• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 44
  • 44
  • 7
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Electron Spectroscopic Study of Indium Nitride Layers

Bhatta, Rudra Prasad 28 March 2008 (has links)
Surface structure, chemical composition, bonding configuration, film polarity, and electronic properties of InN layers grown by high pressure chemical vapor deposition (HPCVD) have been investigated. Sputtering at an angle of 50-70 degrees followed by atomic hydrogen cleaning (AHC) was successful in removing the carbon contaminants. AHC is found to be the most effective cleaning process to remove oxygen contaminants from InN layers in an ultrahigh vacuum (UHV) system and produced a well ordered surface. Auger electron spectroscopy (AES) confirmed the cleanliness of the surface, and low energy electron diffraction (LEED) yielded a 1×1 hexagonal pattern demonstrating a well-ordered surface. High resolution electron energy loss spectra (HREELS) taken from the InN layers exhibited loss features at 550 cm-1, 870 cm-1 and 3260 cm-1 which were assigned to Fuchs-Kliewer phonon, N-H bending, and N-H stretching vibrations, respectively. Assignments were confirmed by observation of isotopic shifts following atomic deuterium dosing. No In-H species were observed indicating N-termination of the surface and N-polarity of the film. Broad conduction band plasmon excitations were observed centered at 3100 cm-1 to 4200 cm-1 in HREEL spectra acquired with 25 eV electrons, for a variety of samples grown with different conditions. Infrared reflectance data shows a consistent result with HREELS for the bulk plasma frequency. The plasmon excitations are shifted about 300 cm-1 higher in HREEL spectra acquired using 7 eV electrons due to the higher plasma frequency and carrier concentration at the surface than in the bulk, demonstrating a surface electron accumulation. Hydrogen completely desorbed from the InN surface upon annealing for 900 s at 425 ºC or upon annealing for 30 s at 500 ºC. Fitting the coverage versus temperature for anneals of either 30 or 900 s indicated that the desorption was best described by second order desorption kinetics with an activation energy and pre-exponential factor of 1.3±0.2 eV and 10-7.3±1.0 cm2/s, respectively. Vibrational spectra acquired from HREEL can be utilized to explain the surface composition, chemical bonding and surface termination, and film polarity of InN layers. The explanation of evidence of surface electron accumulation and extraction of hydrogen desorption kinetic parameters can be performed by utilizing HREEL spectra.
32

SURFACE STRUCTURALLY CONTROLLED SECTORAL ZONING IN FLUORITE: IMPLICATIONS TO UNDERSTANDING HETEROGENEOUS REACTIVITY AT THE MINERAL-WATER INTERFACE

Bosze, Stephanie Lynn 11 October 2001 (has links)
No description available.
33

Uptake of short-chain alcohols by sulfuric acid solutions using raman and vibrational sum frequency spectroscopies, and atmospheric implications

Van Loon, Lisa Lauralene 27 March 2007 (has links)
No description available.
34

Register: 25 Graukarten

Bamberger, Jasper 17 November 2023 (has links)
Beton wird global als Werkstoff eingesetzt, weist als Natur-verwendendetes Material allerdings unterschiedliche regionale Spezifikationen auf. Hier entsteht ein Spannungsfeld zwischen Universalismus und Partikularismus. Die beim Absäuern offengelegten Sandkörner werden zum ortsbezogenen Naturpigment, die diese Ambivalenz sinnlich erfahrbar machen. Die Werkgruppe präsentiert in ihrer Uniformität ein Bild der Gemeinsam- und Verbundenheit. Gleichzeitig erheben die einzelnen Platten Anspruch auf spezifische, in ihrer Körnung auf partikularer Ebene abgebildete Eigenschaften der Diversität und Einzigartigkeit.
35

Vibrational Sum Frequency Spectroscopy Studies at the Air-Liquid Interface

Tyrode, Eric January 2005 (has links)
In this thesis the structure and hydration of small organic and amphipilic compounds adsorbed at the air-liquid interface, have been studied using the nonlinear optical technique Vibrational Sum Frequency Spectroscopy (VSFS). The second order nature of the sum frequency process makes this technique particularly surface sensitive and very suitable for interfacial studies, as molecules at the surface can be distinguished even in the presence of a vast excess of the same molecules in the bulk. Particular emphasis was given to the surface water structure and how it is affected by the presence of small model compounds such as acetic acid and formic acid, and also non-ionic surfactants with sugar based and ethylene oxide based polar headgroups. Understanding the structure of water at these interfaces is of considerable fundamental importance, and here VSFS provided unique information. Upon addition of tiny amounts of these surface active compounds, the ordered surface structure of water was found to be significantly perturbed, as revealed by the changes observed in the characteristic spectroscopic signature of the dangling OH bond of water molecules, which vibrate free in air and are present in the top monolayer. Dramatic differences between the different compounds were also observed in the bonded OH region, providing a valuable insight into the hydration of polar groups at interfaces. Additionally, by employing different polarization combinations of the laser beams involved in the sum frequency process, information about the different water species present at the surface and their average orientation were extracted. In particular an unusual state of water was found with a preferred orientation in a non-donor configuration in close proximity to the hydrophobic region formed by the hydrocarbon tails of the surfactant molecules. The conformation and orientation of the different adsorbates were also characterized, targeting their specific vibrational frequencies. Noteworthy is the orientation of the fluorocarbon chain of ammonium perfluorononanoate (APFN), which in contrast to the hydrocarbon chains of the other surfactant molecules studied, remained constant over a wide range of surface densities. This behaviour was also observed for the anionic headgroup of sodium dodecyl sulphate (SDS). Other interesting findings were the formation of a cyclic dimer bilayer at the surface of concentrated aqueous solutions of acetic acid and the water structuring effect induced by poly(ethylene-oxide) headgroups, in spite of being themselves disordered at the air-liquid interface.
36

Vibrational Sum Frequency Spectroscopy Studies at the Air-Liquid Interface

Tyrode, Eric January 2005 (has links)
<p>In this thesis the structure and hydration of small organic and amphipilic compounds adsorbed at the air-liquid interface, have been studied using the nonlinear optical technique Vibrational Sum Frequency Spectroscopy (VSFS). The second order nature of the sum frequency process makes this technique particularly surface sensitive and very suitable for interfacial studies, as molecules at the surface can be distinguished even in the presence of a vast excess of the same molecules in the bulk. Particular emphasis was given to the surface water structure and how it is affected by the presence of small model compounds such as acetic acid and formic acid, and also non-ionic surfactants with sugar based and ethylene oxide based polar headgroups. Understanding the structure of water at these interfaces is of considerable fundamental importance, and here VSFS provided unique information. Upon addition of tiny amounts of these surface active compounds, the ordered surface structure of water was found to be significantly perturbed, as revealed by the changes observed in the characteristic spectroscopic signature of the dangling OH bond of water molecules, which vibrate free in air and are present in the top monolayer. Dramatic differences between the different compounds were also observed in the bonded OH region, providing a valuable insight into the hydration of polar groups at interfaces. Additionally, by employing different polarization combinations of the laser beams involved in the sum frequency process, information about the different water species present at the surface and their average orientation were extracted. In particular an unusual state of water was found with a preferred orientation in a non-donor configuration in close proximity to the hydrophobic region formed by the hydrocarbon tails of the surfactant molecules.</p><p>The conformation and orientation of the different adsorbates were also characterized, targeting their specific vibrational frequencies. Noteworthy is the orientation of the fluorocarbon chain of ammonium perfluorononanoate (APFN), which in contrast to the hydrocarbon chains of the other surfactant molecules studied, remained constant over a wide range of surface densities. This behaviour was also observed for the anionic headgroup of sodium dodecyl sulphate (SDS). Other interesting findings were the formation of a cyclic dimer bilayer at the surface of concentrated aqueous solutions of acetic acid and the water structuring effect induced by poly(ethylene-oxide) headgroups, in spite of being themselves disordered at the air-liquid interface.</p>
37

Études électrochimiques des nanoparticules d'or : corrélation structure/activité / Electrochemical studies of gold nanoparticles : structure/activity correlation

Hebié, Seydou 18 November 2013 (has links)
Les propriétés inattendues des nanoparticules d'or font que le contrôle de leur taille, de leur forme et/ou de leur morphologie devient essentiel pour une application ciblée. Des formes variées de nanoparticules en solution colloïdale ont été synthétisées. L'analyse de ces solutions par spectroscopie UV-Visible montre que les nanoparticules anisotropes ont deux bandes plasmoniques. Aussi, le potentiel zêta mesuré révèle que les solutions sont stables dans les conditions d'étude. La caractérisation par la microscopie électronique en transmission a permis d'observer que leur surface présente différentes orientations cristallographiques. Le dépôt sous potentiel du plomb par voltammétrie cyclique a révélé les sites cristallographiques à la surface de ces nanomatériaux. Ces matériaux présentent des proportions de surface orientée (111), (110) et (100) et de défauts cristallins en accord avec les résultats de microscopie. L'étude électrochimique dans l'électrolyte support montre que la formation des oxydes sur ces nanomatériaux dépend de leur structure. La cinétique de croissance des couches d’oxyde sur les nanobâtonnets d’or dépend fortement du potentiel, du temps de polarisation et de la température. Des différentes formes structurales des nanomatériaux d'or synthétisés et en présence de molécules modèles telles que le glucose et l'acide formique, les nanosphères présentent l'activité la plus forte pour l'oxydation du glucose ; tous les nanomatériaux sont moins actifs pour l'oxydation de l'acide formique. Les analyses par FTIR in situ mettent en évidence la gluconolactone comme intermédiaire de cette réaction et la forte influence de la structure de surface. / Due to the unusual properties of gold nanoparticles, the control of their size, their shape and/or their morphology for a well-targeted application becomes essential. Various shape controlled particles in colloidal solutions were synthesized. The analysis of such solution by UV-visible spectroscopy shows that the anisotropic particles exhibit two surface plasmon resonance bands. In addition, the zeta potential measurements reveal that such solutions are stable in the experimental conditions. It is clearly observed by the transmission electron microscopy characterization of these nanomaterials that their surface has different crystallographic orientations. The under potential deposition (upd) of lead by cyclic voltammetry revealed the surface crystallographic sites which present different ratio of orientated surface (111), (110), (100) and defaults confirming the microscopy results. The cyclic voltammetry in supporting electrolyte shows that the oxides formation on these nanomaterials depends strongly on their structure. On gold nanorods, an extensive study of the kinetic of the oxide layers growth shows that this process is affected by the polarization potential and time as well as temperature. The nanospheres exhibited high activity toward the glucose oxidation, while all the synthesized nanomaterials presented low activity toward the formic acid oxidation. Gluconolactone appears as the main intermediate species during the oxidation of glucose which is a surface structure dependent process.
38

The atomic structure of the clean and adsorbate covered Ir(110) surface / Die atomare Struktur der reinen und adsorbatbedeckten Ir(110) Oberfläche

Kuntze, Jens 26 September 2000 (has links)
The adsorption and coadsorption of sulfur and oxygen on the Ir(110) surface was investigated by scanning tunneling microscopy (STM), low-energy electron diffraction (LEED), and Auger electron spectroscopy (AES). The clean Ir(110) surface forms alternating (331) and (33-1) minifacets, resulting in a mesoscopically rippled surface. Upon chemisorption of sulfur or oxygen and subsequent annealing, the surface structure is changed. In the following, the results concerning sulfur and oxygen adsorption will be summarized before addressing the coadsorption system. Sulfur adsorption: At sulfur coverages of 0.1-0.2 ML, the Ir(110) surface adopts a (1x2) missing-row configuration similar to clean Au(110) and Pt(110). The sulfur-stabilized Ir(110)-(1x2) does not show any evidence for the preference of (111) faceted steps, and consequently does not form a mesoscopic fish-scale pattern. The latter was observed on the (110) surfaces of Au and Pt, and was found to be driven by the preference for (111) step facets. On Ir(110), no such preference seems to exist, since (331) step facets are frequently observed. With respect to the adsorbed sulfur, no extended islands are observed, indicating repulsive adsorbate-adsorbate interactions. At sulfur coverages near 0.5 ML, a p(2x2) structure with p2mg (glide-plane) symmetry is observed. The adsorption site and structural model derived by STM are compatible with an earlier LEED analysis of that structure: S adsorbs in threefold coordinated fcc hollow sites above the (111) facets formed by the non-missing substrate rows. At coverages higher than 0.5 ML, a c(2x4) LEED pattern with additional faint streaks in the [-110] azimuth is observed. STM reveals that the streaks are due to pairs of sulfur atoms (dimers, for brevity) in a second adsorbate layer, that can be desorbed by heating to 1100 K. A structural model is derived on the basis of the STM results, showing the dimer atoms in on-top positions over sulfur atoms of the first adsorbate layer. When the surface is completely covered by the dimers, the surface is saturated at 0.75 ML. Oxygen adsorption: In agreement with earlier reports, oxygen adsorption and subsequent annealing to 700-900 K results in an unreconstructed (1x1) surface, covered by a c(2x2)-O overlayer at 0.5 ML coverage. Coadsorption of oxygen on an S-precovered surface (S-coverage below 0.5 ML) leads to a phase separation of the adsorbates (competitive adsorption). At low coverages, oxygen forms a p(2x2)-O phase, whereas at higher O-coverages a compression into a (1x2)-O phase is observed. Postannealing the (1x2)-O phase at 900 K in vacuum leads to a reduction of the sulfur concentration, indicating sulfur oxidation. Interestingly, the p(2x2)-O phase does not seem to be reactive, according to the AES results. A possible explanation may be that the more densely packed (1x2)-O phase can be regarded as an activated structure. This is also supported by the STM results. At S-coverages above 0.5 ML, the surface is completely poisoned with respect to oxygen adsorption. Nevertheless, heating the sulfur saturated Ir(110)-c(2x4)-S structure in an oxygen atmosphere, the sulfur concentration gradually drops to zero. At intermediate stages of this oxidation process, island formation is observed by STM, but the underlying formation processes remain to be resolved.
39

The Shona subject relation

Mhute, Isaac 23 September 2011 (has links)
This study delves into the syntactic notion of subject relation in Shona with the aim of characterizing and defining it. This is done through analysing data collected from two of the Shona speaking provinces in Zimbabwe, namely, Harare and Masvingo. The data collection procedures involved the tape recording of oral interviews as well as doing selective listening to different speeches. The data were then analysed using the projection principle, noun phrase movement transformational rule as well as the selectional principles established for the subject relation in the other well researched natural languages. The research found out that there is no one single rule that can be used to determine the subject of every possible Shona sentence. One has to make use of all the seven selectional principles established in the well-researched natural languages. The research managed to assess the applicability of the selectional rules in different sentences. The rules were then ranked according to their reliability in determining the subjects of each of the various Shona sentences. It also came to light that the Shona subject relation has a number of sub-categories as a result of the various selectional rules involved in determining them. These were also ranked in a hierarchy of importance as they apply in the language. For instance, whilst some are assigned to their host words at the deep structure or underlying level of syntax, some are assigned at the surface structure level and can be shifted easily. It also emerged that the freedom of the subject relation in the language varies with the sub-category of the relation. It came to light as well that in Shona both noun phrases (NPs) and non-NPs are assigned the subject role. / African Languages / D. Litt. et Phil. (African Languages)
40

Structural, electronic and optical properties of cadmium sulfide nanoparticles / Strukturelle, elektronische und optische Eigenschaften von Cadmiumsulfid Nanoteilchen

Frenzel, Johannes 08 March 2007 (has links) (PDF)
In this work, the structural, electronic, and optical properties of CdS nanoparticles with sizes up to 4nm have been calculated using density-functional theory (DFT). Inaccuracies in the description of the unoccupied states of the applied density-functional based tight-binding method (DFTB) are overcome by a new SCF-DFTB method. Density-functional-based calculations employing linear-response theory have been performed on cadmium sulfide nanoparticles considering different stoichiometries, underlying crystal structures (zincblende, wurtzite, rocksalt), particle shapes (spherical, cuboctahedral, tetrahedral), and saturations (unsaturated, partly saturated, completely saturated). For saturated particles, the calculated onset excitations are strong excitonic. The quantum-confinement effect in the lowest excitation is visible as the excitation energy decreases towards the bulk band gap with increasing particle size. Dangling bonds at unsaturated surface atoms introduce trapped surface states which lie below the lowest excitations of the completely saturated particles. The molecular orbitals (MOs), that are participating in the excitonic excitations, show the shape of the angular momenta of a hydrogen atom (s, p). Zincblende- and wurtzite-derived particles show very similar spectra, whereas the spectra of rocksalt-derived particles are rather featureless. Particle shapes that confine the orbital wavefunctions strongly (tetrahedron) give rise to less pronounced spectra with lower oscillator strengths. Finally, a very good agreement of the calculated data to experimentally available spectra and excitation energies is found.

Page generated in 0.4012 seconds