• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 48
  • 29
  • 25
  • 10
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 136
  • 136
  • 118
  • 50
  • 33
  • 32
  • 29
  • 27
  • 27
  • 26
  • 25
  • 24
  • 23
  • 20
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Structural and Biochemical Characterization of VirB8 Protein in Type IV Secretion Systems

Sharifahmadian, Mahzad 07 1900 (has links)
Secretion is the passage of macromolecules across cellular membranes. In bacteria, secretion is essential for virulence and survival. Gram-negative bacteria use specialized envelope-spanning multiprotein complexes to secrete macromolecules called type IV secretion system (T4SS). T4SSs mediate the secretion of monomeric proteins, multisubunit protein toxins and nucleoprotein complexes. Also, they contribute to the horizontal spread of plasmid-encoded antibiotic resistance genes. Consequently, they are potential targets for antivirulence drugs. Gram- negative bacteria have two membranes that the secretion complex spans. As a result, the T4SS consists of proteins inserted in the membranes and of soluble proteins that face into or out of the bacterial cell. The details of channel assembly and structure are not known, although recent advances have revealed the structure of the core secretion channel. VirB8 is an inner membrane protein of the complex that interacts with many other T4SS subunits and works as nucleation factor for T4SS channel assembly. Biophysical studies and NMR experiments in particular were conducted to characterize the structural aspects of VirB8 interactions. Dynamic regions of VirB8 during monomer-to-dimer transition were identified by NMR spectroscopy. X-ray crystal and NMR analyses revealed structural differences at the helical regions (α-1 and α-4) of wild-type VirB8 and its monomeric variant VirB8M102R. Fragment screening identified small molecules binding to the wild-type and monomeric variant. In silico docking analyses suggested that the surface groove in the VirB8 structure is important for effective binding of the small molecules. NMR experiments and biochemical assays demonstrated that the β-sheet domain (β1 in particular) is the binding interface of VirB8 for the interaction with VirB10. The identified interface has functional importance for T4SS-mediated conjugation. In addition, I used NMR spectroscopy to identify changes in the structure of VirB8 upon interaction with VirB5. Altogether, structural and biochemical studies on periplasmic and full length VirB8 enabled us to characterize the sequence of interactions between VirB8 and other VirB proteins during T4SS complex assembly and function. The results of this research may lead to an innovative strategy for the development of novel antimicrobial drugs. / La sécrétion est le passage de macromolécules à travers les membranes cellulaires. Chez les bactéries, la sécrétion est essentielle pour la virulence et la survie. Les bactéries à Gramnégatif utilisent le système de sécrétion de type IV (SST4) pour la sécrétion de toxines et de nucléoprotéines. Les SST4 contribuent notamment à la propagation des gènes de résistance aux antibiotiques. Pour cette raison, les composants du SST4 sont des cibles potentielles pour le développement de médicaments antivirulence. Le SST4 est un complexe protéique qui s’étend entre la double membrane de la bactérie à Gram-négatif. Les protéines qui le composent sont insérées dans les membranes cellulaires ou solubles. Bien que la structure du pore central du SST4 ait été résolue récemment, les détails de l'assemblage et la structure de ce complexe ne sont pas connus. VirB8 est une protéine de la membrane interne qui interagit avec de nombreuses autres sous-unités du SST4. Il s’agit d’un acteur central de l'assemblage du SST4. Des études biophysiques, et notamment des expériences de RMN ont ainsi été réalisées pour caractériser les aspects structuraux des interactions avec VirB8. Des regions dynamiques dans la structure de VirB8 ont été identifiées par spectroscopie RMN lors de la transition entre la forme monomérique et dimérique. Les analyses de cristallographie et de RMN ont révélé des différences structurales dans les régions hélicoïdales (α1 et α4) de VirB8 wild-type et du variant monomérique VirB8M102R. Le criblage de fragments a permis d’identifier de petites molécules capables de se lier à VirB8 ainsi qu’au variant monomérique. Les analyses d’arrimage moléculaire in silico suggèrent que la rainure de surface dans la structure VirB8 est importante pour laliaison de ces petites molécules. Les expériences de RMN et les essais biochimiques révèlent que le feuillet β (β1 en particulier) constitue l'interface d’interaction entre VirB8 et VirB10. Cette interface d’interaction est d’ailleurs importante pour la conjugaison du SST4. De plus, j'ai identifié des changements dans la structure de VirB8 lors de l'interaction avec VirB5. Les études sur la protéine VirB8 nous ont permis de caractériser la séquence d'événements entre VirB8 et d'autres protéines VirB, régulant l'assemblage et la fonction du SST4.
102

Caractérisation moléculaire des signaux de sécrétion des protéines sécrétées par le système de sécrétion de type II de la bactérie phytopathogène Dickeya dadantii / Molecular characterization of secretion signals of proteins secreted by the type II secretion system of the phytopathogenic bacterium Dickeya dadantii

Guschinskaya, Natalia 03 June 2014 (has links)
Le système de sécrétion de type II (T2SS) assure le transport de protéines sous une forme repliée du périplasme dans le milieu extracellulaire. Ce système est largement exploité par les bactéries à Gram négatif pathogènes des plantes, des animaux et de l'homme où il permet la sécrétion de facteurs de virulence (des toxines et des enzymes lytiques). La bactérie phytopathogène Dickeya dadantii utilise le T2SS appelé Out, pour sécréter une douzaine de pectinases qui dégradent les parois des cellules végétales. Les protéines sécrétées par le T2SS n'ont pas de motif de sécrétion apparent et leur sécrétion implique plusieurs interactions transitoires avec les composants du système. La nature moléculaire de ces interactions n'est pas connue. Afin de capter ces interactions transitoires lors du processus de sécrétion, j'ai utilisé le pontage dirigé in vivo. Cette technique repose sur l'incorporation d'un analogue photoréactif d'un acide aminé (le para-benzoyl Lphénylalanine, pBpa) à la place des résidus soupçonnés de faire partie d'un site d'interaction. Le pontage est ensuite activé par une courte exposition des cellules aux UV ce qui permet la formation des complexes protéiques. Tout d'abord, cette technique a été utilisée pour introduire le pBpa dans plusieurs régions exposées à la surface d'une exoprotéine, PelI. Cette stratégie a permis de mettre en évidence qu'un élément structural, la boucle 3 du domaine Fn3 de PelI, est impliquée dans l'interaction avec la sécrétine OutD, le composant du T2SS situé dans la membrane externe, et avec le domaine PDZ d'OutC, un composant de la membrane interne. Ces résultats suggèrent que la boucle 3 fait partie d'un motif de sécrétion. Deux autres régions ont été identifiées au sein de PelI : le linker entre les deux domaines de PelI qui est impliqué dans l'interaction avec OutD et une région exposée du domaine catalytique qui interagit avec la protéine OutC. La même approche a été utilisée pour introduire le pBpa dans les deux composants du T2SS, OutC et OutD. Ces expériences ont suggéré que le domaine PDZ d'OutC interagit avec une autre exoprotéine, PelB. Cette étude, de façon complémentaire à d'autres approches, nous a permis de démontrer certains détails moléculaires essentiels de la sécrétion par le T2SS / The type II secretion system (T2SS) transports folded proteins from the periplasm through the outer membrane into the milieu. In many pathogenic Gram-negative bacteria, the T2SS secretes various virulence factors in host tissue and is directly involved in pathogenesis. The phytopathogen Dickeya dadantii secretes a dozen of pectinases through a T2SS named Out. The secreted proteins are lacking an obvious common signal and secretion is thought to involve multiple transient interactions of folded exoproteins with several T2SS components. Molecular nature of these interactions remains unknown. To address this question we used an in vivo sitespecific photo-crosslinking approach to capture such transient interactions within the functional T2SS of D. dadantii. In this technique, the photo-crosslinker para-benzoyl-L-phenylalanine, pBpa, is introduced in vivo in place of a residue of interest and UV-irradiation of living cells provokes the formation of complexes between the protein of interest and its partners. First, in a systematic approach, pBpa was introduced at several surface-exposed sites of the secreted protein PelI. This strategy permitted us to identify that one structural element, loop 3 of Fn3 domain in PelI, interacts both with the secretin, the outer membrane T2SS component, and with the PDZ domain of OutC, an inner membrane T2SS component. These results suggest that this loop 3 is a part of the secretion motif. The same approach permitted us to identify two other regions of PelI interacting with the T2SS: a linker situated between the two domains of PelI, which interacts with OutD, and an exposed region of the catalytic domain of PelI interacting with OutC. In another approach, pBpa was introduced into the T2SS components, OutC and OutD. These experiments suggested that the PDZ domain of OutC interacts with the secreted protein PelB. This study, in complement with other approaches, allowed us to uncover some important molecular features of the protein secretion by the T2SS
103

Estudos estruturais e de interações proteína-proteína envolvendo componentes de um sistema de secreção do tipo IV de Xanthomonas axonopodis pv. citri / Structural and protein-protein interaction studies of type IV secretion system components from Xanthomonas axonopodis pv. citri

Diorge Paulo de Souza 25 May 2010 (has links)
Xanthomonas axonopodis pv. citri (Xac) é o causador do cancro de plantas cítricas. Entre os potenciais fatores de virulência codificados por Xac, está o Sistema de Secreção do Tipo IV (T4SS), um grande complexo multiprotéico que atravessa o periplasma e as membranas interna e externa de bactérias Gram-negativas. O T4SS está envolvido com secreção de proteínas e/ou DNA para o meio extracelular ou diretamente no interior da célula do hospedeiro. Este Sistema requer tipicamente 12 proteínas para realizar suas funções: VirB1-VirB11 e VirD4. O T4SS codificado pelo cromossomo de Xac está aparentemente incompleto, devido a não codificar nenhuma proteína com similaridade de seqüência a VirB7. Os objetivos deste trabalho são estudar a estrutura, função e interações das proteínas do T4SS de Xanthomonas. Foram clonados 23 genes que codificam proteínas ou domínios relacionados ao T4SS, e os polipeptídeos foram produzidos de forma recombinante em E. coli. Treze deles foram purificados e submetidos a estudos estruturais, espectroscópicos e de interações proteína-proteína. A estrutura em solução de Xac262224-139 foi resolvida, apresentando uma região N-terminal desenovelada de aproximadamente 30 resíduos e um domínio globular. Este polipeptídeo oligomeriza em troca química rápida na escala de tempo de RMN e o seu N-terminal desenovelado reconhece o domínio C-terminal de VirB9 (VirB9154-255) em troca lenta. Análise de RMN demonstrou que VirB9154-255 possui uma estrutura flexível em solução, sofrendo uma marcante mudança conformacional na presença de Xac262224-139. Ambas proteínas se tornam rígidas após a interação. Xac2622 é o equivalente a VirB7 em Xanthomonas, baseado na localização do seu gene no lócus do T4SS, localização subcelular predita do polipeptídeo codificado e sua interação com VirB9. Porém, diferente de outras proteínas da família VirB7, Xac2622 possui um domínio globular adicional, com topologia e estrutura similares a domínios presentes apenas em proteínas associadas à membrana externa de bactérias Gram-negativas. Nocaute do gene xac2622, contudo, não afetou a virulência de Xac na infecção de plantas de laranja pêra. O domínio enovelado de Xac2622 foi cristalizado, e os cristais obtidos difrataram até uma resolução de 1,0 Å, pertencendo ao grupo espacial C2221. O modelo preliminar possui Rfactor de 0,121 e Rfree de 0,147. Foram obtidos cristais de outras 3 proteínas relacionadas ao T4SS de Xac, porém somente um deles difratou em alta resolução (2,0 Å, pertencendo ao grupo espacial C2). O potencial sinal de secreção pelo T4SS de Xanthomonas é um domínio C-terminal conservado de aproximadamente 115 resíduos, encontrado nos substratos putativos do T4SS. Caracterizamos um destes domínios, presente na proteína Xac2609, e ele é intrinsicamente desestruturado. Essa observação pode ter implicações funcionais, visto que os substratos são desenovelados antes de sua passagem pelo canal de secreção do T4SS / Xanthomonas axonopodis pv. citri (Xac) is a gram-negative bacterial phytopathogen that infects citrus. One possible virulence determinant is a chromosomally encoded Type IV Secretion System (T4SS), a multiprotein complex that spans the bacterial periplasm and both inner and outer membranes. The T4SS is used by some bacteria to secrete proteins and/or DNA to the extracellular milieu or the host interior. The model T4SS from Agrobacterium tumefaciens is made up of twelve structural proteins: VirB1-VirB11 and VirD4. The Xanthomonas T4SS is apparently incomplete because of the lack of a polypeptide with sequence similarity to VirB7. The aim of this project is the study of structure-function relationships in the Xanthomonas T4SS. Twenty-three T4SS protein-coding genes, including full-length proteins or domains, were cloned and the proteins were produced in different E. coli strains. Thirteen polypeptides were purified and some of them were submitted to structural, spectroscopic and protein-protein interaction studies. We used NMR to solve the solution structure of Xac262224-139 which consists of an unfolded N-terminal segment of ~30 residues followed by a globular domain. Xac262224-139 oligomerizes in fast exchange at the NMR time scale and interacts via its unfolded N-terminus with the VirB9 C-terminus (VirB9154-255) in slow exchange. NMR analysis showed that VirB9154-255 has a flexible structure in solution. However, this polypeptide undergoes a significant conformational modification in the presence of Xac2622,24-139 and both proteins become rigid upon interaction. Xac2622 is the Xanthomonas VirB7, based on the chromosomal localization of its gene, predicted subcellular localization and protein interaction analysis. But surprisingly, unlike other VirB7 proteins, Xac2622 has an extra C-terminal folded domain whose topology and structure are strikingly similar to that of periplasmic domains found in outer membrane proteins of many bacterial Secretion Systems. Knockout of the xac2622 gene, however, does not affect the Xac virulence in orange leaf infection assays. The Xac2622 folded domain was also crystallized, and these crystals diffracted up to 1.0 Å resolution and belong to the space group C2221. The preliminary refined model has Rfactor of 0.121 and Rfree of 0.147. Crystals of three other T4SS proteins have been obtained, but only one of them diffracted to high resolution (2.0 Å; space group C2). Xac2610 is a hypothetical protein whose gene is located in the T4SS locus, and its interactions were studied with VirB9, VirB11 and Xac2609, a putative T4SS substrate. The potential T4SS secretion signal is a conserved, approximately 115 residues, C-terminal domain found in the putative substrates of the Xanthomonas T4SS. This sequence mediates interactions with VirD4. We have characterized this domain from one substrate and it is mainly unfolded. This observation may have functional implications, as the substrates are unfolded before their secretion through the T4SS channel
104

L'étude des antimicrobiens comme modulateurs du système de sécrétion de type VI de vibrio cholerae

Cros, Candice 07 1900 (has links)
No description available.
105

Molécules anti-facteurs de virulence : étude de l’efficacité et de l’amélioration d’une molécule inhibitrice du système de sécrétion de type IV de Helicobacter pylori

Morin, Claire 08 1900 (has links)
Helicobacter pylori est une bactérie à Gram négatif qui colonise plus de 50% de la population humaine. Cette bactérie est l'un des pathogènes les plus présents dans la population et la colonisation se fait dans l'enfance et l'adolescence. H. pylori est responsable de l'apparition de maladies gastriques chez l'humain comme des ulcères gastriques, mais aussi des cancers gastriques. Plusieurs mécanismes contribuent aux maladies gastriques dont une infection chronique à long terme ainsi que des facteurs de virulence comme le système de sécrétion de type 4 (SST4). Le SST4 forme une seringue protéique utilisée par la bactérie pour injecter la protéine CagA dans les cellules humaines. Cette protéine a été la première protéine bactérienne classifiée comme une oncoprotéine par sa capacite à interférer et modifier de nombreuses fonctions et signaux métaboliques des cellules épithéliales gastriques. Afin d'éradiquer Helicobacter, une antibiothérapie est utilisée, cependant depuis les 10 dernières années plus de 50% des bactéries isolées de patients ont été identifiés comme étant porteuses de résistances contre aux moins un antibiotique de première ligne. L’utilisation de petites molécules organiques capables d'interférer avec les facteurs de virulence est une alternative intéressante à la thérapie aux antibiotiques. L'utilisation de ces molécules possède des avantages dont la faible pression de sélection de résistance parce qu’elles n’impactent pas des fonctions vitales des bactéries. Le SST4 de H. pylori est composé de nombreuses protéines essentielles qui pourraient être de potentielles cibles pour des molécules inhibitrices. Nous avons choisi la cible Cagα, une ATPase homologue à VirB11 de Agrobacterium tumefaciens. Cette protéine est essentielle pour l’injection de CagA. Précédemment, notre laboratoire a identifié une petite molécule nommée 1G2 qui était capable d’interagir avec Cagα et de diminuer l’induction de l’interleukine 8 produit par les cellules gastriques lors de l’infection par des souches de H. pylori possédant un SST4 fonctionnel. A partir d’une structure cristallographique de Cagα liée à 1G2 et nous avons créé des protéines Cagα avec des mutations aux site de liaison de 1G2. En utilisant la fluorimétrie différentielle à balayage (DSF) nous avons pu identifier les acides aminés qui contribuent à la liaison de 1G2 (K41, R73 et F39). Basé sur cette information nous avons utilisé la chimie médicinale pour créer une librairie de molécules dérivées de 1G2 dans le but d’identifier des inhibiteurs plus puissants. Après avoir éliminé les molécules ayant un effet toxique sur les cellules gastriques et H. pylori, nous avons sélectionné cinq molécules (1313, 1338, 2886, 2889 et 2902) qui inhibent la production d’IL-8 plus que 1G2 dans notre modèle d’infection cellulaire. Nous avons montré par DSF que les molécules interagissent toujours avec Cagα et 1338, 2889 et 2902 sont des inhibiteurs plus puissants de son activité d’ATPase. Avec le modèle d’infection, nous avons déterminé que les cinq molécules n’affectent par la présence de CagA dans le lysat de l’infection. Cependant, nous avons observé par microscopie électronique à balayage que le SST4 pilus n’était pas présent en présence des inhibiteurs. En plus, nous avons testé les effets de 1G2 sur des souches de H. pylori résistantes, à un ou plusieurs antibiotiques de première ligne, isolées de biopsie gastriques de patients. Comme dans le cas de la bactérie modèle de laboratoire, nous avons observé une diminution de l’induction des IL-8 lors de l’infection ainsi qu’une inhibition de la formation du SST4 pilus. Nous avons aussi identifié que le gène de la protéine Cagα d’une des bactéries résistantes à 1G2 (souche #3822) porte un remplacement de R73 à K ce qui pourrait expliquer la résistance à 1G2. Pour conclure, nous avons dans cette étude caractérisé le site de liaison de 1G2 à Cagα et nous avons identifié des molécules qui sont plus puissantes comme inhibiteurs que 1G2. / Helicobacter pylori is a Gram-negative bacterium that colonizes more than 50% of the human population. This bacterium is one of the most common pathogens in the population and colonization occurs in childhood and adolescence. H. pylori is implicated in the manifestation of gastric diseases in humans such as gastric ulcers and also gastric cancer. Several mechanisms are involved in the formation of gastric diseases including long-term chronic infection as well as virulence factors such as the type 4 secretion system (T4SS). The T4SS forms a protein syringe used by the bacteria to inject the protein CagA into mammalian cells. This protein is the first bacterial protein classified as an oncoprotein by its ability to interact with numerous metabolic functions of gastric epithelial cells. To eradicate Helicobacter, antibiotic therapy is used, but for the last 10 years more than 50% of the bacteria isolated from patients have been identified as carrying resistance against at least one first-line antibiotic. The use of small molecules capable of interfering with virulence factors is being studied as an alternative to antibiotic therapy. The use of these molecules has many advantages, and they may cause lower selection pressure for resistance than antibiotics. The H. pylori T4SS is composed of many essential proteins that could be potential targets for inhibitory molecules. We chose the target Cagα, an ATPase homologous to the model VirB11 from Agrobacterium tumefaciens. This protein is essential for the injection of CagA. Previously, our laboratory identified a small molecule coined 1G2 that interacts with Cagα and decreases the induction of interleukin-8 produced by gastric cells upon infection with H. pylori strains with functional T4SS. Based on a crystallographic study of Cagα bound to 1G2, we created Cagα proteins with mutations at the 1G2 binding site. Using differential scanning fluorimetry, we identified amino acids that contribute to 1G2 binding (K41, R73 and F39). Based on these observations, we used medicinal chemistry to create a library of molecules derived from 1G2 to create more potent inhibitors. After eliminating the molecules with a toxic effect on gastric cells and H. pylori growth, we selected five molecules with stronger effects than 1G2 on IL8 induction in our cell infection model (1313, 1338, 2886, 2889 and 2902). We observed by DSF that the molecules interact with Cagα and 1338, 2889 and 2902 are stronger inhibitors of the ATPase 8 activity than 1G2. With our infection model, we determined that the five molecules do not affect the presence of CagA. However, by scanning electron microscopy we observed that the T4SS pilus was not present. In addition to the tests on a laboratory model bacterium, we evaluated 1G2 on resistant strains of H. pylori isolated from gastric biopsy from patients. Similar to the laboratory model bacterium, 1G2 decreased IL-8 induction and inhibited T4SS pilus formation. We have also identified that strain #3822 that is resistant to 1G2 carries a R73 to K mutation in the Cagα gene, which could explain the 1G2 resistance. To conclude, we have here characterized the 1G2 binding site on Cagα and we created inhibitors that are more potent than 1G2.
106

Investigating the Human-M. tuberculosis interactome to identify the host targets of ESAT-6 and other mycobacterial antigens

Bruiners, Natalie 12 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: The causative agent of human tuberculosis, Mycobacterium tuberculosis, is an intracellular pathogen that secretes virulence factors, namely ESAT-6 and CFP-10, as substrates of the ESX-1 secretion system. It is hypothesised that these substrates interact with host proteins in a targeted manner in order to elicit a required immune response, and they have been shown to be involved in processes related to pro-inflammatory responses, necrosis, apoptosis, membrane lysis and cytolysis. However, the biological function of ESX-1 substrates during host-pathogen interactions remains poorly and incompletely understood. Therefore, the present study was designed to gain insight into the role of the ESX-1 secretion system substrates in host-pathogen interactions and to identify how M. tuberculosis mediates the response of the human host. In this study, a cDNA yeast two-hybrid library was constructed from human lung mRNA, to identify mycobacterial-host protein-protein interactions that occur within the lung alveoli. The ESX-1 secretion system substrates, ESAT-6 and CFP-10, were cloned in-frame into the pGBKT7 vector, which was used in the yeast two-hybrid system to screen the lung cDNA library in Saccharomyces cerevisiae. The ESAT-6 and CFP-10 screens identified 79 and 19 positive colonies, respectively. Of the total number of clones characterised, only two in-frame inserts were identified with the ESAT-6 screen, corresponding to the human proteins filamin A and complement component 1, q subcomponent, A chain (C1QA). In addition, the screen with CFP-10 also identified C1QA as binding partner. Subsequent in vitro and in vivo experiments were unable to confirm the putative interactions of C1QA with ESAT-6 and CFP-10. However, the interaction between filamin A and ESAT-6 was demonstrated and confirmed by both in vivo co-localisation and co-immunoprecipitation. Furthermore, the degradation of filamin A in the presence of ESAT-6 was shown to be reflective of cytoskeleton remodelling and the induction of cell death. The work presented here suggests that as ESAT-6 gains access to the cytosol, it initiates cell death by inducing destabilisation of the cytoskeleton cell structure. This may possibly be driven by the interaction of ESAT-6 and filamin A. Finally, we also initiated an investigation of the identified putative binding partners (filamin A and C1QA) as possible genetic markers for genetic susceptibility studies to tuberculosis. A case-control analysis was performed involving 604 cases, of which 109 were Tuberculous Meningitis (TBM), and 486 were controls from the South African Coloured (SAC) population within the Ravensmead-Uitsig catchment area. The results of this analysis demonstrated a novel association of a regulatory variant (rs587585) located upstream of the C1QA gene and demonstrated an increasing trend towards increased values in tuberculosis patients with the associated genotype. This study has contributed significantly to our understanding of human-mycobacterial hostpathogen protein-protein interactions and has opened the way for future studies further exploring the consequences and function of the identified ESAT-6-filamin A interaction. It has also led to the identification of a novel genetic association with tuberculosis. Finally, it demonstrates the usefulness of the yeast two-hybrid system to identify potential proteinprotein (host-pathogen) interactions that can lead to additional important and exciting research. / AFRIKAANSE OPSOMMING: Die organisme wat tuberkulose veroorsaak, Mycobacterium tuberculosis, is `n intrasellulȇre patogeen wat virulensie faktore afskei, naamlik ESAT-6 en CFP-10, as substrate van die ESX-1 sekresiesisteem. Daar word vermoed dat hierdie substrate met gasheerproteïene in „n teiken wyse interaksie het om `n vereiste immuunreaksie voort te bring. Hierdie substrate is betrokke by prosesse soos pro-inflammatoriese reaksies, nekrose, apoptose, membraanlise en sitolise. Die biologiese funksie van die ESX-1 substrate tydens gasheer-patogeen interaksies word egter tans swak en onvolledig verstaan. Daarom was die huidige studie ontwerp om insig te bekom oor die rol hiervan in gasheer-patogeen interaksies en om te identifiseer hoe M. tuberculosis die reaksie teenoor die gasheer bemiddel. In hierdie studie was `n komplementȇre deoksiribonukleïensuur (kDNS) gis twee-hibried biblioteek gemaak vanaf long boodskapper ribonukleïensuur (bRNS) om proteïen-proteïen interaksies wat in die long plaasvind, te identifiseer. Die substrate van die ESX-1 sekresiesisteem, ESAT-6 en CFP-10, is in volgorde gekloneer in die pGBKT7 vektor en is gebruik om die long kDNS biblioteek in Saccharomyces cerevisiae te ondersoek. In die soeke na interaksies met ESAT-6 and CFP-10, was 79 en 19 positiewe kolonies onderskeidelik geïdentifiseer. Van die aantal klone, was slegs twee volgordes in-leesraam geïdentifiseer met ESAT-6. Hierdie proteïene het ooreengestem met filamin A en “complement component 1, q subcomponent, A chain” (C1QA). Bykomend hiertoe, is C1QA ook geïdentifiseer as „n bindende vennoot met CFP-10. Daaropvolgende in vitro and in vivo eksperimente kon nie die vermeende interaksie van C1QA met ESAT-6 en CFP-10 bevestig nie. Maar die interaksie tussen filamin A en ESAT-6 kon wel gedemonstreer word deur die gebruik van mede-lokalisering en medeimunopresipitasie. Die afbreek van filamin A in die teenwoordigheid van ESAT-6 is ook aangetoon en blyk „n weerspieëling te wees van sitoskelet hermodellering en die induksie van seldood. Die werk wat hier aangebied word, dui daarop dat soos ESAT-6 toegang kry tot die sitosol, inisieër dit seldood deur die destabilisaisie van die sitoskelet selstruktuur. Dit word moontlik aangedryf deur die interaksie van ESAT-6 met filamin A. Laastens het ons `n ondersoek van die geïdentifiseerde bindingsvennote (filamin A and C1QA) as moontlike genetiese merkers vir genetiese vatbaarheidsstudies vir tuberkulose uitgevoer. `n Pasiënt-kontrole studie is gedoen waarby 604 individue ingesluit is, waarvan 109 gediagnoseer is met Tuberculosis Meningitis (TBM), en die ander 486 kontrole individue was van die Suid Afrikaanse Kleurling (SAC) bevolking binne die Ravenmead-Uitsig opvanggebied. Die resultate het „n nuwe assosiasie van „n regulerende variant (rs587585) wat stroomop van die C1QA geen gelokaliseer is, getoon. Hierdie variant het `n verhoogde neiging in tuberkulose pasiënte met die geassosieërde genotipe getoon. Hierdie studie het `n beduidende bydrae gemaak tot ons begrip van menslike-mikobakteriese gasheer-patogeen proteïen-proteïen interaksies. Hierdie resultate het die weg oopgemaak om die gevolge en funksie van die geïdentifiseerde ESAT-6-filamin A interaksie verder te ondersoek. Dit het ook aanleiding gegee tot die identifikasie van `n genetiese assosiasie met tuberkulose. Om saam te vat, hierdie werk bewys die bruikbaarheid van die gis twee-hibriede sisteem, om potensiële proteïen-proteïen interaksies te ontdek wat die moontlikheid het om aanleiding te gee tot addisionele navorsingsvrae. / The National Research Foundation, / Harry Crossley Foundation / Medical Research Council of South Africa / Stellenbosch University Postgraduate bursary / Prof. Paul van Helden
107

Peptides et protéines de Xanthomonas oryzae pv. oryzae : vers l'identification de nouveaux facteurs de virulence. / Peptides and proteins from Xanthomonas oryzae pv. oryzae : towards the identification of virulence-associated factors

Robin, Guillaume P. 06 December 2010 (has links)
Xanthomonas oryzae pv. oryzae (Xoo) est une bactérie phytopathogène responsable de la bactériose vasculaire du riz, maladie pouvant engendrer de fortes pertes de rendement à travers le monde. La course à l'armement entre la bactérie et sa plante hôte correspond d'une part à la mise en place de la virulence par le microorganisme et d'autre part en la résistance du végétal face à l'agression. Comprendre les mécanismes par lesquels Xoo accompli son cycle infectieux est d'une importance cruciale pour le développement futur de nouvelle méthode de luttes. Plusieurs approches complémentaires ont été mises en uvre afin de caractériser des éléments associés au pouvoir pathogène de Xoo.Dans un premier temps nous avons effectué une analyse protéomique comparative. Cette approche a permis l'identification chez une souche Africaine de Xoo d'un jeu de protéines induites par HrpX et susceptibles de jouer un rôle dans la virulence. Dans un second temps, l'implication de deux peptides dans la virulence Xoo a été étudiée. Le premier de ces peptides, supposé être le facteur d'avirulenceAvrXa21, a fait l'objet d'une caractérisation fonctionnelle et phylogénique. Le second peptide est synthétisé par un cluster NRPS, similaire à l'un de ceux présent chez Xanthomonas albilineans. Afin d'élucider l'importance de la molécule synthétisée par cette voie pour Xoo, une étude préliminaire impliquant la mutation d'un élément régulateur des NRPS a été effectuée. En dernier lieu, des informations nouvelles ont été apportées sur la topologie de la protéine membranaire HrcR qui est une composante essentielle du système de sécrétion de type III chez la plupart des bactéries appartenant au genre Xanthomonas. / Xanthomonas oryzae pv. oryzae (Xoo) is the agent of bacterial leaf blight BLB in rice, a disease which causes considerable yield losses throughout the world. In the arms race underlying the interactions between the microorganism and the host, the presence of virulence factors in the former parallels that of resistance factors in the latter. Understanding the mechanisms of Xoo's infectious cycle is of paramount importance for the elaboration of new fighting strategies to combat BLB. To achieve this, several complementary approaches to characterize components of Xoo's pathogenicity have been employed.First, we performed comparative proteomics that allowed us to identify novel HrpX-induced candidate pathogenicity factors of an African Xoo strain. Second, the involvement of two peptides in Xoo's pathogenicity has been investigated. One was speculated to be the avirulence factor AvrXa21 and has been characterized both functionally and phylogenetically. The other one was found to be synthesized by a Non-Ribosomal Peptide Synthetase (NRPS), reminescent to NRPS genes found in Xanthomonas albilineans. In order to determine the role of NRPS-mediated synthesis in Xoo virulence, we studied a strain carrying a mutated regulatory gene of the NRPS pathway. Finally, we provide new information on the topology of the HrcR membrane protein which is a conserved component of the type III secretion system of most Xanthomonas.
108

Interaction d'Escherichia coli entérohémorragique (EHEC) avec Acanthamoeba castellanii et rôle du régulon Pho chez les EHEC

Chekabab, Samuel Mohammed 03 1900 (has links)
Les EHEC de sérotype O157:H7 sont des agents zoonotiques d’origine alimentaire ou hydrique. Ce sont des pathogènes émergeants qui causent chez l’humain des épidémies de gastro-entérite aiguë et parfois un syndrome hémolytique-urémique. Les EHEC réussissent leur transmission à l’humain à partir de leur portage commensal chez l’animal en passant par l’étape de survie dans l’environnement. L’endosymbiose microbienne est une des stratégies utilisées par les bactéries pathogènes pour survivre dans les environnements aquatiques. Les amibes sont des protozoaires vivants dans divers écosystèmes et connus pour abriter plusieurs agents pathogènes. Ainsi, les amibes contribueraient à transmettre les EHEC à l'humain. La première partie de mon projet de thèse est centrée sur l'interaction de l’amibe Acanthamoeba castellanii avec les EHEC. Les résultats montrent que la présence de cette amibe prolonge la persistance des EHEC, et ces dernières survivent à leur phagocytose par les amibes. Ces résultats démontrent le potentiel réel des amibes à héberger les EHEC et à contribuer à leur transmission. Cependant, l’absence de Shiga toxines améliore leur taux de survie intra-amibe. Par ailleurs, les Shiga toxines sont partiellement responsables de l’intoxication des amibes par les EHEC. Cette implication des Shiga toxines dans le taux de survie intracellulaire et dans la mortalité des amibes démontre l’intérêt d’utiliser les amibes comme modèle d'interaction hôte/pathogène pour étudier la pathogénicité des EHEC. Durant leur cycle de transmission, les EHEC rencontrent des carences en phosphate inorganique (Pi) dans l’environnement. En utilisant conjointement le système à deux composantes (TCS) PhoB-R et le système Pst (transport spécifique de Pi), les EHEC détectent et répondent à cette variation en Pi en activant le régulon Pho. La relation entre la virulence des EHEC, le PhoB-R-Pst et/ou le Pi environnemental demeure inconnue. La seconde partie de mon projet explore le rôle du régulon Pho (répondant à un stress nutritif de limitation en Pi) dans la virulence des EHEC. L’analyse transcriptomique montre que les EHEC répondent à la carence de Pi par une réaction complexe impliquant non seulement un remodelage du métabolisme général, qui est critique pour sa survie, mais aussi en coordonnant sa réponse de virulence. Dans ces conditions le régulateur PhoB contrôle directement l’expression des gènes du LEE et de l’opéron stx2AB. Ceci est confirmé par l’augmentation de la sécrétion de l’effecteur EspB et de la production et sécrétion de Stx2 en carence en Pi. Par ailleurs, l’activation du régulon Pho augmente la formation de biofilm et réduit la motilité chez les EHEC. Ceci corrèle avec l’induction des gènes régulant la production de curli et la répression de la voie de production d’indole et de biosynthèse du flagelle et du PGA (Polymère β-1,6-N-acétyle-D-glucosamine). / EHEC O157:H7 are an emerging zoonotic food- and water-borne hazard highly pathogenic to humans and associated with diseases ranging from acute gastroenteritis to hemolytic uremic syndrome. From their commensal carriage by farm animals to human targets, EHEC pass through a crucial step of persistence in the open environment. Microbial endosymbiosis is one strategy used by pathogenic bacteria to survive in aquatic environments. Amoebae species are free-living protozoa found in diverse environmental habitats and known to host several water-borne pathogens. Thus amoebae could contribute to transmission of EHEC to humans. The first part of my PhD project was focused on interaction of the free-living amoebae Acanthamoeba castellanii with EHEC. The results showed that the presence of amoeba extends the persistence of EHEC that survived phagocytosis by amoebae. This demonstrates the real potential of amoebae to harbourd EHEC that may contribute to their transmission. However, absence of shiga toxins enhanced the intra-amoeba survival. Moreover, EHEC had a toxic and lethal effect on amoebae partially due to shiga toxins. The involvement of shiga toxins in the intracellular survival and mortality of amoebae suggests the value of using amoebae as a model of host/pathogen interactions to study the pathogenicity of EHEC. During their transmission cycle, EHEC encounter limitation inorganic phosphate (Pi) in the environment. Using jointly the PhoB-R two-component system (TCS) and the Pst (Pi specific transport) system, EHEC detect and respond to this Pi limitation by activating the Pho regulon. The interplay between the EHEC virulence, the Pho-Pst and/or the environmental Pi remains unknown. The second part of my project explored the role of Pho regulon (responding to Pi-limitation stress) in the virulence of EHEC. Transcriptomic analysis showed that EHEC has evolved a sophisticated response to Pi deficiency involving not only biochemical strategies that are likely critical to its survival, but also coordinating its virulence response. In these conditions, the regulator PhoB regulates directly the expression of LEE and Stx2 genes. This is confirmed by an increase in EspB secretion and Stx2 production and secretion in low Pi conditions. Moreover, the activation of Pho regulon increases biofilm formation and reduces motility in EHEC. This correlated with the induction of genes regulating curli production and repression of indole production pathway and the flagellum and PGA biosynthesis.
109

Úloha RTX domény v aktivitě adenylátcyklázového toxinu z Bordetella pertussis / The role of RTX domain in the activity of adenylate cyclase toxin from Bordetella pertussis

Klímová, Nela January 2015 (has links)
The adenylate cyclase toxin (CyaA) of Bordetella pertussis is a 1706-residue protein comprising an amino-terminal adenylate cyclase (AC) domain and a carboxy-terminal Repeat-in-Toxin (RTX) domain. The RTX domain is a hallmark of the family of RTX proteins, which are secreted from the cytosol of Gram-negative bacteria to the cell environment through the Type I Secretion System (T1SS). The RTX domain of CyaA consists of five blocks of RTX nonapetide repeats with a consensus sequence X-(L/I/V)-X-G-G-X-G- X-D. The aim of this work was to determine the role of the RTX domain in biological activities of CyaA and its role in the secretion of the toxin molecule from Bordetella pertussis. Systematic deletion analysis revealed that none of the prepared CyaA constructs was able to translocate its AC domain across the cytoplasmic membrane of host cells and make pores in target membranes. Moreover, deletion of individual RTX repeat blocks resulted in a very low efficacy of secretion of CyaA mutants into cell exterior. These data suggested that structural integrity of the RTX domain of CyaA is essential not only for cytotoxic activities of the toxin molecule but also for its secretion through the T1SS.
110

Etude du mécanisme de sécrétion des pectinases par le système de sécrétion de type II de la bactérie phytopathogène Dickeya dadantii / Study of the mechanism of pectinases secretion by the type II secretion system of the phytopathogenic bacterium Dickeya dadantii

Pineau, Camille 29 April 2014 (has links)
Le système de sécrétion de type II (T2SS) est largement répandu chez les bactéries à Gram négatif et est, entre autre, exploité par de nombreux pathogènes pour sécréter des facteurs de virulence dans le milieu extérieur. Le T2SS est constitué de 12 à 15 protéines différentes s’associant en une machinerie complexe qui traverse la totalité de l’enveloppe bactérienne. Ce système assure la sécrétion de protéines repliées du périplasme au milieu extracellulaire. Le mode de fonctionnement de cette machinerie n’est toujours pas connu. Pour comprendre les mécanismes moléculaires régissant la sécrétion des protéines par le T2SS, nous avons utilisé comme modèle le T2SS de la bactérie phytopathogène Dickeya dadantii, nommé Out, qui assure la sécrétion de pectinases entrainant la pourriture molle chez de nombreux végétaux. Nous avons employé des approches de pontage disulfure, double hybride bactérien et GST-pull down afin d’étudier l’arrangement et l’organisation des composants au sein du système de sécrétion. Nous avons ainsi montré que les composants de la membrane interne et la sécrétine de la membrane externe se coordonnent entre eux grâce à un réseau d’interactions complexe et dynamique qui peut être modifié par la présence d’une protéine à sécréter. En combinant des approches génétiques, biochimiques, structurales et bioinformatiques, nous avons étudié le mécanisme de reconnaissance de la pectinase PelI, par deux composants majeurs du système, la protéine de membrane interne OutC et la sécrétine OutD qui forme le pore du T2SS dans la membrane externe. Nous avons montré que PelI interagit avec les domaines périplasmiques HR et PDZ d’OutC et N0 et N1 d’OutD. La présence de N1 renforce l’interaction PDZ/PelI suggérant que le processus de sécrétion pourrait être régi par une succession de contacts synergiques. PDZOutC reconnait une boucle de 9 résidus au sein de l’exoprotéine PelI. Cette boucle constitue un motif d’adressage spécifique contrôlant le recrutement de PelI par la machinerie de sécrétion Out. Des études in silico et in vivo ont montré l’existence de régions similaires à cette boucle au sein d’autres pectinases sécrétées par D. dadantii. Par ailleurs, l’interaction N1OutD/PelI impliquerait un contact de brins β ainsi que la région non structurée située en amont de N1. Ces travaux constituent la première démonstration expérimentale du rôle de signal de sécrétion d’un élément structural précis d’une exoprotéine sécrétée par un T2SS. Ils ont également permis pour la première fois de caractériser des sites précis d’interactions entre une protéine sécrétée et des composants du T2SS. Cette étude constitue une avancée majeure dans la compréhension des mécanismes moléculaires qui gouvernent le recrutement et la sécrétion des protéines par le système de type II. / The type II secretion system (T2SS) is widespread in Gram-negative bacteria. It is notably exploited by various pathogenic bacteria to secrete virulence factors into the extracellular milieu and host tissues. The T2SS is composed of 12 to 15 proteins that assemble together into a complex machine that spans the bacterial envelope. It allows the translocation of fully folded proteins from the periplasm across the outer membrane. The exact mode of action of this sophisticated machine is still unknown. The phytopathogenic bacterium Dickeya dadantii uses a T2SS, named Out, to secrete several plant cell-wall degrading enzymes that cause the soft rot disease of many plants. We used the Out system of this bacterium as a model to study the molecular mechanism of protein secretion by T2SS. In order to study the mutual arrangement of the different components of this machinery, we used disulfide bonding, bacterial two hybrid and GST-pull down. We showed that the components of the inner membrane platform interact together and we characterized several interfaces between the inner membrane component OutC and the outer membrane secretin OutD. These various contacts create a complex and dynamic network within the secretion machine that can be modulated by the presence of a protein to be secreted. Subsequently, we combined genetic, biochemical, structural and bioinformatics approaches to study how the pectinase PelI is recognized by the inner membrane component OutC and the pore-forming secretin OutD. We showed that PelI interacts with the periplasmic domains HR and PDZ of OutC and N0 and N1 of OutD. The presence of N1OutD positively modulates the PDZ/PelI interaction, suggesting that protein progression through the T2SS could involve a succession of synergistic contacts. The OutC PDZ domain recognizes a short loop of PelI. This loop acts as a specific secretion signal that controls exoprotein recruitment by the T2SS. Concerted in silico and in vivo approaches suggest the occurrence of equivalent secretion motifs in other exoproteins. The interaction between PelI and OutD could involve a β-strand contact and an intrinsically disordered region located upstream of N1. This work provides the first experimental evidence of molecular mechanisms that govern exoprotein recruitment by the T2SS. Notably, we identified a short structural element acting as a secretion signal and characterized for the first time the interfaces between the T2SS components and a protein to be secreted. This study provides important new mechanistic insights to understand the functioning of this secretion machine.

Page generated in 0.0984 seconds