Spelling suggestions: "subject:"streutheorie"" "subject:"stresstheorie""
11 |
Quantitative off-axis Electron Holography and (multi-)ferroic interfacesLubk, Axel 27 May 2010 (has links) (PDF)
A particularly interesting class of modern materials is ferroic ceramics. Their characteristic order parameter is a result of quantum chemistry taking place on a sub-Å length scale and long-range couplings, e.g. mediated by electrostatic or stress fields. Furthermore, the particular subclass of multiferroics possesses more than one order parameter and exhibits an intriguing coupling between them, which is interesting both from the fundamental physics point of view as well as from a technological vantage point. While on a more fundamental level it is desirable to elucidate the physical details of the coupling mechanism, this knowledge could subsequently lead to new and technologically interesting multiferroic materials, which overcome their current drawback that only one of the multiple order parameters is appreciably large while the others stay small. Due to the short and long range nature of the driving forces, one challenge for thoroughly understanding ferroic ceramics is the characterization of material properties within a large interval of length scales from several tens of µm to sub-Å. To that end, it is useful to exploit that all order parameters can be described as macroscopic fields, e.g. electric polarization or strain, which, in turn, can be either directly or indirectly probed with an electron beam such as used in Transmission Electron Microscopy (TEM). Consequently, TEM is excellently suited for investigating ferroic materials, i.e., state-of-the-art instruments facilitate aberration corrected imaging within a large magnification interval covering the length scales of interest, in particular the atomic regime. A general drawback of conventional TEM techniques is the loss of phase information originally contained in the scattered electron wave introduced by recording only the electron density. Electron Holography is an advanced TEM technique that facilitates the complete evaluation of the complex electron wave, which, in combination with the manifold possibilities of TEM, provides rather straightforward access to static electromagnetic fields within the ceramic. Nevertheless, quantification of order parameters such as the electric polarization or minute details in electromagnetic fields still require to correlate the experimentally gained observations to physical models, which combine the details of the microscopic imaging process, the electron-specimen scattering, and solid state physics of the specimen. The goal of this work is to investigate and advance the limits of Electron Holography as a truly quantitative TEM technique and apply the findings in, e.g., the investigation of ferroic ceramics. In the light of the previously mentioned difficulties, the problem has to be tackled from different directions:
Firstly, the whole holographic imaging process is reviewed and extended, if necessary, in order to provide quantitative measures for systematic and statistical errors inherent to reconstructed waves. In the course of that process, two previously not recognized holography-specific aberrations are identified, firstly, a resolution limiting spatial envelope and secondly, a spatial distortion to the reconstructed wave. Furthermore, several correction strategies have been developed, in order to correct the aforementioned two and other well-known disturbances, e.g. Fresnel fringes from the biprism filament. The previous holographic noise model has been extended to incorporate the important contribution from the detector and consequently to provide realistic statistic error bars of the holographically reconstructed amplitude and phase.
Secondly, an investigation of the electron-specimen scattering process itself is conducted, leading to a density matrix description of the holographic measurement. The general laws of quantum electrodynamics provide the framework of that description. Relativistic phenomena such as retardation of electromagnetic fields exchanged between beam electron and specimen and spin-orbit coupling of the beam electron are quantified, where the latter is found to be negligible within TEM. The decoherence of the electron wave by statistical coupling to the thermally moving crystal lattice of ceramics is treated by a newly developed algorithm facilitating in particular the accurate quantification of elastic scattering on heavy elements. Inelastic excitations in the ceramic, e.g. bulk plasmons or core electrons, are treated in combination with elastic scattering to identify their role in the holographic reconstruction process and to develop methods for an accurate calculation. A new scattering algorithm combining elastic and inelastic scattering is developed and applied to predict peculiar scattering contrasts of dipole transitions and to discuss the long-standing problem of contrast mismatch between scattering simulations and conventional imaging. To provide a user-friendly and continuing use of the findings, a software package SEMI (Simulation of Electron Microscopy Imaging) has been written, which facilitates the simulation of elastic and inelastic scattering processes and the subsequent imaging within different approximations, incorporating the newly developed algorithms.
Thirdly, Density Function Theory (DFT) solid state calculations have been employed to identify and quantify structural modifications and characteristic electromagnetic fields, such as occurring at domain boundaries, within typical ferroic ceramics like BaTiO3 or BiFeO3, and concomitantly provide models correlating observables of the (holographic) experiment to characteristics of the materials, e.g. the order parameters. This is particularly important when static electromagnetic fields provide no direct information about the order parameter, e.g. the electric polarization, i.e., it is possible to correlate the measurable atomic positions to the electric polarization within linear response theory. A software package ATA (AuTomated Atomic contrast fitting) has been developed facilitating an automated fitting of atomic positions and a subsequent determination of local polarization.
In a fourth step, electron holographic experiments analyzed with the help of the revised imaging process in combination with the knowledge gained from scattering theory are used as an input to the models established from solid state physics to yield quantitative information about bulk ferroelectric materials such as BaTiO3 and PbTiO3 and more complicated configurations such as domain walls in BiFeO3 and KnbO3. It is found that particular atomic shifts characteristic for ferroelectrics provide the most reliable quantitative information about the polarization down to nm length scales, whereas minute wave modification due to characteristic electron distributions within the ceramic are currently insufficiently quantitatively interpretable within Electron Holography. The linear response program, correlating atomic positions to ferroelectric polarization with the help of ab-initio calculated Born effective charges, has been successfully applied to determine finite size effects, screening layer widths and polarization charges in non-ferroelectric/ferroelectric layered systems.
Finally, a special section considers the evaluation of 3D electromagnetic fields by Electron Holographic Tomography, which provides the means to characterize even more complex 3D domain wall configurations. As the capabilities of the technique are still limited by holographic reconstruction errors and particular tomographic issues such as incomplete projection data, the main focus of that section is put on the characterization and improvement of the tomographic reconstruction process. A Singular Value based reconstruction method is developed, which facilitates a quantification and control of the tomographic reconstruction error. Furthermore, vector field reconstruction is extended in order to treat magnetic vector fields leaking out from the reconstruction volume. / Ferroische Keramiken bilden eine besonders interessante Klasse moderner funktionaler Werkstoffe. Ihr charakteristischer Ordnungsparameter ist das Ergebnis quantenchemischer Prozesse innerhalb einer sub- Å Längenskala und spezifischer langreichweitiger Kopplungen, welche beispielsweise durch elektromagnetische oder Spannungsfelder vermittelt werden. Des Weiteren besitzt die besondere Unterklasse der Multiferroika mehr als einen Ordnungsparameter und zeigt eine faszinierende Kopplung zwischen ihnen, was sowohl vom Standpunkt physikalischer Grundlagenforschung als auch aus technologischer Sicht von Interesse ist. Während es vom fundamentalen Standpunkt erstrebenswert ist, die physikalischen Details des Kopplungsmechanismus aufzuklären, könnte in der Folge dieses Wissen zu neuen und technologisch interessanten multiferroischen Materialien führen, welche den derzeit bestehenden Nachteil, dass nur ein Ordnungsparameter genügend groß ist, während die jeweils anderen klein bleiben, hinter sich lassen. Aufgrund der kurz- und langreichweitigen Natur der Antriebskräfte besteht eine Herausforderung für das umfassende Verständnis ferroischer Keramiken aus der Charakterisierung von Materialeigenschaften innerhalb eines breiten Intervalls von Längenskalen, welches von einigen 10 µm bis unterhalb eines Å reicht. Um dieses Ziel zu erreichen ist es zweckmäßig auszunutzen, dass alle Ordnungsparameter als makroskopische, beispielsweise elektrostatische oder Verzerrungs-, Felder beschrieben werden können, welche wiederum direkt oder indirekt mit einem Elektronenstrahl, wie er im Transmissionselektronenmikrokop (TEM) zur Anwendung kommt, gemessen werden können. Folglich ist die Transmissionselektronenmikroskopie hervorragend geeignet um ferroische Materialien zu untersuchen, das heißt, modernste Geräte ermöglichen aberrationskorrigierte Aufnahmen innerhalb eines großen Vergrößerungsbereiches, welche die interessanten Längenskalen und insbesondere den atomaren Bereich abdecken. Ein allgemeiner Nachteil der konventionellen TEM Techniken ist der Verlust der Phaseninformationen, welche ursprünglich in der Elektronenwelle vorhanden sind und durch die Aufzeichnung der Elektronenintensität zerstört werden. Elektronenholographie ist eine weiterentwickelte TEM Technik, welche die vollständige Auswertung der komplexen Elektronenwelle ermöglicht, was wiederum in Verbindung mit den vielfältigen Möglichkeiten der TEM einen vergleichsweise direkten Zugang zu elektromagnetischen Feldern in der Keramik ermöglicht. Nichtsdestotrotz erfordert die Quantifizierung von Ordnungsparametern, wie der elektrische Polarisierung, oder von kleinsten Details elektromagnetischer Felder die Korrelation experimenteller Daten mit physikalischen Modellen, welche die Details des mikroskopischen Bildgebungsprozesses mit der Elektronen-Objekt Streuung und der Festkörperphysik des Objektes kombinieren. Das Ziel dieser Arbeit besteht aus der Untersuchung und Erweiterung der Möglichkeiten von Elektronenholographie als quantitative TEM Messmethode und der Anwendung dieser Ergebnisse bei der Untersuchung ferroischer Keramiken. Im Lichte der eben erwähnten Schwierigkeiten muss das Problem von verschiedenen Richtungen bearbeitet werden:
Erstens wird der komplette holographische Bildgebungsprozess mit dem Ziel einer quantitativen Bewertung systematischer und statistischer Fehler der rekonstruierten Welle analysiert und gegebenenfalls erweitert. Im diesem Zuge wurden zwei bisher nicht erkannte holographiespezifische Fehler identifiziert, erstens eine auflösungsbegrenzende räumliche Enveloppe und zweitens eine räumliche Verzerrung der rekonstruierten Welle. Außerdem wurden verschiedene Korrekturmöglichkeiten entwickelt, um die zwei eben genannten und andere wohlbekannte Störungen, wie zum Beispiel die Fresnelstreifen des Biprismafadens, zu korrigieren. Das bisherige holographische Rauschmodel wurde erweitert um den beträchtlichen Einfluss des Detektors zu berücksichtigen und damit realistische Fehlerbalken für die holographisch rekonstruierte Amplitude und Phase zu erhalten.
Zum Zweiten wird der Streuprozess selber untersucht, was zu einer Dichtematrixbeschreibung der holographischen Messung führt. Den Rahmen dieser Untersuchungen liefern die Gesetze der Quantenelektrodynamik. Relativistische Phänomene wie die Retardierung elektromagnetischer Felder, welche zwischen Strahlelektron und Objekt ausgetauscht werden, oder Spin-Bahn Kopplung des Strahlelektrons werden quantifiziert, wobei letzteres als unwichtig für TEM eingestuft werden konnte. Die Dekohärenz der Elektronenwelle durch die statistische Kopplung an das thermisch bewegte Kristallgitter der Keramik wird mit einem neu entwickelten Algorithmus beschrieben, welcher insbesondere die genaue Quantifizierung der elastischen Streuung an schweren Elementen erlaubt. Ein weiterer neuer Streualgorithmus, welcher elastische und inelastische Streuung kombiniert, wird entwickelt und angewendet, um spezifische Streukontraste von Dipolübergängen vorauszusagen und das altbekannte Problem der Kontrastdiskrepanz zwischen simulierten und experimentellen Bildkontrasten zu diskutieren. Um eine anwenderfreundliche und fortdauernde Anwendung der Erkenntnisse zu ermöglichen, wurde das Softwarepaket SEMI geschrieben, welches die Simulation elastischer und inelastischer Streuprozesse und des nachfolgenden Bildgebungsprozesses innerhalb verschiedener Näherungen ermöglicht und die neu entwickelten Algorithmen beinhaltet.
Zum Dritten kommen dichtefunktionalbasierte Festkörperrechenmethoden zur Anwendung um charakteristische elektromagnetische Felder, wie sie beispielsweise an Domänengrenzen entstehen, innerhalb typischer ferroischer Keramiken wie BaTiO3 oder BiFeO3 zu identifizieren und zu quantifizieren und gleichzeitig Modelle zu entwickeln, welche Observablen des (holographischen) Experiments mit Charakteristika des Materials, beispielsweise den Ordnungsparamtern, korrelieren. Dies ist besonders wichtig, wenn statische elektromagnetische Felder keinen direkten Zugang zu den Ordnungsparametern, wie zum Beispiel die ferroelektrische Polarisation, liefern; beispielsweise besteht innerhalb linearer Antworttheorie die Möglichkeit, atomare Positionen mit der elektrischen Polarisation zu korrelieren. Ein Softwarepaket wurde entwickelt, welches die automatische Bestimmung der Atompositionen und der daraus resultierenden lokalen Polarisation ermöglicht.
In einem vierten Schritt wurden mit Hilfe des überarbeiteten holographischen Bildgebungsprozesses in Kombination mit den aus der Streutheorie gewonnenen Erkenntnissen holographische Experimente analysiert und als Input für die mit Hilfe der Festkörpertheorie entwickelten Modelle genutzt, um quantitative Informationen über raumferroische Materialien wie BaTiO3 und PbTiO3 und kompliziertere Anordnungen wie Domänengrenzen in BiFeO3 und KnbO3 zu gewinnen. Es konnte festgestellt werden, dass spezifische atomare Verschiebungen, welche charakteristisch für Ferroelektrika sind, die zuverlässigste quantitative Information über die Polarisation bis in den Längenbereich einiger nm liefern, wogegen kleinste Wellenmodifikationen aufgrund charakteristischer Elektronenverteilungen innerhalb der Keramik mit Hilfe von Elektronenholographie nur unzureichend interpretierbar sind. Das lineare Antwortprogramm, welches die Atompositionen über Bornsche effektive Ladungen mit ferroelektrischer Polarisation korreliert, wurde erfolgreich angewendet, um Größeneffekte und Ausdehnungen von Abschirmschichten und Polarisationladungen in nichtferroelektrisch/ferroelektrischen Schichtsystemen zu bestimmen.
Abschließend widmet sich ein spezieller Abschnitt der Auswertung 3D elektromagnetischer Felder mit Hilfe der elektronenholographischen Tomographie, was die Voraussetzung für die Charakterisierung von noch komplizierteren 3D Domänenwandanordnungen liefert. Da die Möglichkeiten dieser Technik durch den holographischen Rekonstruktionsfehler und spezifisch tomographische Probleme noch beschränkt sind, liegt der Schwerpunkt dieses Abschnitts in der Charakterisierung und Verbesserung des tomographischen Rekonstruktionsprozesses. Es wird eine singulärwertbasierte Rekonstruktionsmethode entwickelt, welche die Quantifizierung und Kontrolle des Rekonstruktionsfehlers ermöglicht. Außerdem wird die Vektorfeldrekonstruktion erweitert, um magnetische Vektorfelder, welche über das Rekonstruktionsvolumen hinausragen, zu behandeln.
|
12 |
Scattering properties of ultra-cold chromium atomsSchmidt, Piet O. January 2003 (has links) (PDF)
Stuttgart, Univ., Diss., 2003.
|
13 |
Erhöhte Laserabsorption in ausgedehnten ClustermedienKanapathipillai, Murukesapillai. Unknown Date (has links)
Techn. Universiẗat, Diss., 2003--Darmstadt.
|
14 |
Klassische und Quantendynamik periodisch getriebener, chaotischer StreusystemeHenseler, Michael 23 July 1999 (has links)
No description available.
|
15 |
Asymptotic properties of solutions to wave equations with time-dependent dissipationWirth, Jens 13 April 2005 (has links)
Gegenstand der Dissertation ist die Untersuchung der asymptotischen Eigenschaften von Lösungen des Cauchy-Problems für eine Wellengleichung mit zeitabhängiger Dämpfung $b=b(t)$ und das Wechselspiel zwischen dem Verhalten des Koeffizienten $b(t)ge0$ und sich ergebenden Abschätzungen der Energie auf der Basis von $L^q$, $qge2$. Dabei stellt sich heraus, dass zwischen zwei Szenarien, dem der nicht-effektiven und dem der effektiven Dämpfung zu unterscheiden ist. In beiden Fällen werden die Hauptterme der Lösungsdarstellung konstruiert und davon ausgehend erstmalig $L^p$--$L^q$ Abschätzung für die Lösung und ihre Ableitungen angegeben. Ebenso wird die Schärfe der Abschätzungen diskutiert und in Form einer modifizierten Scattering-Theorie beziehungsweise des Diffusionsphänomens konkretisiert.
|
16 |
Quantitative off-axis Electron Holography and (multi-)ferroic interfacesLubk, Axel 07 May 2010 (has links)
A particularly interesting class of modern materials is ferroic ceramics. Their characteristic order parameter is a result of quantum chemistry taking place on a sub-Å length scale and long-range couplings, e.g. mediated by electrostatic or stress fields. Furthermore, the particular subclass of multiferroics possesses more than one order parameter and exhibits an intriguing coupling between them, which is interesting both from the fundamental physics point of view as well as from a technological vantage point. While on a more fundamental level it is desirable to elucidate the physical details of the coupling mechanism, this knowledge could subsequently lead to new and technologically interesting multiferroic materials, which overcome their current drawback that only one of the multiple order parameters is appreciably large while the others stay small. Due to the short and long range nature of the driving forces, one challenge for thoroughly understanding ferroic ceramics is the characterization of material properties within a large interval of length scales from several tens of µm to sub-Å. To that end, it is useful to exploit that all order parameters can be described as macroscopic fields, e.g. electric polarization or strain, which, in turn, can be either directly or indirectly probed with an electron beam such as used in Transmission Electron Microscopy (TEM). Consequently, TEM is excellently suited for investigating ferroic materials, i.e., state-of-the-art instruments facilitate aberration corrected imaging within a large magnification interval covering the length scales of interest, in particular the atomic regime. A general drawback of conventional TEM techniques is the loss of phase information originally contained in the scattered electron wave introduced by recording only the electron density. Electron Holography is an advanced TEM technique that facilitates the complete evaluation of the complex electron wave, which, in combination with the manifold possibilities of TEM, provides rather straightforward access to static electromagnetic fields within the ceramic. Nevertheless, quantification of order parameters such as the electric polarization or minute details in electromagnetic fields still require to correlate the experimentally gained observations to physical models, which combine the details of the microscopic imaging process, the electron-specimen scattering, and solid state physics of the specimen. The goal of this work is to investigate and advance the limits of Electron Holography as a truly quantitative TEM technique and apply the findings in, e.g., the investigation of ferroic ceramics. In the light of the previously mentioned difficulties, the problem has to be tackled from different directions:
Firstly, the whole holographic imaging process is reviewed and extended, if necessary, in order to provide quantitative measures for systematic and statistical errors inherent to reconstructed waves. In the course of that process, two previously not recognized holography-specific aberrations are identified, firstly, a resolution limiting spatial envelope and secondly, a spatial distortion to the reconstructed wave. Furthermore, several correction strategies have been developed, in order to correct the aforementioned two and other well-known disturbances, e.g. Fresnel fringes from the biprism filament. The previous holographic noise model has been extended to incorporate the important contribution from the detector and consequently to provide realistic statistic error bars of the holographically reconstructed amplitude and phase.
Secondly, an investigation of the electron-specimen scattering process itself is conducted, leading to a density matrix description of the holographic measurement. The general laws of quantum electrodynamics provide the framework of that description. Relativistic phenomena such as retardation of electromagnetic fields exchanged between beam electron and specimen and spin-orbit coupling of the beam electron are quantified, where the latter is found to be negligible within TEM. The decoherence of the electron wave by statistical coupling to the thermally moving crystal lattice of ceramics is treated by a newly developed algorithm facilitating in particular the accurate quantification of elastic scattering on heavy elements. Inelastic excitations in the ceramic, e.g. bulk plasmons or core electrons, are treated in combination with elastic scattering to identify their role in the holographic reconstruction process and to develop methods for an accurate calculation. A new scattering algorithm combining elastic and inelastic scattering is developed and applied to predict peculiar scattering contrasts of dipole transitions and to discuss the long-standing problem of contrast mismatch between scattering simulations and conventional imaging. To provide a user-friendly and continuing use of the findings, a software package SEMI (Simulation of Electron Microscopy Imaging) has been written, which facilitates the simulation of elastic and inelastic scattering processes and the subsequent imaging within different approximations, incorporating the newly developed algorithms.
Thirdly, Density Function Theory (DFT) solid state calculations have been employed to identify and quantify structural modifications and characteristic electromagnetic fields, such as occurring at domain boundaries, within typical ferroic ceramics like BaTiO3 or BiFeO3, and concomitantly provide models correlating observables of the (holographic) experiment to characteristics of the materials, e.g. the order parameters. This is particularly important when static electromagnetic fields provide no direct information about the order parameter, e.g. the electric polarization, i.e., it is possible to correlate the measurable atomic positions to the electric polarization within linear response theory. A software package ATA (AuTomated Atomic contrast fitting) has been developed facilitating an automated fitting of atomic positions and a subsequent determination of local polarization.
In a fourth step, electron holographic experiments analyzed with the help of the revised imaging process in combination with the knowledge gained from scattering theory are used as an input to the models established from solid state physics to yield quantitative information about bulk ferroelectric materials such as BaTiO3 and PbTiO3 and more complicated configurations such as domain walls in BiFeO3 and KnbO3. It is found that particular atomic shifts characteristic for ferroelectrics provide the most reliable quantitative information about the polarization down to nm length scales, whereas minute wave modification due to characteristic electron distributions within the ceramic are currently insufficiently quantitatively interpretable within Electron Holography. The linear response program, correlating atomic positions to ferroelectric polarization with the help of ab-initio calculated Born effective charges, has been successfully applied to determine finite size effects, screening layer widths and polarization charges in non-ferroelectric/ferroelectric layered systems.
Finally, a special section considers the evaluation of 3D electromagnetic fields by Electron Holographic Tomography, which provides the means to characterize even more complex 3D domain wall configurations. As the capabilities of the technique are still limited by holographic reconstruction errors and particular tomographic issues such as incomplete projection data, the main focus of that section is put on the characterization and improvement of the tomographic reconstruction process. A Singular Value based reconstruction method is developed, which facilitates a quantification and control of the tomographic reconstruction error. Furthermore, vector field reconstruction is extended in order to treat magnetic vector fields leaking out from the reconstruction volume. / Ferroische Keramiken bilden eine besonders interessante Klasse moderner funktionaler Werkstoffe. Ihr charakteristischer Ordnungsparameter ist das Ergebnis quantenchemischer Prozesse innerhalb einer sub- Å Längenskala und spezifischer langreichweitiger Kopplungen, welche beispielsweise durch elektromagnetische oder Spannungsfelder vermittelt werden. Des Weiteren besitzt die besondere Unterklasse der Multiferroika mehr als einen Ordnungsparameter und zeigt eine faszinierende Kopplung zwischen ihnen, was sowohl vom Standpunkt physikalischer Grundlagenforschung als auch aus technologischer Sicht von Interesse ist. Während es vom fundamentalen Standpunkt erstrebenswert ist, die physikalischen Details des Kopplungsmechanismus aufzuklären, könnte in der Folge dieses Wissen zu neuen und technologisch interessanten multiferroischen Materialien führen, welche den derzeit bestehenden Nachteil, dass nur ein Ordnungsparameter genügend groß ist, während die jeweils anderen klein bleiben, hinter sich lassen. Aufgrund der kurz- und langreichweitigen Natur der Antriebskräfte besteht eine Herausforderung für das umfassende Verständnis ferroischer Keramiken aus der Charakterisierung von Materialeigenschaften innerhalb eines breiten Intervalls von Längenskalen, welches von einigen 10 µm bis unterhalb eines Å reicht. Um dieses Ziel zu erreichen ist es zweckmäßig auszunutzen, dass alle Ordnungsparameter als makroskopische, beispielsweise elektrostatische oder Verzerrungs-, Felder beschrieben werden können, welche wiederum direkt oder indirekt mit einem Elektronenstrahl, wie er im Transmissionselektronenmikrokop (TEM) zur Anwendung kommt, gemessen werden können. Folglich ist die Transmissionselektronenmikroskopie hervorragend geeignet um ferroische Materialien zu untersuchen, das heißt, modernste Geräte ermöglichen aberrationskorrigierte Aufnahmen innerhalb eines großen Vergrößerungsbereiches, welche die interessanten Längenskalen und insbesondere den atomaren Bereich abdecken. Ein allgemeiner Nachteil der konventionellen TEM Techniken ist der Verlust der Phaseninformationen, welche ursprünglich in der Elektronenwelle vorhanden sind und durch die Aufzeichnung der Elektronenintensität zerstört werden. Elektronenholographie ist eine weiterentwickelte TEM Technik, welche die vollständige Auswertung der komplexen Elektronenwelle ermöglicht, was wiederum in Verbindung mit den vielfältigen Möglichkeiten der TEM einen vergleichsweise direkten Zugang zu elektromagnetischen Feldern in der Keramik ermöglicht. Nichtsdestotrotz erfordert die Quantifizierung von Ordnungsparametern, wie der elektrische Polarisierung, oder von kleinsten Details elektromagnetischer Felder die Korrelation experimenteller Daten mit physikalischen Modellen, welche die Details des mikroskopischen Bildgebungsprozesses mit der Elektronen-Objekt Streuung und der Festkörperphysik des Objektes kombinieren. Das Ziel dieser Arbeit besteht aus der Untersuchung und Erweiterung der Möglichkeiten von Elektronenholographie als quantitative TEM Messmethode und der Anwendung dieser Ergebnisse bei der Untersuchung ferroischer Keramiken. Im Lichte der eben erwähnten Schwierigkeiten muss das Problem von verschiedenen Richtungen bearbeitet werden:
Erstens wird der komplette holographische Bildgebungsprozess mit dem Ziel einer quantitativen Bewertung systematischer und statistischer Fehler der rekonstruierten Welle analysiert und gegebenenfalls erweitert. Im diesem Zuge wurden zwei bisher nicht erkannte holographiespezifische Fehler identifiziert, erstens eine auflösungsbegrenzende räumliche Enveloppe und zweitens eine räumliche Verzerrung der rekonstruierten Welle. Außerdem wurden verschiedene Korrekturmöglichkeiten entwickelt, um die zwei eben genannten und andere wohlbekannte Störungen, wie zum Beispiel die Fresnelstreifen des Biprismafadens, zu korrigieren. Das bisherige holographische Rauschmodel wurde erweitert um den beträchtlichen Einfluss des Detektors zu berücksichtigen und damit realistische Fehlerbalken für die holographisch rekonstruierte Amplitude und Phase zu erhalten.
Zum Zweiten wird der Streuprozess selber untersucht, was zu einer Dichtematrixbeschreibung der holographischen Messung führt. Den Rahmen dieser Untersuchungen liefern die Gesetze der Quantenelektrodynamik. Relativistische Phänomene wie die Retardierung elektromagnetischer Felder, welche zwischen Strahlelektron und Objekt ausgetauscht werden, oder Spin-Bahn Kopplung des Strahlelektrons werden quantifiziert, wobei letzteres als unwichtig für TEM eingestuft werden konnte. Die Dekohärenz der Elektronenwelle durch die statistische Kopplung an das thermisch bewegte Kristallgitter der Keramik wird mit einem neu entwickelten Algorithmus beschrieben, welcher insbesondere die genaue Quantifizierung der elastischen Streuung an schweren Elementen erlaubt. Ein weiterer neuer Streualgorithmus, welcher elastische und inelastische Streuung kombiniert, wird entwickelt und angewendet, um spezifische Streukontraste von Dipolübergängen vorauszusagen und das altbekannte Problem der Kontrastdiskrepanz zwischen simulierten und experimentellen Bildkontrasten zu diskutieren. Um eine anwenderfreundliche und fortdauernde Anwendung der Erkenntnisse zu ermöglichen, wurde das Softwarepaket SEMI geschrieben, welches die Simulation elastischer und inelastischer Streuprozesse und des nachfolgenden Bildgebungsprozesses innerhalb verschiedener Näherungen ermöglicht und die neu entwickelten Algorithmen beinhaltet.
Zum Dritten kommen dichtefunktionalbasierte Festkörperrechenmethoden zur Anwendung um charakteristische elektromagnetische Felder, wie sie beispielsweise an Domänengrenzen entstehen, innerhalb typischer ferroischer Keramiken wie BaTiO3 oder BiFeO3 zu identifizieren und zu quantifizieren und gleichzeitig Modelle zu entwickeln, welche Observablen des (holographischen) Experiments mit Charakteristika des Materials, beispielsweise den Ordnungsparamtern, korrelieren. Dies ist besonders wichtig, wenn statische elektromagnetische Felder keinen direkten Zugang zu den Ordnungsparametern, wie zum Beispiel die ferroelektrische Polarisation, liefern; beispielsweise besteht innerhalb linearer Antworttheorie die Möglichkeit, atomare Positionen mit der elektrischen Polarisation zu korrelieren. Ein Softwarepaket wurde entwickelt, welches die automatische Bestimmung der Atompositionen und der daraus resultierenden lokalen Polarisation ermöglicht.
In einem vierten Schritt wurden mit Hilfe des überarbeiteten holographischen Bildgebungsprozesses in Kombination mit den aus der Streutheorie gewonnenen Erkenntnissen holographische Experimente analysiert und als Input für die mit Hilfe der Festkörpertheorie entwickelten Modelle genutzt, um quantitative Informationen über raumferroische Materialien wie BaTiO3 und PbTiO3 und kompliziertere Anordnungen wie Domänengrenzen in BiFeO3 und KnbO3 zu gewinnen. Es konnte festgestellt werden, dass spezifische atomare Verschiebungen, welche charakteristisch für Ferroelektrika sind, die zuverlässigste quantitative Information über die Polarisation bis in den Längenbereich einiger nm liefern, wogegen kleinste Wellenmodifikationen aufgrund charakteristischer Elektronenverteilungen innerhalb der Keramik mit Hilfe von Elektronenholographie nur unzureichend interpretierbar sind. Das lineare Antwortprogramm, welches die Atompositionen über Bornsche effektive Ladungen mit ferroelektrischer Polarisation korreliert, wurde erfolgreich angewendet, um Größeneffekte und Ausdehnungen von Abschirmschichten und Polarisationladungen in nichtferroelektrisch/ferroelektrischen Schichtsystemen zu bestimmen.
Abschließend widmet sich ein spezieller Abschnitt der Auswertung 3D elektromagnetischer Felder mit Hilfe der elektronenholographischen Tomographie, was die Voraussetzung für die Charakterisierung von noch komplizierteren 3D Domänenwandanordnungen liefert. Da die Möglichkeiten dieser Technik durch den holographischen Rekonstruktionsfehler und spezifisch tomographische Probleme noch beschränkt sind, liegt der Schwerpunkt dieses Abschnitts in der Charakterisierung und Verbesserung des tomographischen Rekonstruktionsprozesses. Es wird eine singulärwertbasierte Rekonstruktionsmethode entwickelt, welche die Quantifizierung und Kontrolle des Rekonstruktionsfehlers ermöglicht. Außerdem wird die Vektorfeldrekonstruktion erweitert, um magnetische Vektorfelder, welche über das Rekonstruktionsvolumen hinausragen, zu behandeln.
|
17 |
Stabilisierendes Pseudogap und Streukonzept in nichtkristallinen MaterialienArnold, Robert 12 February 1998 (has links) (PDF)
Aus der Berechnung der elektronischen Leitf¨ahigkeit nach ersten Prinzipien wird
die Forderung nach Strukturmodellen mit geringerer Zustandsdichte an der
Fermikante (Pseudogap) abgeleitet und in einer entsprechenden Molekulardynamik
auf der Grundlage des Streukonzepts realisiert.
Bei der Auswertung der Kubo-Greenwood Formel f¨ur fl¨ussige und amorphe
¨Ubergangsmetalle im Rahmen einer Superzellenmethode wird eine methodisch
bedingte D¨ampfung eingef¨uhrt. Ein Superpositionskonzept f¨ur die methodischen
und intrinsischen Widerstandsbeitr¨age erm¨oglicht eine Separation der
intrinsischen Eigenschaften. Die Linear Muffin-Tin Orbital Methode wird zum
Vergleich herangezogen. Es werden die Restwiderst¨ande der fl¨ussigen
3d-¨Ubergangsmetalle berechnet. Abweichungen vom Experiment deuten auf eine
nicht richtig ber¨ucksichtigte strukturelle Ordnung und auf Spineffekte hin. Das
Modell einer ungeordneten Spinausrichtung in fl¨ussigem Mangan und Eisen zeigt
eine Korrektur in die Richtung des Experiments.
Zur Ber¨ucksichtigung von Mehrk¨orperkr¨aften in ungeordneten Systemen wird ein
Greensfunktionskonzept vorgestellt. Die Grundlage bildet eine Zerlegung der
Bandenergie in der komplexen Energieebene in einen kurzreichweitigen Anteil und
einem mittel- und langreichweitigen Gapenergiebeitrag. Die Gapenergie ist ein
Integral ¨uber das Produkt zwischen Breite und Tiefe aller m¨oglichen Gaps im
System. Die Minimierung der Gapenergie ist Verbunden mit der Ausbildung eines
Minimums in der elektronischen Zustandsdichte bei der Fermikante. Die
¨Anderungen der Gapenergie bei Struktur¨anderung k¨onnen sehr effektiv ¨uber
eine Streupfadoperatordarstellung f¨ur ausgew¨ahlte optimierte komplexe
Energiepunkte berechnet werden. Der Realteil der Energiepunkte ist dabei die
Fermienergie, der Imagin¨arteil korreliert mit der Breite eines effektiven,
mittleren Pseudogaps im System. Bei einer zus¨atzlichen Ber¨ucksichtigung
kurzreichweitiger repulsiver Terme wird eine Molekulardynamik m¨oglich. Es kann
dabei der ¨Ubergang einer fl¨ussigen metallischen Phase zu einer festen,
amorphen Phase mit ausgepr¨agtem Pseudogap simuliert werden.
|
18 |
Stabilisierendes Pseudogap und Streukonzept in nichtkristallinen MaterialienArnold, Robert 30 January 1998 (has links)
Aus der Berechnung der elektronischen Leitf¨ahigkeit nach ersten Prinzipien wird
die Forderung nach Strukturmodellen mit geringerer Zustandsdichte an der
Fermikante (Pseudogap) abgeleitet und in einer entsprechenden Molekulardynamik
auf der Grundlage des Streukonzepts realisiert.
Bei der Auswertung der Kubo-Greenwood Formel f¨ur fl¨ussige und amorphe
¨Ubergangsmetalle im Rahmen einer Superzellenmethode wird eine methodisch
bedingte D¨ampfung eingef¨uhrt. Ein Superpositionskonzept f¨ur die methodischen
und intrinsischen Widerstandsbeitr¨age erm¨oglicht eine Separation der
intrinsischen Eigenschaften. Die Linear Muffin-Tin Orbital Methode wird zum
Vergleich herangezogen. Es werden die Restwiderst¨ande der fl¨ussigen
3d-¨Ubergangsmetalle berechnet. Abweichungen vom Experiment deuten auf eine
nicht richtig ber¨ucksichtigte strukturelle Ordnung und auf Spineffekte hin. Das
Modell einer ungeordneten Spinausrichtung in fl¨ussigem Mangan und Eisen zeigt
eine Korrektur in die Richtung des Experiments.
Zur Ber¨ucksichtigung von Mehrk¨orperkr¨aften in ungeordneten Systemen wird ein
Greensfunktionskonzept vorgestellt. Die Grundlage bildet eine Zerlegung der
Bandenergie in der komplexen Energieebene in einen kurzreichweitigen Anteil und
einem mittel- und langreichweitigen Gapenergiebeitrag. Die Gapenergie ist ein
Integral ¨uber das Produkt zwischen Breite und Tiefe aller m¨oglichen Gaps im
System. Die Minimierung der Gapenergie ist Verbunden mit der Ausbildung eines
Minimums in der elektronischen Zustandsdichte bei der Fermikante. Die
¨Anderungen der Gapenergie bei Struktur¨anderung k¨onnen sehr effektiv ¨uber
eine Streupfadoperatordarstellung f¨ur ausgew¨ahlte optimierte komplexe
Energiepunkte berechnet werden. Der Realteil der Energiepunkte ist dabei die
Fermienergie, der Imagin¨arteil korreliert mit der Breite eines effektiven,
mittleren Pseudogaps im System. Bei einer zus¨atzlichen Ber¨ucksichtigung
kurzreichweitiger repulsiver Terme wird eine Molekulardynamik m¨oglich. Es kann
dabei der ¨Ubergang einer fl¨ussigen metallischen Phase zu einer festen,
amorphen Phase mit ausgepr¨agtem Pseudogap simuliert werden.
|
19 |
Scattering in supersymmetric M(atrix) modelsHelling, Robert 25 July 2000 (has links)
In dieser Arbeit stellen wir verschiedene Tests der (M)atrixtheorie-Vermutung vor. Die (M)atrixtheorievermutung besagt, dass die Dynamik von M-Theorie, der Urtheorie, die alle bekannten Stringtheorien und auch elfdimensionale Supergravitation als bestimmte Grenzfaelle enthalten soll, durch ein quantenmechanisches Matrixmodell gegeben ist. Insbesondere untersuchen wir Streuprozesse sowohl aus Sicht des Matrixmodells, als auch aus Sicht der Supergravitation, und vergleichen die resultierenden S-Matrixelemente. Wir finden beeindruckende Uebereinstimmung zwischen den beiden Theorien, solange wir uns auf klassische Supergravitation beschraenken. Sobald wir auch Quanteneffekte auf der Supergravitationsseite einbeziehen, hat diese Uebereinstimmung keinen Bestand. Des weiteren untersuchen wir die Frage, ob Loesungen der klassischen Matrixmodell-Bewegungsgleichungen mit Impulsuebertrag existieren, und finden eine negative Antwort. / In this thesis, we present several tests of the M(atrix)-Model conjecture that asserts that the dynamics of M-Theory, the eleven-dimensional Ur-theory containing all known string theories and also eleven-dimensional supergravity in specific limits, is given by a quantum mechanical matrix model. In particular, scattering processes are analyzed both from the M(atrix)-Model and from the supergravity perspective and the corresponding S-matrix elements are compared. We find impressive agreement between these two theories as long as only classical supergravity is considered. If one includes also quantum effects on the supergravity side, the agreement does not persist. In addition to these calculations, the question of the existence of classical solutions to the M(atrix)-Model equations of motion with momentum transfer is addressed and answered negatively.
|
20 |
Open Mesoscopic Systems: beyond the Random Matrix Theory / Offene mesoskopische Systeme: über die Zufallsmatrixtheorie hinausOssipov, Alexandre 01 April 2003 (has links)
No description available.
|
Page generated in 0.0531 seconds