Spelling suggestions: "subject:"self renewal"" "subject:"elf renewal""
51 |
Leukemia stem cell fates are determined by DNA methylation levelsVockentanz, Lena 07 June 2011 (has links)
DNA Methylierung ist ein zentraler epigenetischer Prozess, welcher entscheidend an der Organisation von Genregulation beteiligt ist. Dieser Vorgang ist wichtig für die Funktion sowohl von embryonalen als auch von Gewebs-Stammzellen. Krebszellen weisen häufig veränderte DNA Methylierungsmuster auf, was auf eine ähnlich wesentliche Rolle der DNA Methylierung in Krebsstammzellen (KSZ) hindeutet. Diese These wurde hier mit Hilfe eines Mausmodells mit verringerter Expression der DNA Methyltransferase Dnmt1 anhand verschiedener Leukämiemodelle untersucht. In einem bi-linearen B-lymphatischen/myeloischen Leukämiemodell konnte gezeigt werden, dass hypomethylierte leukämieinitiierende (Stamm-)zellen (LSZ) myeloische Krebszellen hervorbringen, allerdings nicht zur Bildung von B-lymphatischen Leukämiezellen befähigt sind. Darüber hinaus konnte in einem T-Zell-spezifischen Leukämiemodell gezeigt werden, dass reduzierte Dnmt1 Expression nicht mit der Bildung von T-Zelllymphomen vereinbar ist. Detaillierte Analysen eines myeloischen Leukämiemodells ergaben, dass hypomethylierte LSZs ein vermindertes Selbsterneuerungspotenzial aufweisen. Im Gegensatz zu den starken Funktionseinschränkungen hypomethylierter LSZs, hatten hypomethylierte Knochenmarks-Stromazellen keinen Effekt auf die Entwicklung von Leukämien. Außerdem führte die Behandlung leukämischer Zellen mit demethylierenden Agenzien zu einer teilweisen Aufhebung methylierungsvermittelter Genrepression. Die dadurch verstärkte Expression von Differenzierungsfaktoren verminderte das Leukämiewachstum, was einen möglichen Erklärungsansatz für das eingeschränkte Potenzial hypomethylierter Leukämien darstellt. Diese Ergebnisse demonstrieren eine zentrale Rolle der DNA Methylierung für die Selbsterneuerung und Linienwahl von LSZs, und erlauben somit neue Einblicke in die epigenetische Regulation von KSZs. Diese Erkenntnisse implizieren, dass KSZs möglicherweise ein geeignetes Ziel für epigenetische Therapieansätze darstellen. / DNA methylation is one of the major epigenetic processes which is crucially involved in orchestrating gene regulation primarily by repression of gene expression. DNA methylation plays an important role in controlling functional programs of embryonic and tissue stem cells. As altered DNA methylation patterns are a hallmark of cancer, we hypothesized that DNA methylation might be equally important for cell fate determinations of cancer stem/initiating cells (CSC). To test this, I analyzed a genetic knockdown mouse model of the main somatic DNA methyltransferase Dnmt1 in the context of three different leukemia models. In a bilinear B-lymphoid/myeloid leukemia model hypomethylated bi-potential leukemia stem/initiating cells (LSCs) were shown to be capable of forming a myeloid leukemia, whereas the generation of B-lymphoid blasts was almost entirely abrogated. Moreover, failure of hypomethylated cells to develop T-cell lymphomas in a Notch1-based leukemia model demonstrated their profound lack of T-lineage commitment capacities. Furthermore, detailed analyses of a myeloid leukemia model revealed a severely impaired self-renewal potential in LSCs with reduced Dnmt1 expression. However, contrasting the drastic cell-intrinsic impairments of LSC function by reduced DNA methylation, leukemia development was found to be unaffected by hypomethylated bone marrow stroma. Mechanistically, treatment of cell lines with a demethylating drug led to enhanced expression of differentiation factors due to loss of methylation mediated gene silencing. This was followed by inhibition of leukemia cell growth, thus providing a potential mechanism for impaired functions of hypomethylated leukemias. Collectively, this thesis revealed a critical role for DNA methylation levels in malignant self-renewal and lineage fate choices. These new insights into epigenetic regulation of CSCs suggest that epigenetic therapy displays a potential treatment concept specifically targeting CSCs.
|
52 |
Expression des histones déméthylases dans les cellules hématopoïétiques humaines et les leucémies aiguësPécheux, Lucie 12 1900 (has links)
L’importance des modificateurs de la chromatine dans la régulation de l’hématopoïèse et des hémopathies malignes est illustrée par l’histone méthyltransférase Mixed-Lineage Leukemia (MLL) qui est essentielle au maintien des cellules souches hématopoïétiques (CSH) et dont le gène correspondant, MLL, est réarrangé dans plus de 70% des leucémies du nourrisson. Les histones déméthylases (HDM), récemment découvertes, sont aussi impliquées dans le destin des CSH et des hémopathies malignes. Le but de ce projet est d’étudier l’expression des HDM dans les cellules
hématopoïétiques normales et leucémiques afin d’identifier de potentiels régulateurs de leur destin.
Nous avons réalisé un profil d'expression génique des HDM par qRT-PCR et par séquençage du
transcriptome (RNA-seq) dans des cellules de sang de cordon (cellules CD34+ enrichies en CSH et
cellules différenciées) et des cellules de leucémie aiguë myéloïde (LAM) avec réarrangement
MLL. Les deux techniques montrent une expression différentielle des HDM entre les populations
cellulaires. KDM5B et KDM1A sont surexprimés dans les cellules CD34+ par rapport aux cellules
différenciées. De plus, KDM4A et PADI2 sont surexprimés dans les cellules leucémiques par
rapport aux cellules normales. Des études fonctionnelles permettront de déterminer si la
modulation de ces candidats peut être utilisée dans des stratégies d’expansion des CSH, ou comme
cible thérapeutique anti-leucémique. Nous avons aussi développé et validé un nouveau test
diagnostique pour détecter les mutations de GATA2 qui code pour un facteur de transcription clé de
l’hématopoïèse impliqué dans les LAM. Ces travaux soulignent l’importance des facteurs
nucléaires dans la régulation de l’hématopoïèse normale et leucémique. / The importance of chromatin modifiers in regulation of hematopoiesis and hematologic
malignancies is illustrated by the Mixed-Lineage Leukemia (MLL) histone methyltransferase, which is essential to maintain hematopoietic stem cells (HSC) and whose corresponding gene, MLL, is rearranged in over 70% of infant leukemia. The recently discovered histone demethylases (HDM) are also involved in HSC fate and in hematologic malignancies. The purpose of this project is to study the expression of HDM in normal and leukemic hematopoietic cells to identify potential regulators of their fate. We performed a comprehensive gene expression profile of HDM by qRTPCR
and transcriptome sequencing (RNA-seq) in cord blood cells (CD34+ cells enriched in HSC and differentiated cells) and in acute myeloid leukemia (AML) cells with MLL rearrangement. Both techniques revealed differential expression of HDM between these cell populations. KDM5B and KDM1A are overexpressed in CD34+ cells compared to differentiated cells. Moreover, KDM4A and PADI2 are overexpressed in leukemic cells compared to normal cells. Functional studies will determine whether modulation of these candidates can be used in HSC expansion strategies or as anti-leukemic drug target. We have also developed and validated a new diagnostic test to detect mutations of GATA2, a gene encoding a key transcription factor involved in hematopoiesis and in AML. This work highlights the importance of nuclear factors in the regulation of normal and leukemic hematopoiesis.
|
53 |
Étude moléculaire de la fonction du gène Bmi1 dans le processus de sénescence du système nerveuxChatoo, Wassim 05 1900 (has links)
Des études présentées dans cette thèse ont permis de démontrer que le gène du groupe Polycomb (PcG) Bmi1 est essentiel à l’auto-renouvellement des progéniteurs rétiniens immatures et pour le développement rétinien après la naissance. Ce travail illustre chez l’embryon que Bmi1 est hautement enrichie dans une sous-population de progéniteurs rétiniens exprimant le marqueur de surface SSEA-1 et différents marqueurs de cellules souches. À tous les stades de développement analysés, l’absence de Bmi1 résulte en une diminution de la prolifération et de l’auto-renouvellement des progéniteurs immatures. Pour mieux comprendre la cascade moléculaire en absence de Bmi1, nous avons inactivé p53 dans les colonies Bmi1-/-. Cette inactivation a permis une restauration partielle du potentiel d’auto-renouvellement. De plus, en absence de Bmi1, la prolifération et la maintenance de la population de progéniteurs rétiniens immatures localisés dans le corps ciliaire sont aussi affectées après la naissance. Bmi1 permet donc de distinguer les progéniteurs immatures de la population principale de progéniteurs, et est requis pour le développement normal de la rétine. Nous avons également démontré que l’oncogène Bmi1 est requis dans les neurones pour empêcher l’apoptose et l’induction d’un programme de vieillissement prématuré, causé par une baisse des défenses anti-oxydantes. Nous avons observé dans les neurones Bmi1-/- une augmentation des niveaux de p53, de la concentration des ROS et de la sensibilité aux agents neurotoxiques. Nous avons démontré ainsi que Bmi1 contrôle les défenses anti-oxydantes dans les neurones en réprimant l’activité pro-oxydante de p53. Dans les neurones Bmi1-/-, p53 provoque la répression des gènes anti-oxydants, induisant une augmentation des niveaux de ROS. Ces résultats démontrent pour la première fois que Bmi1 joue un rôle critique dans la survie et le processus de vieillissement neuronal. / The studies presented in this thesis establish that the Polycomb Group (PcG) gene Bmi1 is required for the self-renewal of immature retinal progenitor cells (RPCs) and for postnatal retinal development. Work performed in mouse embryos reveals that Bmi1 is highly enriched in a RPC subpopulation expressing the cell surface antigen SSEA-1 and different stem cell markers. Furthermore, at all developmental stages analysed, Bmi1 deficiency resulted in reduced proliferation and self-renewal of immature RPCs. To better understand the molecular cascade leading to this phenotype, we inactivated p53 in Bmi1-deficient colonies. p53 inactivation partially restored RPCs self-renewal potential. Moreover, the proliferation and the postnatal maintenance of an immature RPC population located in the ciliary body was also impaired in absence of Bmi1. Thus, Bmi1 distinguishes immature RPCs from the main RPC population and is required for normal retinal development. We have also shown that the oncogene Bmi1 is required in neurons to prevent apoptosis and the induction of a premature aging-like program characterized by reduced antioxidant defenses. We observed in Bmi1-deficient neurons an increased p53 and ROS levels, and a hypersensitivity to neurotoxic agents. We demonstrated that Bmi1 regulate antioxidant defenses in neurons by suppressing p53 pro-oxidant activity. In Bmi1-/- neurons, p53 induces antioxidant genes repression, resulting in increased ROS levels. These findings reveal for the first time the major role of Bmi1 on neuronal survival and aging.
|
54 |
Rôle du gène Polycomb BMI1 dans le maintien et la radiorésistance des cellules souches cancéreusesFacchino, Sabrina 09 1900 (has links)
Le glioblastome multiforme (GBM) est la tumeur cérébrale la plus commune et
létale chez l’adulte. Malgré les avancés fulgurantes dans la dernière décennie au niveau des
thérapies contre le cancer, le pronostique reste inchangé. Le manque de spécificité des
traitements est la cause première de la récurrence de cette tumeur. Une meilleure
compréhension au niveau des mécanismes moléculaires et biologiques de cette tumeur est
impérative. La découverte des cellules souches cancéreuses (CD133+) au niveau du GBM
offre une nouvelle opportunité thérapeutique contre cette tumeur. Effectivement, les
cellules CD133+ seraient responsables de l’établissement, le maintien et la progression du
GBM. De plus, elles sont également la cause de la résistance du GBM faces aux traitements
de radiothérapies. Ces cellules représentent une cible de choix dans le but d’éradiquer le
GBM. L’oncogène BMI1 a été associé à plusieurs types de tumeurs et est également
essentielle au maintien de différentes populations de cellules souches normales et
cancéreuses. Une forte expression de BMI1 est observée au niveau du GBM et plus
précisément, un enrichissement préférentiel de cette protéine est noté au niveau des cellules
CD133+. L’objectif principal de cette thèse est d’évaluer le rôle potentiel de BMI1 dans le
maintien et la radiorésistance des cellules souches cancéreuses (CSC), CD133+ du GBM.
La fonction principale de BMI1 est la régulation négative du locus INK4A/ARF. Ce locus
est impliqué dans l’activation de deux voies majeurs anti-tumorales : P53 et RB. Or, la
perte de BMI1 induit in vitro une diminution des capacités prolifératives, une augmentation
de la différentiation et de l’apoptose, ainsi qu’une augmentation de la radiosensibilité des
CSC du GBM indépendamment de la présence du locus INK4A/ARF. Effectivement, deux
tumeurs sur trois possèdent une délétion de ce locus, ce qui suggère que BMI1 possède
d’autre(s) cible(s) transcriptionnelle(s). Parmi ces nouvelles cibles ont retrouve la protéine
P21, un régulateur négatif du cycle cellulaire. De plus, la perte de BMI1 inhibe
l’établissement d’une tumeur cérébrale lors d’études de xénogreffe chez la souris
NOD/SCID. Également, une nouvelle fonction de BMI1 indépendante de son activité
transcriptionnel a été démontrée. Effectivement, suite à l’induction d’un bris double brin
(BDB) de l’ADN, BMI1 est rapidement recruté au niveau de la lésion et influence le
recrutement des protéines de reconnaissance du dommage à l’ADN. La perte de BMI1
mène à un défaut au niveau de la reconnaissance et la réparation de l’ADN, alors que sa
surexpression induit plutôt une augmentation de ces mécanismes et procure une
radiorésistance. Ces résultats décrivent pour la première fois l’importance de BMI1 au
niveau du maintien, de l’auto-renouvellement et la radiorésistance des CSC du GBM.
Ainsi, ces travaux démontrent que la protéine BMI1 représente une cible thérapeutique de
choix dans le but d’éradiquer le GBM, une tumeur cérébrale létale. / Glioblastoma multiform (GBM) is the most common and lethal primary brain tumor
found in adults. Despite the advances made in the field of cancer therapy in the last decade,
the median survival rate remains less than a year. Therefore, a better understanding of the
molecular biology of GBM will reveal the mechanisms responsible for the initiation and
progression of the tumor, and allow the development of new therapeutic strategies. GBM
contains a minority cell population, characterized by tumor initiating cells expressing the
stem cell marker, CD133. The CD133+ GBM cells are responsible for tumor initiation,
maintenance, progression and resistance to chemo/radiotherapy. The CD133+ cells
represent a valuable and specific therapeutic target against GBM. The Polycomb (PcG)
group family of transcriptional repressors have been involved in a vast range of cancers.
The PcG protein and oncogene BMI1 is the best-characterized PcG protein. The
implication of BMI1 in normal and cancer stem cell survival, self-renewal and maintenance
has been thoroughly investigated. BMI1 is highly expressed in GBM and more precisely; it
is enriched specifically in CD133+ cell populations. The main goal of this thesis was to
elucidate the potential role of BMI1 in GBM CD133 + cancer stem cell (CSC) maintenance
and radioresistance. The main function of BMI1 is to repress the expression of the genes
encoded by the INK4A/ARF locus, which is implicated in the activation of two major
tumor suppressor pathways, P53 and RB. However, BMI1 depletion in vitro induces a
reduction in proliferation potential, as well as an increase in differentiation, apoptosis, and
radiosensitivity regardless of INK4A/ARF status. Indeed, two-thirds of all tumors posses a
deletion of this locus, suggesting that BMI1 regulates other targets. P21, a cell cycle
regulator, was identified as a new BMI1 target. Moreover, we have observed that the loss of
BMI1 inhibits the establishment of a cerebral tumor in a xenograft mouse model. In
addition to transcription related activity, we identified a new transcription independent
function of BMI1. After the induction of a DNA double-strand-break, BMI1 is rapidly
recruited to the damage site and influences the recruitment of DNA damage response
proteins. Furthermore, defects in DNA damage recognition and repair are observed after
BMI1 knockdown. Consistent with these results, BMI1 overexpression induces DNA
damage response and increases radioresistance potential. These results emphasize for the
first time the requirement of BMI1 for the maintenance, self-renewal, and radioresistance in
GBM CSC, thus providing a potential target for future therapeutic strategies against GBM.
|
55 |
Activité des cellules souches : identification de nouveaux effecteurs dans le système hématopoïétiqueDeneault, Eric 11 1900 (has links)
Les cellules souches somatiques présentent habituellement un comportement très différent des cellules souches pluripotentes. Les bases moléculaires de l’auto-renouvellement
des cellules souches embryonnaires ont été récemment déchiffrées grâce à la facilité avec laquelle nous pouvons maintenant les purifier et les maintenir en culture durant de longues périodes de temps. Par contre, il en va tout autrement pour les cellules souches hématopoïétiques. Dans le but d’en apprendre davantage sur le fonctionnement moléculaire
de l’auto-renouvellement des cellules souches hématopoïétiques, j’ai d’abord conçu une nouvelle méthode de criblage gain-de-fonction qui répond aux caprices particuliers de ces cellules. Partant d’une liste de plus de 700 facteurs nucléaires et facteurs de division
asymétrique candidats, j’ai identifié 24 nouveaux facteurs qui augmentent l’activité
des cellules souches hématopoïétiques lorsqu’ils sont surexprimés. J’ai par la suite démontré que neuf de ces facteurs agissent de manière extrinsèque aux cellules souches hématopoïétiques, c’est-à-dire que l’effet provient des cellules nourricières modifiées en co-culture. J’ai également mis à jour un nouveau réseau de régulation de transcription qui implique cinq des facteurs identifiés, c’est-à-dire PRDM16, SPI1, KLF10, FOS et TFEC. Ce réseau ressemble étrangement à celui soutenant l’ostéoclastogénèse. Ces résultats
soulèvent l’hypothèse selon laquelle les ostéoclastes pourraient aussi faire partie de la niche fonctionnelle des cellules souches hématopoïétiques dans la moelle osseuse. De plus, j’ai identifié un second réseau de régulation impliquant SOX4, SMARCC1 et plusieurs facteurs identifiés précédemment dans le laboratoire, c’est-à-dire BMI1, MSI2 et KDM5B. D’autre part, plusieurs indices accumulés tendent à démontrer qu’il existe des différences fondamentales entre le fonctionnement des cellules souches hématopoïétiques
murines et humaines. / Somatic stem cells usually exhibit a very different behavior compared to pluripotent
stem cells. The molecular basis of embryonic stem cell self-renewal was recently decrypted by the relative straightforwardness with which we can now purify and maintain
these cells in culture for long periods of time. However, this is not the case with hematopoietic
stem cells. In order to elucidate the molecular mechanisms of hematopoietic stem cell self-renewal, I developed a novel gain-of-function screening strategy, which bypasses some constraints found with these cells. Starting from a list of more than 700 candidate nuclear factors and asymmetric division factors, I have identified 24 new factors
that increase hematopoietic stem cell activity when overexpressed. I have also found that nine of these factors act extrinsically to hematopoietic stem cells, i.e., the effect comes from the engineered feeder cells in co-culture. Moreover, I have revealed a new transcriptional regulatory network including five of the factors identified, i.e., PRDM16, SPI1, KLF10, FOS and TFEC. This network is particularly similar to that involved in osteoclastogenesis. These results raise the hypothesis that osteoclasts might also be part of the functional hematopoietic stem cell niche in the bone marrow. Furthermore, I have identified a second regulatory network involving SOX4, SMARCC1 and several factors previously identified in the laboratory, i.e., BMI1, MSI2 and KDM5B. Besides, several lines of evidence tend to show that there are fundamental differences between mouse and human hematopoietic stem cells.
|
56 |
The Role of Lhx2 During Organogenesis : - Analysis of the Hepatic, Hematopoietic and Olfactory SystemsKolterud, Åsa January 2004 (has links)
During embryonic development a variety of tissues and organs such as the lung, eye, and kidney are being formed. The generation of functional organs is regulated by reciprocal cell-cell interactions. Via the secretion of soluble molecules one type of cells affect the fate of their neighboring cells. A central issue in organogenesis is how a cell interprets such extrinsic signals and adopts a specific fate, and how the cell in response to this signal establishes reciprocal signaling. Transcription factors play a critical role in this process and my thesis focuses on the role of the LIM-homeodomain transcription factor, Lhx2, in the development of three different organ systems, the liver, the hematopoietic system and the olfactory system. The liver is formed from endoderm of the ventral foregut and mesenchyme of the septum transversum (st) and its development depends upon signaling interactions between these two tissues. As the liver becomes a distinct organ it is colonized by hematopoietic cells and serves as hematopoietic organ until birth. The fetal liver provides a microenvironment that supports the expansion of the entire hematopoietic system (HS) including the hematopoietic stem cells (HSCs). Liver development in Lhx2-/- embryos is disrupted leading to a lethal anemia due to insufficient support of hematopoiesis. To further investigate the role of Lhx2 in liver development I analyzed gene expression from the Lhx2 locus during liver development in wild-type and Lhx2-/- mice. Lhx2 is expressed in the liver associated st mesenchymal cells that become integrated in the liver and contribute to a subpopulation of hepatic stellate cells in adult liver. Lhx2 is not required for the formation of these mesenchymal cells, suggesting that the phenotype in Lhx2-/- livers is due to the presence of defective mesenchymal cells. The putative role of Lhx2 in the expansion of the HS was examined by introducing Lhx2 cDNA into embryonic stem cells differentiated in vitro. This approach allowed for the generation of immortalized multipotent hematopoietic progenitor cell (HPC) lines that share many characteristics with normal HSCs. The Lhx2-dependent generation of HSC-like cell lines suggests that Lhx2 plays a role in the maintenance and/or expansion of the HS. To isolate genes putatively linked to Lhx2 function, genes differentially expressed in the HPC lines were isolated using a cDNA subtraction approach. This allowed for the identification of a few genes putatively linked to Lhx2 function, as well as several stem cell-specific genes. The antagonist of Wnt signalling, Dickkopf-1 (Dkk-1), was identified in the former group of genes as it showed a similar expression pattern in the fetal liver, as that of Lhx2 and expression of Dkk-1 in fetal liver and in HPC lines appeared to be regulated by Lhx2. This suggests that Dkk-1 plays a role in liver development and/or HSC physiology during embryonic development. During development of the olfactory epithelium (OE) neuronal progenitors differentiate into mature olfactory sensory neurons (OSNs) that are individually specified into over a thousand different subpopulations, each expressing a unique odorant receptor (OR) gene. The expression of Lhx2 in olfactory neurons suggested a potential role for Lhx2 in the development of OSNs. To address this OE from Lhx2-/- and wild-type mice was compared. In the absence of functional Lhx2 neuronal differentiation was arrested prior to onset of OR expression. Lhx2 is thus required for the development of OSN progenitors into functional, individually specified OSNs. Thus, Lhx2 trigger a variety of cellular responses in different organ systems that play important roles in organ development in vivo and stem cell expansion in vitro.
|
57 |
Activité des cellules souches : identification de nouveaux effecteurs dans le système hématopoïétiqueDeneault, Eric 11 1900 (has links)
Les cellules souches somatiques présentent habituellement un comportement très différent des cellules souches pluripotentes. Les bases moléculaires de l’auto-renouvellement
des cellules souches embryonnaires ont été récemment déchiffrées grâce à la facilité avec laquelle nous pouvons maintenant les purifier et les maintenir en culture durant de longues périodes de temps. Par contre, il en va tout autrement pour les cellules souches hématopoïétiques. Dans le but d’en apprendre davantage sur le fonctionnement moléculaire
de l’auto-renouvellement des cellules souches hématopoïétiques, j’ai d’abord conçu une nouvelle méthode de criblage gain-de-fonction qui répond aux caprices particuliers de ces cellules. Partant d’une liste de plus de 700 facteurs nucléaires et facteurs de division
asymétrique candidats, j’ai identifié 24 nouveaux facteurs qui augmentent l’activité
des cellules souches hématopoïétiques lorsqu’ils sont surexprimés. J’ai par la suite démontré que neuf de ces facteurs agissent de manière extrinsèque aux cellules souches hématopoïétiques, c’est-à-dire que l’effet provient des cellules nourricières modifiées en co-culture. J’ai également mis à jour un nouveau réseau de régulation de transcription qui implique cinq des facteurs identifiés, c’est-à-dire PRDM16, SPI1, KLF10, FOS et TFEC. Ce réseau ressemble étrangement à celui soutenant l’ostéoclastogénèse. Ces résultats
soulèvent l’hypothèse selon laquelle les ostéoclastes pourraient aussi faire partie de la niche fonctionnelle des cellules souches hématopoïétiques dans la moelle osseuse. De plus, j’ai identifié un second réseau de régulation impliquant SOX4, SMARCC1 et plusieurs facteurs identifiés précédemment dans le laboratoire, c’est-à-dire BMI1, MSI2 et KDM5B. D’autre part, plusieurs indices accumulés tendent à démontrer qu’il existe des différences fondamentales entre le fonctionnement des cellules souches hématopoïétiques
murines et humaines. / Somatic stem cells usually exhibit a very different behavior compared to pluripotent
stem cells. The molecular basis of embryonic stem cell self-renewal was recently decrypted by the relative straightforwardness with which we can now purify and maintain
these cells in culture for long periods of time. However, this is not the case with hematopoietic
stem cells. In order to elucidate the molecular mechanisms of hematopoietic stem cell self-renewal, I developed a novel gain-of-function screening strategy, which bypasses some constraints found with these cells. Starting from a list of more than 700 candidate nuclear factors and asymmetric division factors, I have identified 24 new factors
that increase hematopoietic stem cell activity when overexpressed. I have also found that nine of these factors act extrinsically to hematopoietic stem cells, i.e., the effect comes from the engineered feeder cells in co-culture. Moreover, I have revealed a new transcriptional regulatory network including five of the factors identified, i.e., PRDM16, SPI1, KLF10, FOS and TFEC. This network is particularly similar to that involved in osteoclastogenesis. These results raise the hypothesis that osteoclasts might also be part of the functional hematopoietic stem cell niche in the bone marrow. Furthermore, I have identified a second regulatory network involving SOX4, SMARCC1 and several factors previously identified in the laboratory, i.e., BMI1, MSI2 and KDM5B. Besides, several lines of evidence tend to show that there are fundamental differences between mouse and human hematopoietic stem cells.
|
58 |
Étude moléculaire de la fonction du gène Bmi1 dans le processus de sénescence du système nerveuxChatoo, Wassim 05 1900 (has links)
Des études présentées dans cette thèse ont permis de démontrer que le gène du groupe Polycomb (PcG) Bmi1 est essentiel à l’auto-renouvellement des progéniteurs rétiniens immatures et pour le développement rétinien après la naissance. Ce travail illustre chez l’embryon que Bmi1 est hautement enrichie dans une sous-population de progéniteurs rétiniens exprimant le marqueur de surface SSEA-1 et différents marqueurs de cellules souches. À tous les stades de développement analysés, l’absence de Bmi1 résulte en une diminution de la prolifération et de l’auto-renouvellement des progéniteurs immatures. Pour mieux comprendre la cascade moléculaire en absence de Bmi1, nous avons inactivé p53 dans les colonies Bmi1-/-. Cette inactivation a permis une restauration partielle du potentiel d’auto-renouvellement. De plus, en absence de Bmi1, la prolifération et la maintenance de la population de progéniteurs rétiniens immatures localisés dans le corps ciliaire sont aussi affectées après la naissance. Bmi1 permet donc de distinguer les progéniteurs immatures de la population principale de progéniteurs, et est requis pour le développement normal de la rétine. Nous avons également démontré que l’oncogène Bmi1 est requis dans les neurones pour empêcher l’apoptose et l’induction d’un programme de vieillissement prématuré, causé par une baisse des défenses anti-oxydantes. Nous avons observé dans les neurones Bmi1-/- une augmentation des niveaux de p53, de la concentration des ROS et de la sensibilité aux agents neurotoxiques. Nous avons démontré ainsi que Bmi1 contrôle les défenses anti-oxydantes dans les neurones en réprimant l’activité pro-oxydante de p53. Dans les neurones Bmi1-/-, p53 provoque la répression des gènes anti-oxydants, induisant une augmentation des niveaux de ROS. Ces résultats démontrent pour la première fois que Bmi1 joue un rôle critique dans la survie et le processus de vieillissement neuronal. / The studies presented in this thesis establish that the Polycomb Group (PcG) gene Bmi1 is required for the self-renewal of immature retinal progenitor cells (RPCs) and for postnatal retinal development. Work performed in mouse embryos reveals that Bmi1 is highly enriched in a RPC subpopulation expressing the cell surface antigen SSEA-1 and different stem cell markers. Furthermore, at all developmental stages analysed, Bmi1 deficiency resulted in reduced proliferation and self-renewal of immature RPCs. To better understand the molecular cascade leading to this phenotype, we inactivated p53 in Bmi1-deficient colonies. p53 inactivation partially restored RPCs self-renewal potential. Moreover, the proliferation and the postnatal maintenance of an immature RPC population located in the ciliary body was also impaired in absence of Bmi1. Thus, Bmi1 distinguishes immature RPCs from the main RPC population and is required for normal retinal development. We have also shown that the oncogene Bmi1 is required in neurons to prevent apoptosis and the induction of a premature aging-like program characterized by reduced antioxidant defenses. We observed in Bmi1-deficient neurons an increased p53 and ROS levels, and a hypersensitivity to neurotoxic agents. We demonstrated that Bmi1 regulate antioxidant defenses in neurons by suppressing p53 pro-oxidant activity. In Bmi1-/- neurons, p53 induces antioxidant genes repression, resulting in increased ROS levels. These findings reveal for the first time the major role of Bmi1 on neuronal survival and aging.
|
59 |
Rôle du gène Polycomb BMI1 dans le maintien et la radiorésistance des cellules souches cancéreusesFacchino, Sabrina 09 1900 (has links)
Le glioblastome multiforme (GBM) est la tumeur cérébrale la plus commune et
létale chez l’adulte. Malgré les avancés fulgurantes dans la dernière décennie au niveau des
thérapies contre le cancer, le pronostique reste inchangé. Le manque de spécificité des
traitements est la cause première de la récurrence de cette tumeur. Une meilleure
compréhension au niveau des mécanismes moléculaires et biologiques de cette tumeur est
impérative. La découverte des cellules souches cancéreuses (CD133+) au niveau du GBM
offre une nouvelle opportunité thérapeutique contre cette tumeur. Effectivement, les
cellules CD133+ seraient responsables de l’établissement, le maintien et la progression du
GBM. De plus, elles sont également la cause de la résistance du GBM faces aux traitements
de radiothérapies. Ces cellules représentent une cible de choix dans le but d’éradiquer le
GBM. L’oncogène BMI1 a été associé à plusieurs types de tumeurs et est également
essentielle au maintien de différentes populations de cellules souches normales et
cancéreuses. Une forte expression de BMI1 est observée au niveau du GBM et plus
précisément, un enrichissement préférentiel de cette protéine est noté au niveau des cellules
CD133+. L’objectif principal de cette thèse est d’évaluer le rôle potentiel de BMI1 dans le
maintien et la radiorésistance des cellules souches cancéreuses (CSC), CD133+ du GBM.
La fonction principale de BMI1 est la régulation négative du locus INK4A/ARF. Ce locus
est impliqué dans l’activation de deux voies majeurs anti-tumorales : P53 et RB. Or, la
perte de BMI1 induit in vitro une diminution des capacités prolifératives, une augmentation
de la différentiation et de l’apoptose, ainsi qu’une augmentation de la radiosensibilité des
CSC du GBM indépendamment de la présence du locus INK4A/ARF. Effectivement, deux
tumeurs sur trois possèdent une délétion de ce locus, ce qui suggère que BMI1 possède
d’autre(s) cible(s) transcriptionnelle(s). Parmi ces nouvelles cibles ont retrouve la protéine
P21, un régulateur négatif du cycle cellulaire. De plus, la perte de BMI1 inhibe
l’établissement d’une tumeur cérébrale lors d’études de xénogreffe chez la souris
NOD/SCID. Également, une nouvelle fonction de BMI1 indépendante de son activité
transcriptionnel a été démontrée. Effectivement, suite à l’induction d’un bris double brin
(BDB) de l’ADN, BMI1 est rapidement recruté au niveau de la lésion et influence le
recrutement des protéines de reconnaissance du dommage à l’ADN. La perte de BMI1
mène à un défaut au niveau de la reconnaissance et la réparation de l’ADN, alors que sa
surexpression induit plutôt une augmentation de ces mécanismes et procure une
radiorésistance. Ces résultats décrivent pour la première fois l’importance de BMI1 au
niveau du maintien, de l’auto-renouvellement et la radiorésistance des CSC du GBM.
Ainsi, ces travaux démontrent que la protéine BMI1 représente une cible thérapeutique de
choix dans le but d’éradiquer le GBM, une tumeur cérébrale létale. / Glioblastoma multiform (GBM) is the most common and lethal primary brain tumor
found in adults. Despite the advances made in the field of cancer therapy in the last decade,
the median survival rate remains less than a year. Therefore, a better understanding of the
molecular biology of GBM will reveal the mechanisms responsible for the initiation and
progression of the tumor, and allow the development of new therapeutic strategies. GBM
contains a minority cell population, characterized by tumor initiating cells expressing the
stem cell marker, CD133. The CD133+ GBM cells are responsible for tumor initiation,
maintenance, progression and resistance to chemo/radiotherapy. The CD133+ cells
represent a valuable and specific therapeutic target against GBM. The Polycomb (PcG)
group family of transcriptional repressors have been involved in a vast range of cancers.
The PcG protein and oncogene BMI1 is the best-characterized PcG protein. The
implication of BMI1 in normal and cancer stem cell survival, self-renewal and maintenance
has been thoroughly investigated. BMI1 is highly expressed in GBM and more precisely; it
is enriched specifically in CD133+ cell populations. The main goal of this thesis was to
elucidate the potential role of BMI1 in GBM CD133 + cancer stem cell (CSC) maintenance
and radioresistance. The main function of BMI1 is to repress the expression of the genes
encoded by the INK4A/ARF locus, which is implicated in the activation of two major
tumor suppressor pathways, P53 and RB. However, BMI1 depletion in vitro induces a
reduction in proliferation potential, as well as an increase in differentiation, apoptosis, and
radiosensitivity regardless of INK4A/ARF status. Indeed, two-thirds of all tumors posses a
deletion of this locus, suggesting that BMI1 regulates other targets. P21, a cell cycle
regulator, was identified as a new BMI1 target. Moreover, we have observed that the loss of
BMI1 inhibits the establishment of a cerebral tumor in a xenograft mouse model. In
addition to transcription related activity, we identified a new transcription independent
function of BMI1. After the induction of a DNA double-strand-break, BMI1 is rapidly
recruited to the damage site and influences the recruitment of DNA damage response
proteins. Furthermore, defects in DNA damage recognition and repair are observed after
BMI1 knockdown. Consistent with these results, BMI1 overexpression induces DNA
damage response and increases radioresistance potential. These results emphasize for the
first time the requirement of BMI1 for the maintenance, self-renewal, and radioresistance in
GBM CSC, thus providing a potential target for future therapeutic strategies against GBM.
|
60 |
Expansion of the CD8 memory T cells : implications for the self-renewal gene Hoxb4Giono Chiang, Gloria E. 12 1900 (has links)
No description available.
|
Page generated in 0.0699 seconds