtes Zellverhalten gegenüber der neu entwickelten Matrix vorherzusagen. Die GAG-Einlagerung bietet interessante Optionen für eine langfristige Freisetzung des GAGs 'on demand', sowie die native Bindung und Stabilisierung von Wachstumsfaktoren, Cytokinen, Chemokinen, womit zusätzlich Zellsignalisierung und -schicksal und später Gewebemorphogenese kontrolliert werden kann.
30

Low Voltage Electron Emission from Ferroelectric Materials

Mieth, Oliver 26 October 2010 (has links)
Electron emission from ferroelectric materials is initiated by a variation of the spontaneous polarization. It is the main focus of this work to develop ferroelectric cathodes, which are characterized by a significantly decreased excitation voltage required to initiate the electron emission process. Particular attention is paid to the impact of the polarization on the emission process. Two materials are investigated. Firstly, relaxor ferroelectric lead magnesium niobate - lead titanate (PMN-PT) single crystals are chosen because of their low intrinsic coercive field. Electron emission current densities up to 5 · 10^(−5) A/cm² are achieved for excitation voltages of 160 V. A strong enhancement of the emission current is revealed for the onset of a complete polarization reversal. Secondly, lead zirconate titanate (PZT) thin films are investigated. A new method to prepare top electrodes with sub-micrometer sized, regularly patterned apertures is introduced and a stable electron emission signal is measured from these structures for switching voltages < 20 V. Furthermore, a detailed analysis of the polarization switching process in the PMN-PT samples is given, revealing a spatial rotation of the polarization vector into crystallographic easy axes, as well as the nucleation of reversed nano-domains. Both processes are initiated at field strengths well below the coercive field. The dynamics of the polarization reversal are correlated to the electron emission measurements, thus making it possible to optimize the efficiency of the investigated cathodes. / Die Ursache für Elektronenemission aus ferroelektrischen Materialien ist eine Veränderung des Zustandes der spontanen Polarisation. Gegenstand der vorliegenden Arbeit ist eine Verringerung der dafür nötigen Anregungsspannung, wobei besonderes Augenmerk auf die Rolle der ferroelektrischen Polarisation innerhalb des Emissionsprozesses gelegt wird. Es werden zwei verschiedene Materialien untersucht. Das Relaxor-Ferroelektrikum Bleimagnesiumniobat - Bleititanat (PMN-PT) wurde aufgrund seines geringen Koerzitivfeldes ausgewählt. Es konnten Emissionsstromdichten von bis zu 5·10^(−5) A/cm² bei einer Anregungsspannung von 160 V erreicht werden. Bei Einsetzen eines vollständigen Umschaltens der Polarisation wurde eine deutliche Verstärkung des Emissionsstromes festgestellt. Desweiteren werden Untersuchungen an Bleizirkoniumtitanat (PZT) Dünnfilmen gezeigt. Eine neue Methode, eine Elektrode mit periodisch angeordneten Aperturen im Submikrometerbereich zu präparieren, wird vorgestellt. Diese Strukturen liefern ein stabiles Emissionssignal für Anregungsspannungen < 20 V. Eine detailierte Analyse des Schaltverhaltens der Polarisation der PMN-PT Proben zeigt sowohl eine Rotation des Polarisationsvektors als auch eine Nukleation umgeschaltener Nanodomänen. Beide Prozesse starten bei Feldstärken unterhalb des Koerzitivfeldes. Die ermittelte Zeitabhängigkeit des Schaltprozesses erlaubt Rückschlüsse auf den Emissionsprozess und erlaubt es, die Effizienz der untersuchten Kathoden weiter zu optimieren.

Page generated in 0.5026 seconds