Spelling suggestions: "subject:"stressinduced"" "subject:"stressesinduced""
11 |
Stress-induced Damage and Post-fire Response of Aluminum AlloysChen, Yanyun 15 January 2015 (has links)
Aluminum alloys have increasing applications in construction and transportation industries. Both 5xxx-series (Al-Mg) and 6xxx-series (Al-Mg) alloys are frequently used in marine construction because of their light weight, high strength, and corrosion resistance. One of the major concerns regarding the marine application of aluminum alloys is their mechanical performance in fire scenarios. The material strength may be degraded due to both thermal and mechanical damage during fire exposure.
This work emphasizes the stress-induced mechanical (physical) damage and its impact on the residual (post-fire) performance of 5083-H116 and 6061-T651 aluminum alloy. Thermo-mechanical tests were performed at various temperatures and stresses to study the stress-induced damage at induced plastic creep strain levels. Unstressed thermally exposed and thermo-mechanically damaged samples were examined to separate the stress-induced microstructural damage. The stress-induced microstructural damage primarily manifests itself as dynamic recovery at low creep temperatures, while cavitation, dynamic recrystallization and dynamic precipitation (in Al6061) are the types of damage developed in the high creep strains at high exposure temperatures. Different creep mechanisms are also studied for both Al5083 and Al6061.
The post-fire mechanical response at room temperature after thermo-mechanical damage was investigated with reference to the damaged microstructure present in the material. Residual material strengths based on deformed cross sectional area after the creep test were calculated to provide insight into how microstructural damage affects the post-fire material performance. The competing effects of strength degradation caused by cavitation and strengthening due to grain elongation and subgrain refinement were investigated. Engineering residual material strengths calculated based on the original cross sectional area prior to creep tests were also studied to provide guidance for structural design. / Ph. D.
|
12 |
Surfaces de silice fonctionnalisées par voie CO2 supercritique : effets du confinement et comportement en solution aqueuse / Silica surfaces functionalized in supercritical carbon dioxide : effects of confinement and behavior in aqueous solutions.Sananes israel, Susan 18 September 2018 (has links)
La fonctionnalisation des surfaces de silice permet d’obtenir des matériaux compétitifs dans le cadre de l’extraction spécifique d’ions. Cependant, les solvants généralement utilisés pour fonctionnaliser la silice présentent des contraintes économiques comme environnementales. Le CO2 supercritique est une alternative verte à l’utilisation de solvants organiques. Les objectifs de cette thèse sont de caractériser la fonctionnalisation par voie CO2 supercritique des surfaces de silices par des alcoxysilanes, de déterminer le devenir de cette fonctionnalisation dans des milieux de quelques nanomètres et de préciser leur comportement en solution. Plusieurs systèmes modèles à base de silice ont été utilisés comme support au greffage : des surfaces planes de silice, des surfaces planes espacés de quelques nanomètres simulant des milieux confinés plans (nanocanaux) et de la silice à mésoporosité organisée (SBA-15). Afin de déterminer l’impact des groupements fonctionnels sur la fonctionnalisation, plusieurs ont été utilisés ou préparés : le 3-(mercaptopropyl)triméthoxysilane (MPTMS), 3-[amino(éthylamino)propyl]triméthoxysilane (AEAPTMS) et le 3-(iodopropyl)triéthoxysilane (IPTES). Les résultats obtenus sur les surfaces planes de silice ont permis de déterminer différentes morphologies et structures de couche selon le groupement fonctionnel de l’alcoxysilane. Pour le MPTMS, l’obtention d’une monocouche auto-assemblée est possible à 60ºC. Pour l’AEAPTMS, des couches polycondensées sont obtenues quelle que soit la température du procédé de greffage. Pour l’IPTES, une bicouche a été obtenue à 120°C. Ces mêmes morphologies ont permis d’expliquer le remplissage des nanocanaux de silice, avec la présence additionnelle de molécules physisorbées. Le transfert des procédés de greffage sur des silices mésoporeuses SBA-15 a montré que les morphologies des couches obtenues sur les surfaces planes de silice n’étaient pas strictement transposables. En effet, il a été montré que le MPTMS et l’IPTES se greffaient dans la microporosité. Alors que les molécules de MPTMS se greffent en monocouche à la surface des mésopores, le greffage d’IPTES sur leur surface n’a pas pu être mis en évidence. De plus, de la polycondensation a aussi été caractérisée dans une fraction des mésopores. Cette polycondensation n’est pas pilotée par les mêmes paramètres expérimentaux suivant la molécule.Par ailleurs la post-fonctionnalisation des groupements iodo en phosphonate par la réaction d’Arbuzov-Michaelis est avérée dans les surfaces planes comme dans les silices mésoporeuses. Dans le cas des silices SBA-15 post-fonctionnalisées, le matériau final correspond à une silice SBA-15 ayant des pores plus grands qu’avant la post-fonctionnalisation et présentant de groupements phosphonates dans ses murs. Les mesures de leur évolution en solution ont montré la stabilité du matériau à différents pH et que les solutions diffusaient plus ou moins vite dans les murs de la silice. Les coefficients de diffusion des solutions calculés ont prouvé que la fonctionnalisation, en bouchant la microporosité, ralentissait la diffusion des solutions dans les murs de silice. Dans le cas de solutions basiques, cette diffusion est plus élevée probablement à cause de l’affinité des cations avec les groupements phosphonates. Des études de sorption ainsi que des effets d'irradiations γ seraient des perspectives intéressantes de ce travail. / Surface functionalization of silica leads to the synthesis of materials with possible applications in the selective ion extraction. However, organic solvents classically used to functionalize the silica surface have economic and environmental issues. Supercritical carbon dioxide (SC CO2) seems a greener alternative to the use of these organic solvents. The aim of this PhD work is to characterize the SC CO2 functionalization of silica surfaces by alkoxysilanes, to determine the evolution of the grafting in nanometric media and to precise the behavior of the materials in aqueous solution. Different model systems based on silica have been used as grafting supports: plane silica surfaces, parallel and plane surfaces spaced of few nanometers (silica nanochannels) and organised mesoporous silica (SBA-15). In order to determine the impact of the alkoxysilane head groups on the supercritical CO2 functionalization, different alkoxysilanes have been used or prepared: 3-(mercaptopropyl)trimethoxysilane (MPTMS), 3-[amino(ethylamino)propyl]trimethoxysilane (AEAPTMS) and 3-(iodopropyl)triethoxysilane (IPTES). The results obtained in plane silica surfaces allowed the determination of different morphologies and structures of the grafted layers, depending on the alkoxysilane used. The same morphologies have been found on the grafting of silica nanochannels, with the addition of physisorbed molecules. The transfert of the SC CO2 grafting process SBA-15 silica showed that the process was not strictly transposable. AEAPTMS could not be grafted in mesoporous silicas SBA-15 having a pore size lower than 7,5 nm. MPTMS and IPTES molecules are both grafted on the microporosity and a fraction of mesopores is obtured. Moreover, MPTMS monolayers are grafted at the mesoporous surface. The driving parameters of the polycondensation change depending on the grafted molecule.Besides, the post-functionalization of the iodo groups in phosphonate by the Arbuzov-Michaelis reaction have been effectively performed in plane and in mesoporous silicas. In SBA-15 silica, the post-functionalization leads to materials with higher porosity and with phosphonate groups in the pore wall. The measure of the evolution in aqueous solution show that the material is stable at different pH values and that the solution diffuses in the pore walls. The calculated diffusion coefficients highlight that the functionalization, which obstructed the microporosity, slowed down the diffusion of the aqueous solutions in the silica walls. In the case of basics solutions, the diffusion is probably enhanced by the affinity of the cations with the phosphonate groups. Sorption studies and the effects of γ-irradiations in the grafted materials could be interesting outlooks of this work.
|
13 |
Stress-Induced Senescence in Human Dermal Fibroblasts: Effects of Creatine and Nicotinamide Post Stress TreatmentArikatla, Venkata Sravya 27 August 2021 (has links)
No description available.
|
14 |
Modeling nonlinear material behavior at the nano and macro scalesNair, Arun Krishnan 18 August 2008 (has links)
Theoretical and computational methods have been used to study nonlinear effects in the mechanical response of materials at the nano and macro scales. These methods include, acoustoelastic theory, molecular dynamics and finite element models.
The nonlinear indentation response of Ni thin films of thicknesses in the nano scale was studied using molecular dynamics simulations with embedded atom method (EAM) interatomic potentials. The study included both single crystal films and films containing low angle grain boundaries perpendicular to the film surface. The simulation results for single crystal films show that as film thickness decreases, larger forces are required for similar indentation depths but the contact stress necessary to emit the first dislocation under the indenter is nearly independent of film thickness. The presence of grain boundaries in the films leads to the emission of dislocations at a lower applied stress. For a single crystal Ni thin film of a thickness of 20 nm a direct comparison of simulation and experimental results is presented, showing excellent agreement in hardness values. The effects of using different interatomic potentials and indentation rates for the simulations are also discussed. Dynamic indentation of the Ni thin film was also carried out for different frequencies. It has been found that there is a 12% increase in dislocations compared to quasi static indentation and the results are consistent with experiments.
Acoustoelastic theory was used to study how nonlinear elastic properties of unidirectional graphite/epoxy (gr/ep) effect the energy flux deviation due to an applied shear stress. It was found that the quasi-transverse wave (QT) exhibits more flux deviation compared to the quasi-longitudinal (QL) or the pure transverse (PT) due to an applied shear stress. The flux shift in QT wave due to an applied shear stress is higher than that for an applied normal stress along laminate stacking direction for the same magnitude. The QT wave has energy flux deviation due to shear stress at 0o and 90o fiber orientations as compared to normal stress case where the flux deviation is zero. It was found that the energy flux shift of QT wave in gr/ep varies linearly with applied shear stress. The Finite element model of the equations of motion combined with the Newmark method in time was used to confirm the flux shift predicted by theory. / Ph. D.
|
15 |
Spannungsinduzierte Wellenbildung in laserdeponierten Polymer/Metall-Systemen / Stress induced buckling in laser deposited polymer/metal-systemsSchlenkrich, Susanne 10 June 2014 (has links)
Polymer/Metall-Schichtsysteme mit Ausmaßen auf der Nanometer-Skala repräsentieren eine wichtige Materialklasse, welche für Untersuchungen von Grenzflächen- und Größeneffekten eine besondere Rolle spielen. Interessanterweise beobachtet man bei der Herstellung von Polymer/Metall-Systemen mit der gepulsten Laserdeposition spannungsinduzierte Wellenbildung in den Metallschichten, wenn diese auf einem Polymer mit einem niedrigen Elastizitätsmodul deponiert werden. Die Druckspannungen in den Metallschichten lassen sich aufgrund der hohen kinetischen Energien der deponierten Teilchen (100 eV) erklären. Die Biegebalkentheorie beschreibt dabei den Zusammenhang zwischen der ausgebildeten Wellenlänge und den Eigenschaften der beiden Komponenten. Aufgrund dieses Verständnisses ist es möglich, die gemessene Wellenlänge als Messmethode zur Bestimmung der mechanischen Eigenschaften der beiden Komponenten zu verwenden. Des Weiteren kann die Wellenlänge ganz gezielt durch Variation der Schichtdicke beider Komponenten eingestellt werden. Durch eine Steigerung des Elastizitätsmoduls der Polymerschicht ist es möglich, glatte Metallschichten ohne Wellenbildung herzustellen. Auf diese Weise lassen sich auch glatte, periodische Polymer/Metall-Schichtsysteme mit der gepulsten Laserdeposition herstellen, welche viele Möglichkeiten bieten sowohl für wissenschaftliche Fragestellungen als auch für Anwendungen.
|
16 |
Chronically Elevated Corticosterone Levels, via Cocoa Butter Injections of Corticosterone, Do Not Affect Stress Response, Immune Function, and Body Condition in Free-living Painted Turtles (Chrysemys picta)Juneau, Véronique January 2014 (has links)
Chronic stress can result in elevated circulating levels of glucocorticoid hormones in vertebrates, which can affect their stress response, their immune function, and eventually their fitness. I tested the effect of chronic corticosterone (CORT) elevation on the acute stress responsiveness, immune function, and body condition of free-living painted turtles (Chrysemys picta) in Gatineau Park, using slow-release exogenous CORT administration. While Silastic implants did not predictably elevate circulating CORT concentrations in painted turtles, injections of CORT-laden cocoa butter kept circulating levels elevated for up to 3 weeks, to concentrations likely physiologically and ecologically relevant for the species. I measured the acute CORT stress response, parasitaemia, heterophil-to-lymphocyte ratios, and total leukocyte counts after 1 week and 3 weeks, and determined body condition after 1 week, 3 weeks, and 1 year. Compared to sham and control turtles, I observed no effect of treatment on these hormonal, immune, and body condition metrics of stress, possibly because CORT mediates resource allocation only in the presence of additional immune or energy challenges, because of the masking effect of extrinsic factors, or because free, not total, CORT appears to be biologically active.
|
17 |
Mechanoluminescent and Phosphorescent Paint Systems for Automotive and Naval ApplicationsKrishnan, Srivatsava 02 September 2015 (has links)
No description available.
|
18 |
Bimodal Gate Oxide Breakdown in Sub-100 nm CMOS TechnologyRezaee, Leila 08 December 2008 (has links)
In the last three decades, the electronic industry has registered a tremendous progress. The continuous and aggressive downsizing of the transistor feature sizes (CMOS scaling) has been the main driver of the astonishing growth and advancement of microelectronic industry. Currently, the CMOS scaling is almost reaching its limits. The gate oxide is now only a few atomic layers thick, and this extremely thin oxide causes a huge leakage current through the oxide. Therefore, a further reduction of the gate oxide thickness is extremely difficult and new materials with higher dielectric constant are being explored. However, the phenomena of oxide breakdown and reliability are still serious issues in these thin oxides. Oxide breakdown exhibits a soft breakdown behavior at low voltages, and this is posing as one of the most crucial reliability issues for scaling of the ultra-thin oxides. In addition, the stress-induced leakage current (SILC) due to oxide has emerged as a scaling problem for the non-volatile memory technologies.
In this dissertation, a percolation modeling approach is introduced to study and understand the dramatic changes in the conductivity of a disordered medium. Two different simulation methods of percolative conduction, the site and bond percolation, are studied here. These are used in simulating the post-breakdown conduction inside the oxide. Adopting a Monte-Carlo method, oxide breakdown is modeled using a 2-D percolation theory. The breakdown statistics and post-breakdown characteristics of the oxide are computed using this model. In this work, the effects of different physical parameters, such as dimension and the applied stress are studied. The simulation results show that a thinning of oxide layer and increasing the oxide area result in softening of breakdown. It is observed that the breakdown statistics appear to follow Weibull characteristics. As revealed by simulations, the Weibull slope changes linearly with oxide thickness, while not having a significant change when the area is varied and when the amount of the applied stress is varied. It is shown that the simulation results are well correlated with the experimental data reported in the literature.
In this thesis, studying the conduction through the oxide using percolation model, it was discovered that a critical or a quasi-critical phenomenon occurs depending on the oxide dimensions. The criticality of the phase-transition results in a hard breakdown while the soft breakdown occurs due to a quasi-critical nature of percolation for ultra-thin oxides.
In the later part of the thesis, a quantum percolation model is studied in order to explain and model the stress induced leakage current. It is explained that due to the wave nature of electrons, the SILC can be modeled as a tunneling path through the stressed oxide with the smaller tunneling threshold compared to the virgin oxide.
In addition to the percolation model, a Markov chain theory is introduced to simulate the movement of electron as a random walk inside the oxide, and the breakdown is simulated using this random-walk of electron through the accumulated traps inside the oxide. It is shown that the trapping-detrapping of electrons results in an electrical noise in the post-breakdown current having 1/f noise characteristics. Using simulation of a resistor network with Markov theory, the conductance of the oxide is computed.
An analytical study of a 2-D site percolation system is conducted using recursive methods and useful closed-form expressions are derived for specialized networks.
|
19 |
Bimodal Gate Oxide Breakdown in Sub-100 nm CMOS TechnologyRezaee, Leila 08 December 2008 (has links)
In the last three decades, the electronic industry has registered a tremendous progress. The continuous and aggressive downsizing of the transistor feature sizes (CMOS scaling) has been the main driver of the astonishing growth and advancement of microelectronic industry. Currently, the CMOS scaling is almost reaching its limits. The gate oxide is now only a few atomic layers thick, and this extremely thin oxide causes a huge leakage current through the oxide. Therefore, a further reduction of the gate oxide thickness is extremely difficult and new materials with higher dielectric constant are being explored. However, the phenomena of oxide breakdown and reliability are still serious issues in these thin oxides. Oxide breakdown exhibits a soft breakdown behavior at low voltages, and this is posing as one of the most crucial reliability issues for scaling of the ultra-thin oxides. In addition, the stress-induced leakage current (SILC) due to oxide has emerged as a scaling problem for the non-volatile memory technologies.
In this dissertation, a percolation modeling approach is introduced to study and understand the dramatic changes in the conductivity of a disordered medium. Two different simulation methods of percolative conduction, the site and bond percolation, are studied here. These are used in simulating the post-breakdown conduction inside the oxide. Adopting a Monte-Carlo method, oxide breakdown is modeled using a 2-D percolation theory. The breakdown statistics and post-breakdown characteristics of the oxide are computed using this model. In this work, the effects of different physical parameters, such as dimension and the applied stress are studied. The simulation results show that a thinning of oxide layer and increasing the oxide area result in softening of breakdown. It is observed that the breakdown statistics appear to follow Weibull characteristics. As revealed by simulations, the Weibull slope changes linearly with oxide thickness, while not having a significant change when the area is varied and when the amount of the applied stress is varied. It is shown that the simulation results are well correlated with the experimental data reported in the literature.
In this thesis, studying the conduction through the oxide using percolation model, it was discovered that a critical or a quasi-critical phenomenon occurs depending on the oxide dimensions. The criticality of the phase-transition results in a hard breakdown while the soft breakdown occurs due to a quasi-critical nature of percolation for ultra-thin oxides.
In the later part of the thesis, a quantum percolation model is studied in order to explain and model the stress induced leakage current. It is explained that due to the wave nature of electrons, the SILC can be modeled as a tunneling path through the stressed oxide with the smaller tunneling threshold compared to the virgin oxide.
In addition to the percolation model, a Markov chain theory is introduced to simulate the movement of electron as a random walk inside the oxide, and the breakdown is simulated using this random-walk of electron through the accumulated traps inside the oxide. It is shown that the trapping-detrapping of electrons results in an electrical noise in the post-breakdown current having 1/f noise characteristics. Using simulation of a resistor network with Markov theory, the conductance of the oxide is computed.
An analytical study of a 2-D site percolation system is conducted using recursive methods and useful closed-form expressions are derived for specialized networks.
|
20 |
System-level modeling and reliability analysis of microprocessor systemsChen, Chang-Chih 12 January 2015 (has links)
Frontend and backend wearout mechanisms are major reliability concerns for modern microprocessors. In this research, a framework which contains modules for negative bias temperature instability (NBTI), positive bias temperature instability (PBTI), hot carrier injection (HCI), gate-oxide breakdown (GOBD), backend time-dependent dielectric breakdown (BTDDB), electromigration (EM), and stress-induced voiding (SIV) is proposed to analyze the impact of each wearout mechanism on state-of-art microprocessors and to accurately estimate microprocessor lifetimes due to each wearout mechanism. Taking into account the detailed thermal profiles, electrical stress profiles and a variety of use scenarios, composed of a fraction of time in operation, a fraction of time in standby, and a fraction of time when the system is off, this work provides insight into lifetime-limiting wearout mechanisms, along with the reliability-critical microprocessor functional units for a system. This enables circuit designers to know if their designs will achieve an adequate lifetime and further make any updates in the designs to enhance reliability prior to committing the designs to manufacture.
|
Page generated in 0.0553 seconds