• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 39
  • 11
  • 6
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 67
  • 67
  • 53
  • 36
  • 25
  • 21
  • 20
  • 17
  • 17
  • 16
  • 15
  • 12
  • 12
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Transferência de spin em nanopilares magnéticos : caos e ressonância estocástica

Accioly, Artur Difini January 2015 (has links)
Ao passar por uma fina camada magnética uma corrente spin polarizada pode produzir um efeito de torque clássico atuando na camada, sendo capaz de gerar precessão e reversão da magnetização. Esse efeito tem sido alvo de inúmeras pesquisas, em especial pela possibilidade de aplicações em memórias magnéticas não voláteis e em nano-osciladores de alta frequência, entretanto outras características podem ser exploradas. Em particular, devido ao seu caráter não-linear, torques de spin aplicados em camadas magnéticas podem fornecer condições para aparecimento de caos determinístico e ressonância estocástica. Caos determinístico pode ocorrer em sistemas dinâmicos contínuos que tenham ao menos três graus de liberdade. Nesse caso, mesmo que apenas termos determinísticos sejam considerados, a combinação de termos não-lineares e alta sensibilidade em relação a condições iniciais ou pequenas perturbações pode gerar irregularidade e imprevisibilidade no sistema. Ressonância estocástica é o nome que se dá para fenômenos em que a adição de ruído a um sistema pode melhorar a resposta do mesmo, existindo um nível ótimo de ruído. Esse fenômeno pode ser usado para detecção e amplificação de sinais de baixa intensidade, por exemplo. Aqui analisamos a dinâmica da magnetização da camada livre de junções magnéticas em geometrias do tipo nanopilar, com o estudo dividido em dinâmicas determinísticas e estocásticas. Dentro da análise apenas com termos determinísticos, buscamos verificar comportamentos regulares, irregulares e caóticos, caracterizando o sistema através da geração de diagramas com as fases dinâmicas para diferentes valores de parâmetros. Foram vistas duas geometrias diferentes, sendo que em uma delas foi possível fazer a caracterização completa das fases dinâmicas do sistema. No caso de dinâmicas estocásticas, buscamos explorar efeitos não-lineares e flutuações térmicas, analisando ressonância estocástica e sincronização facilitada por ruído em uma junção túnel magnética, além de estudar as respostas dinâmicas quando há apenas o torque de Slonczewski e quando também está presente o torque tipo campo. Foi possível observar a influência de diversos parâmetros, como a amplitude da corrente aplicada e a frequência de entrada, na resposta magnética e na sincronização de dispositivos estocásticos. Além disso, vimos que com a inclusão do torque tipo campo aparece um possível novo comportamento, similar à ressonância, em alta frequência, ainda não detectado experimentalmente. Esses resultados são importantes pela possibilidade de uso desses dispositivos spintrônicos em transmissão segura de dados, comunicação em alta frequência e em uma nova geração de dispositivos bio-inspirados e eficientes energeticamente. / When passing through a fine magnetic layer a spin polarized electric current may result in a classical torque acting on the layer, being capable of causing magnetization precession and reversal. This effect has been object of numerous researches, specially because of possible applications in non-volatile magnetic memories and high frequency nanooscillators. However, other characteristics can be exploited. In particular, because of its non-linear features, spin torques acting on magnetic layers can generate the conditions for deterministic chaos and stochastic resonance to arise. Deterministic chaos may happen in continuous nonlinear dynamical systems with at least three degrees of freedom. In this case, even if only deterministic terms are considered, the combination of nonlinearities with high sensitivity on initial conditions or small perturbations can produce irregularity and unpredictability in the dynamical behaviour. Stochastic resonance is the phenomenon in which the addition of noise in a system can produce a better output, or system response, existing an optimal noise level. This effect can be used as a way to detect and amplify low intensity signal, for example. In this PhD Thesis we study the magnetization dynamics on the free layer of magnetic junctions in nanopillar geometries. The work is divided into two parts: deterministic and stochastic dynamics. When analysing the deterministic case we tried to characterize regular, irregular and chaotic behaviours, producing dynamical phases diagrams for different system parameters. Two different geometries were analysed, being possible to generate a complete characterization of the dynamical phases in one of them. For the stochastic case we tried to explore nonlinear effects and thermal fluctuations, analysing stochastic resonance and noise-enhanced synchronization in a magnetic tunnel junction and studying the dynamical response when only one spin torque is considered, the Slonczewski torque, and also when a perpendicular torque, the field-like torque, is present. We were able to see the influence of several system parameters, such as the amplitude of the applied electric current and the input frequency, on the system response and on the synchronization of stochastic systems. Also, we noticed that with the inclusion of the field-like torque a possibly new high frequency resonance-like behaviour appears. These results are important because of the possibility of using new spintronic devices for secure data transmission, high frequency communications and on a new generation of bio-inspired devices.
62

Spin wave propagation and its modification by an electrical current in Py/Al2O3, Py/Pt and Fe/MgO films / Propagation des ondes de spin et sa modification par un courant électrique dans des systèmes permalloy/Al2O3, permalloy/platine et fer/MgO

Gladii, Olga 16 December 2016 (has links)
Des mesures d’ondes de spin propagatives ont été réalisées pour caractériser deux effets de l’interaction spin-orbite ainsi que le transport électrique dépendant du spin. Les effets du couplage spin-orbite ont été étudiés dans des bicouches nickel-fer/platine. Dans ces films, les fréquences de deux ondes de spin contre-propageantes ne sont pas les mêmes, ce qui est attribué à l’effet combiné d’une interaction magnétique chirale appelée interaction Dzyaloshinskii-Moriya et d’une asymétrie dans l’épaisseur du film magnétique. En appliquant le courant électrique dans ce système nous avons observé une modification du taux de relaxation de l’onde de spin qui est attribuée au transfert de spin induit par effet Hall de spin. D’autre part, les études de propagation d’ondes de spin dans une couche mince de fer épitaxié à température ambiante ont montré une polarisation en spin du courant électrique de 83%, ce qui est attribué à une forte asymétrie du couplage électron-phonon. / Propagating spin wave measurements were realised to characterize two spin-orbit related phenomena, as well as spin dependent electrical transport. The effects of spin-orbit coupling have been studied in nickel-iron/platinum bilayers. It has been shown that in these films the frequencies of two counter-propagating spin waves are not the same, which is attributed to the combined effects of a chiral magnetic interaction named Dzyaloshinskii-Moriya interaction and an asymmetry of the magnetic properties across the film thickness. By applying an electrical current in such system we have observed a modification of the spin wave relaxation rate due to the spin transfer torque induced by spin Hall effect. On the other hand, from the study of spin wave propagation in thin epitaxial iron films at room temperature, a degree of spin polarization of the electrical current of 83% was extracted, which is attributed to a significant spin-asymmetry of the electron-phonon coupling.
63

Modélisation compacte et conception de circuit à base de jonction tunnel ferroélectrique et de jonction tunnel magnétique exploitant le transfert de spin assisté par effet Hall de spin / Compact modeling and circuit design based on ferroelectric tunnel junction and spin-Hall-assisted spin-transfer torque

Wang, Zhaohao 14 October 2015 (has links)
Les mémoires non-volatiles (MNV) sont l'objet d'un effort de recherche croissant du fait de leur capacité à limiter la consommation statique, qui obère habituellement la réduction des dimensions dans la technologie CMOS. Dans ce contexte, cette thèse aborde plus spécifiquement deux technologies de mémoires non volatiles : d'une part les jonctions tunnel ferroélectriques (JTF), dispositif non volatil émergent, et d'autre part les dispositifs à transfert de spin (TS) assisté par effet Hall de spin (EHS), approche alternative proposée récemment pour écrire les jonctions tunnel magnétiques (JTM). Mon objectif est de développer des modèles compacts pour ces deux technologies et d'explorer, par simulation, leur intégration dans les circuits non-volatiles.J'ai d'abord étudié les modèles physiques qui décrivent les comportements électriques des JTF : la résistance tunnel, la dynamique de la commutation ferroélectrique et leur comportement memristif. La précision de ces modèles physiques est validée par leur bonne adéquation avec les résultats expérimentaux. Afin de proposer un modèle compatible avec les simulateurs électriques standards, nous j'ai développé les modèles physiques mentionnés ci-dessus en langue Verilog-A, puis je les ai intégrés ensemble. Le modèle électrique que j'ai conçu peut être exploité sur la plate-forme Cadence (un outil standard pour la simulation de circuit). Il reproduit fidèlement les comportements de JTF. Ensuite, en utilisant ce modèle de JTF et le design-kit CMOS de STMicroelectronics, j'ai conçu et simulé trois types de circuits: i) une mémoire vive (RAM) basée sur les JTF, ii) deux systèmes neuromorphiques basés sur les JTF, l'un qui émule la règle d'apprentissage de la plasticité synaptique basée sur le décalage temporel des impulsions neuronale (STDP), l'autre mettant en œuvre l'apprentissage supervisé de fonctions logiques, iii) un bloc logique booléen basé sur les JTF, y compris la démonstration des fonctions logiques NAND et NOR. L'influence des paramètres de la JTF sur les performances de ces circuits a été analysée par simulation. Finalement, nous avons modélisé la dynamique de renversement de l'aimantation dans les dispositifs à anisotropie perpendiculaire à transfert de spin assisté par effet Hall de spin dans un JTM à trois terminaux. Dans ce schéma, deux courants d'écriture sont appliqués pour générer l'EHS et le TS. La simulation numérique basée sur l'équation de Landau-Lifshitz-Gilbert (LLG) démontre que le délai d'incubation de TS peut être éliminé par un fort EHS, conduisant à la commutation ultra-rapide de l'aimantation, sans pour autant requérir une augmentation excessive du TS. Nous avons appliqué cette nouvelle méthode d'écriture à la conception d'une bascule magnétique et d'un additionneur 1 bit magnétique. Les performances des circuits magnétiques assistés par l'EHS ont été comparés à ceux écrits par transfert de spin, par simulation et par une analyse fondée sur le modèle théorique. / Non-volatile memory (NVM) devices have been attracting intensive research interest since they promise to solve the increasing static power issue caused by CMOS technology scaling. This thesis focuses on two fields related to NVM: the one is the ferroelectric tunnel junction (FTJ), which is a recent emerging NVM device. The other is the spin-Hall-assisted spin-transfer torque (STT), which is a recent proposed write approach for the magnetic tunnel junction (MTJ). Our objective is to develop the compact models for these two technologies and to explore their application in the non-volatile circuits through simulation.First, we investigated physical models describing the electrical behaviors of the FTJ such as tunneling resistance, dynamic ferroelectric switching and memristive response. The accuracy of these physical models is validated by a good agreement with experimental results. In order to develop an electrical model available for the circuit simulation, we programmed the aforementioned physical models with Verilog-A language and integrated them together. The developed electrical model can run on Cadence platform (a standard circuit simulation tool) and faithfully reproduce the behaviors of the FTJ.Then, using the developed FTJ model and STMicroelectronics CMOS design kit, we designed and simulated three types of circuits: i) FTJ-based random access memory (FTRAM), ii) two FTJ-based neuromorphic systems, one of which emulates spike-timing dependent plasticity (STDP) learning rule, the other implements supervised learning of logic functions, iii) FTJ-based Boolean logic block, by which NAND and NOR logic are demonstrated. The influences of the FTJ parameters on the performance of these circuits were analyzed based on simulation results.Finally, we focused on the reversal of the perpendicular magnetization driven by spin-Hall-assisted STT in a three-terminal MTJ. In this scheme, two write currents are applied to generate spin-Hall effect (SHE) and STT. Numerical simulation based on Landau-Lifshitz-Gilbert (LLG) equation demonstrates that the incubation delay of the STT can be eliminated by the strong SHE, resulting in ultrafast magnetization switching without the need to strengthen the STT. We applied this novel write approach to the design of the magnetic flip-flop and full-adder. Performance comparison between the spin-Hall-assisted and the conventional STT magnetic circuits were discussed based on simulation results and theoretical models.
64

Tunable magnetic vortex dynamics

Ramasubramanian, Lakshmi 31 March 2022 (has links)
Magnetic vortices are fundamental topologically protected magnetic structures which have evolved into a large and intense field of research and hold promise for future technological applications. The fundamental frequency of the magnetic vortex in a disk is directly proportional to the magnitude of the local saturation magnetization and individual sample design resulting in a single vortex precession frequency. Commercial applications like RF oscillators in wireless transmitters and receivers, however, require tuning of the output frequency by external parameters, such as applied fields or spin-polarized currents. It is shown here that the limited tunability of a magnetic vortex in a permalloy disk can be lifted when submitted to local chromium ion implantation by introducing areas in the disk with different saturation magnetization. A static magnetic field is applied to displace the vortex core between these two regions to enable detection of different frequencies corresponding to the respective regions. This realization of multiple resonance frequencies in one and the same magnetic disk is shown experimentally via electrical detection exploiting anisotropic magnetoresistance effects and the results are supported by micromagnetic simulations. In the experiments presented here, the gyrotropic mode is excited at resonance with spin-polarized alternating currents. Systematic investigations (in terms of excitation amplitude, external static field amplitude, angle between static field and current) on the disks without chromium ion implantation clearly indicate that the vortex core is driven by a combination of Oersted field and spin-torque. These measurements also help to identify the linear and non-linear regions of vortex dynamics electrically on single disks. The results shown in this work pave the way for enabling highly tuneable wireless transmitters and receivers based on magnetic vortex structures.
65

Current Induced Magnetization Dynamics in Nanostructures / Current Induced Magnetization Dynamics in Nanostructures

Uhlíř, Vojtěch January 2010 (has links)
Předkládaná dizertační práce pojednává o problematice pohybu doménových stěn (DS) vyvolaného spinově polarizovaným proudem v magnetických nanodrátech na bázi spinového ventilu NiFe/Cu/Co. Jedná se o tzv. efekt přenosu spinového momentu. Multivrstevnatý systém NiFe/Cu/Co, kde se doménová stěna pohybuje ve vrstvě NiFe, vykazuje velmi vysokou účinnost přenosu spinového momentu, což bylo v literatuře potvrzeno na základě magnetotransportních měření. Tato práce má za cíl pozorovat stav DS během jejich pohybu, pomocí fotoelektronové mikroskopie kombinované s kruhovým magnetickým dichroismem. Tato technika využívá synchrotronové záření, které svým časovým rozlišením umožňuje sledovat dynamickou odezvu magnetizace na elektrický proud. Podstatnou částí řešení byla optimizace růstu vrstev NiFe/Cu/Co kvůli snížení magnetické dipolární interakce mezi vrstvami. V práci je také řešen způsob přípravy nanodrátů litografickými metodami. Byly provedeny dva módy měření: i) kvazistatický, tj. pozorování DS před a po injekci proudu do nanodrátu a ii) dynamické měření, kde je DS sledována během působení proudového pulzu. S využitím kvazistatickém módu byla vypracována rozsáhlá statistika pohybu DS: i) byly naměřeny jejich vysoké rychlosti přesahující 600 m/s za působení průměrné proudové hustoty nutné k posuvu doménové stěny - 5x10^11 A/m^2; ii) DS jsou v systému NiFe/Cu/Co velmi silně zachycovány dipolární interakcí mezi NiFe a Co způsobenou nehomogenitou krystalové struktury ve vrstvě Co. V dynamickém módu bylo odhaleno, že působením Oerstedovského pole kolmého na nanodráty v rovině vzorku se magnetizace ve vrstvě NiFe silně natáčí. Tento efekt přispívá k vysokým rychlostem DS pozorovaných v nanodrátech NiFe/Cu/Co.
66

Micromagnetic Study of Current Induced Domain Wall Motion for Spintronic Synapses

Petropoulos, Dimitrios-Petros January 2021 (has links)
Neuromorphic computing applications could be made faster and more power efficient by emulating the function of a biological synapse. Non-conventional spintronic devices have been proposed that demonstrate synaptic behavior through domain wall (DW) driving. In this work, current induced domain wall motion has been studied through micromagnetic simulations. We investigate the synaptic behavior of a head to head domain wall driven by a spin polarized current in permalloy (Py) nanostrips with shape anisotropy, where triangular notches have been modeled to account for edge roughness and provide pinning sites for the domain wall. We seek optimal material parameters to keep the critical current density for driving the domain wall at order 1011 A/m2.
67

Device-Circuit Co-Design Employing Phase Transition Materials for Low Power Electronics

Ahmedullah Aziz (7025126) 12 August 2019 (has links)
<div> <div> <p>Phase transition materials (PTM) have garnered immense interest in concurrent post-CMOS electronics, due to their unique properties such as - electrically driven abrupt resistance switching, hysteresis, and high selectivity. The phase transitions can be attributed to diverse material-specific phenomena, including- correlated electrons, filamentary ion diffusion, and dimerization. In this research, we explore the application space for these materials through extensive device-circuit co-design and propose new ideas harnessing their unique electrical properties. The abrupt transitions and high selectivity of PTMs enable steep (< 60 mV/decade) switching characteristics in Hyper-FET, a promising post-CMOS transistor. We explore device-circuit co-design methodology for Hyper-FET and identify the criterion for material down-selection. We evaluate the achievable voltage swing, energy-delay trade-off, and noise response for this novel device. In addition to the application in low power logic device, PTMs can actively facilitate non-volatile memory design. We propose a PTM augmented Spin Transfer Torque (STT) MRAM that utilizes selective phase transitions to boost the sense margin and stability of stored data, simultaneously. We show that such selective transitions can also be used to improve other MRAM designs with separate read/write paths, avoiding the possibility of read-write conflicts. Further, we analyze the application of PTMs as selectors in cross-point memories. We establish a general simulation framework for cross-point memory array with PTM based <i>selector</i>. We explore the biasing constraints, develop detailed design methodology, and deduce figures of merit for PTM selectors. We also develop a computationally efficient compact model to estimate the leakage through the sneak paths in a cross-point array. Subsequently, we present a new sense amplifier design utilizing PTM, which offers built-in tunable reference with low power and area demand. Finally, we show that the hysteretic characteristics of unipolar PTMs can be utilized to achieve highly efficient rectification. We validate the idea by demonstrating significant design improvements in a <i>Cockcroft-Walton Multiplier, </i>implemented with TS based rectifiers. We emphasize the need to explore other PTMs with high endurance, thermal stability, and faster switching to enable many more innovative applications in the future.</p></div></div>

Page generated in 0.0498 seconds