• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 26
  • 26
  • 9
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Aspects of the symplectic and metric geometry of classical and quantum physics

Russell, Neil Eric January 1993 (has links)
I investigate some algebras and calculi naturally associated with the symplectic and metric Clifford algebras. In particular, I reformulate the well known Lepage decomposition for the symplectic exterior algebra in geometrical form and present some new results relating to the simple subspaces of the decomposition. I then present an analogous decomposition for the symmetric exterior algebra with a metric. Finally, I extend this symmetric exterior algebra into a new calculus for the symmetric differential forms on a pseudo-Riemannian manifold. The importance of this calculus lies in its potential for the description of bosonic systems in Quantum Theory.
12

Intersections lagrangiennes pour les sous-variétés monotones et presque monotones / Lagrangian intersections for monotone and almost monotone submanifolds

Keddari, Nassima 26 September 2018 (has links)
Dans la première partie de cette thèse, on donne, sous certaines hypothèses, une minoration du nombre de points d’intersections d’une sous-variété Lagrangienne monotone L avec son image par une isotopie Hamiltonienne. Dans le cas où L est un espace K(pi, 1), et en particulier à courbure sectionnelle strictement négative, le minorant est 1 + beta1(L), où beta1 est le premier nombre de Betti à coefficients dans Z2. Une autre conséquence est la non-déplaçabilité d’un plongement Lagrangien monotone de RPn × K (où K est une sous-variété à courbure sectionnelle strictement négative telle que H1(K, Z) ≠ 0) dans certaines variétés symplectiques. Dans la seconde partie, on considère une sous-variété Lagrangienne monotone L non déplaçable. En utilisant l’homologie de Floer définie pour les Lagrangiennes qui sont C-1-proches de L, on obtient des informations sur son nombre de Maslov. De plus, si L peut être approchée par une suite de Lagrangiennes déplaçables, alors, sous certaines hypothèses topologiques sur L, l’énergie de déplacement des éléments de cette suite tend vers l’infini. / N the first part of the thesis, we give, under some hypotheses, a lower bound on the intersection number of a closed monotone Lagrangian submanifold L with its image by a generic Hamiltonianisotopy. For monotone Lagrangian submanifolds L which are K(pi, 1) and, in particular with negative sectional curvature, this bound is 1 + beta_1(L), where beta_1 is the first Betti number with coefficients in Z_2. Another consequence, is the non-displaceability of a monotone Lagrangian embedding of RPn x K (where K is a submanifold with negative sectional curvature such that H^1(K, Z) ≠ 0) in some symplectic manifolds. In the second part, given a closed monotone Lagrangian submanifold L, which is not displaceable, we use Floer homology defined on Lagrangians which are C^1 - close to L, to get information about it Maslov number. Besides, if L can be approached by a sequence of displaceable Lagrangians, then, under some topological assumptions on L, the displacement energy of the elements of this sequence converge to infinity.
13

Méthodes de sélection de structures presque complexes dans le cadre symplectique / Methods to select almost complex structures in symplectic geometry

Gérard, Maxime 22 May 2018 (has links)
Étant donné une variété symplectique $(M,\omega)$, il existe toujours des structures presque complexes $\omega$-compatibles positives. La question qui nous intéresse est de trouver des méthodes de sélection de certaines de ces structures. Des réponses ont déjà été données par V. Apostolov et T.Draghici, J.G. Evans, et J. Keller et M. Lejmi. Nous nous intéressons ici principalement à des méthodes de sélection définies en termes du tenseur de Nijenhuis. De manière très générale, lorsqu'on veut sélectionner certaines données géométriques, on peut aborder le problème de différentes manières. L’une d’entre elles consiste à regarder la décomposition en composantes irréductibles de certains tenseurs naturellement associés à la structure considérée et poser des conditions sur certaines composantes. Nous avons montré que le tenseur de Nijenhuis est irréductible sous l'action du groupe unitaire. Cette irréductibilité ne nous permet pas d'imposer d'autre condition linéaire à ce tenseur que son annulation, qui correspond aux variétés de Kähler. Une autre méthode possible de sélection est d’imposer des conditions à certaines distributions liées au problème. Nous avons étudié des distributions liées au tenseur de Nijenhuis. Nous nous sommes intéressés ici aux dimensions et propriétés d’involutivité possibles de ces distributions. Nous donnons des exemples invariants sous l’action d’un groupe, construits sur des groupes symplectiques ou sur des fibrés de twisteurs sur une variété riemannienne. La dernière méthode envisagée dans ce travail est la considération de fonctionnelles définies à partir des données. Pour construire une fonctionnelle la plus simple possible en termes du tenseur de Nijenhuis, nous intégrons une fonction polynomiale du second degré en les composantes du tenseur de Nijenhuis. On montre qu’un tel polynôme est toujours un multiple de la norme au carré de ce tenseur. La fonctionnelle obtenue est celle étudiée par Evans. Elle est a priori peu intéressante pour notre problème de sélection car il a prouvé qu’on peut trouver des exemples de variétés symplectiques n’admettant aucune structure kählérienne mais telle que l’infimum de la fonctionnelle soit nul / Given a symplectic manifold $(M,\omega)$, there always exist almost complex $\omega,$-compatible positive structures. The problem studied in this thesis is to find methods to select some of these structures. Answers have already been suggested by V. Apostolov and T.Draghici, J. G. Evans, and J. Keller and M. Lejmi. We are mainly interested here in selection methods defined in terms of the Nijenhuis tensor. The problem of selecting geometric objects can be tackled in various ways. One of them is to decompose into irreducible components some tensors naturally associated with the structure, and to impose conditions on some of those components. We prove that the Nijenhuis tensor is irreducible under the action of the unitary group. This irreducibility does not allow to impose any linear condition on the Nijenhuis tensor, except the vanishing of it, which corresponds to Kähler manifolds. Another possible method of selection is to impose conditions on distributions related to the problem. We study distributions defined by the Nijenhuis tensor. Our results concern the possible dimensions and properties of involutivity of these distributions. We give examples which are invariant under the action of a group, on some symplectic groups and on twisted bundles over some Riemannian manifolds. The last method considered in this work consists in looking for extremals of functionals defined from the data. To construct the simplest functional defined in terms of the Nijenhuis tensor, we integrate a polynomial function of the second degree into the components of this tensor. All such polynomials are multiple of the square of the norm of this tensor. This functional is the one studied by Evans; the drawback for our selection problem is that there exist examples of compact symplectic manifolds which do not admit any K\"ahler structure but such that the infimum of the functional is zero
14

Tangentially symplectic foliations

Remsing, Claidiu Cristian January 1994 (has links)
This thesis is concerned principally with tangential geometry and the applications of these concepts to tangentially symplectic foliations. The subject of tangential geometry is still at an elementary stage. The author here systematises current concepts and results and extends them, leading to the definition of vertical connections and vertical G-structures. Tangentially symplectic foliations are then characterised in terms of vertical symplectic forms. Some significant particular cases are discussed.
15

Difusões em variedades de poisson / Poisson manifolds diffusions

Costa, Paulo Henrique Pereira da, 1983 08 July 2009 (has links)
Orientador: Paulo Regis Caron Ruffino / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-13T23:01:19Z (GMT). No. of bitstreams: 1 Costa_PauloHenriquePereirada_M.pdf: 875708 bytes, checksum: 8862a1813f1bb85b5d0269462a80501e (MD5) Previous issue date: 2009 / Resumo: O objetivo desse trabalho é estudar as equações de Hamilton no contexto estocástico. Sendo necessário para tal um pouco de conhecimento a cerca dos seguintes assuntos: cálculo estocástico, geometria de segunda ordem, estruturas simpléticas e de Poisson. Abordamos importantes resultados, dentre eles o teorema de Darboux (coordenadas locais) em variedades simpléticas, teorema de Lie-Weinstein que de certa forma generaliza o teorema de Darboux em variedades de Poisson. Veremos que apesar de o ambiente natural para se estudar sistemas hamiltonianos ser variedades simpléticas, no caso estocástico esses sistemas se adaptam bem em variedades de Poisson. Além disso, para atingir a nossa meta, estudaremos equações diferenciais estocásticas em variedades de dimensão finita usando o operador de Stratonovich / Abstract: This dissertation deals with transfering Hamilton's equations in stochastic context. This requires some knowledge about the following: stochastic calculus, second order geometry and Poisson and simplectic structures. Important results that will be discussed in this theory are Darboux's theorem (local coordinates) for simplectic manifolds, and Lie-Weintein's theorem that is in a certain way of Darboux's theorem on Poisson manifolds. We will see that although the natural environment for studying hamiltonian systems is symplectic manifolds, if we have a Poisson structure we will still be able to study them. Moreover, to achieve our goal, we will study stochastic differential equations on finite dimensional manifolds using the Stratonovich operator / Mestrado / Geometria Estocastica / Mestre em Matemática
16

Quelques propriétés symplectiques des variétés Kählériennes / Some symplectic properties of Kähler manifolds

Vérine, Alexandre 28 September 2018 (has links)
La géométrie symplectique et la géométrie complexe sont intimement liées, en particulier par les techniques asymptotiquement holomorphes de Donaldson et Auroux d'une part et par les travaux d’Eliashberget et Cieliebak sur la pseudoconvexité d'autre part. Les travaux présentés dans cette thèse sont motivés par ces deux liens. On donne d’abord la caractérisation symplectique suivante des constantes de Seshadri. Dans une variété complexe, la constante de Seshadri d’une classe de Kähler entière en un point est la borne supérieure des capacités de boules standard admettant, pour une certaine forme de Kähler dans cette classe, un plongement holomorphe et iso-Kähler de codimension 0 centré en ce point. Ce critère était connu de Eckl en 2014 ; on en donne une preuve différente. La deuxième partie est motivée par la question suivante de Donaldson : <<Toute sphère lagrangienne d'une variété projective complexe est-elle un cycle évanescent d'une déformation complexe vers une variété à singularité conique ?>> D'une part, on présente toute sous-variété lagrangienne close d’une variété symplectique/kählérienne close dont les périodes relatives sont entières comme lieu des minima d’une exhaustion <<convexe>> définie sur le complémentaire d'une section hyperplane symplectique/complexe. Dans le cadre kählérien, <<convexe>> signifie strictement plurisousharmonique tandis que dans le cadre symplectique, cela signifie de Lyapounov pour un champ de Liouville. D'autre part, on montre que toute sphère lagrangienne d'un domaine de Stein qui est le lieu des minima d’une fonction <<convexe>> est un cycle évanescent d'une déformation complexe sur le disque vers un domaine à singularité conique. / Symplectic geometry and complex geometry are closely related, in particular by Donaldson and Auroux’s asymptotically holomorphic techniques and by Eliashberg and Cieliebak’s work on pseudoconvexity. The work presented in this thesis is motivated by these two connections. We first give the following symplectic characterisation of Seshadri constants. In a complex manifold, the Seshadri constant of an integral Kähler class at a point is the upper bound on the capacities of standard balls admitting, for some Kähler form in this class, a codimension 0 holomorphic and iso-Kähler embedding centered at this point. This criterion was known by Eckl in 2014; we give a different proof of it. The second part is motivated by Donaldon’s following question: ‘Is every Lagrangian sphere of a complex projective manifold a vanishing cycle of a complex deformation to a variety with a conical singularity?’ On the one hand, we present every closed Lagrangian submanifold of a closed symplectic/Kähler manifold whose relative periods are integers as the lowest level set of a ‘convex’ exhaustion defined on the complement of a symplectic/complex hyperplane section. In the Kähler setting ‘complex’ means strictly plurisubharmonic while in the symplectic setting it refers to the existence of a Liouville pseudogradient. On the other hand, we prove that any Lagrangian sphere of a Stein domain which is the lowest level-set of a ‘convex’ function is a vanishing cycle of some complex deformation over the disc to a variety with a conical singularity.
17

[en] DELZANT S CONSTRUCTION FOR TORIC SYMPLECTIC MANIFOLDS / [pt] A CONSTRUÇÃO DE DELZANT PARA VARIEDADES TÓRICAS SIMPLÉTICAS

SIMONE DE FREITAS DE SOUZA 04 February 2019 (has links)
[pt] Em 1988, Delzant classificou as variedades compactas tóricas simpléticas por meio da imagem associada da aplicação momento. Como estabelecido pelo Teorema de Convexidade [Atiyah, Guillemin-Sternberg, 1983], a imagem pela aplicação momento de uma variedade compacta tórica simplética é um polítopo convexo. A construção de Delzant proporciona uma receita para formar, dado um polítopo de Delzant, uma variedade compacta tórica simplética. Nesta dissertação revisamos essa construção e estudamos alguns exemplos. / [en] In 1988, Delzant proved a classification Theorem of compact toric symplectic manifolds by means of their moment image. By the convexity Theorem [Atiyah, Guillemin-Sternberg, 1983] the moment image of a compact toric symplectic manifold is a convex polytope. Delzant s construction gives a recipe to construct, given a Delzant polytope, the corresponding compact toric symplectic manifold. This thesis describes this construction and studies in detail some examples.
18

H-cobordismes en géométrie symplectique / H-cobordisms in symplectic geometry

Courte, Sylvain 04 June 2015 (has links)
À toute variété de contact, on peut associer canoniquement une variété symplectique appelée sa symplectisation de sorte que la géométrie de contact peut se reformuler en termes de géométrie symplectique équivariante. Au sujet de cette construction fondamentale, une question basique restait ouverte : si deux variété de contact ont des symplectisations isomorphes sont-elles isomorphes ? On construit dans cette thèse des contre-exemples à cette question. Il existe en effet, en toute dimension impaire supérieure ou égale à 5, des variétés de contact non difféomorphes admettant pourtant des symplectisations isomorphes. On construit également, sur une même variété deux structures de contact non conjuguées par un difféomorphisme mais admettant des symplectisations isomorphes. Les démonstrations sont basées sur un phénomène bien connu en topologie différentielle (l'existence de h-cobordismes non triviaux, détectée par la torsion de Whitehead) ainsi que sur des résultats de flexibilité en géométrie symplectique dus à Cieliebak et Eliashberg. Un autre résultat de cette th?e affirme que ces variété de contact, bien que non isomorphes, le deviennent toutefois après un nombre suffisant de sommes connexes avec un produit de sphères. / To any contact manifold one can associate a symplectic manifold called its symplectisation in such a way that contact geometry can be reformulated in terms of equivariant symplectic geometry. Concerning this fundamental construction, a basic question remained open : if two contact manifolds have isomorphic symplectizations, are they isomorphic ? In this thesis, we construct counter-examples to this question. Indeed, in any odd dimension greater than or equal to 5, there exist non-diffeomorphic contact manifolds with isomorphic symplectisations. In addition, we construct two contact structures on a closed manifold that are not conjugate by a diffeomorphism though their symplectizations are isomorphic. The proofs are based on a well-known phenomenon in differential topology (the existence of non-trivial h-cobordisms, detected by Whitehead torsion) as well as flexibility results in symplectic geometry due to Cieliebak and Eliashberg. Another result from this thesis asserts that though these contact manifolds are not isomorphic, they become so after sufficiently many connect sum with a product of spheres.
19

Lefschetz fibrations = Fibrações de Lefschetz / Fibrações de Lefschetz

Callander, Brian, 1986- 23 August 2018 (has links)
Orientador: Elizabeth Terezinha Gasparim / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-23T08:45:07Z (GMT). No. of bitstreams: 1 Callander_Brian_M.pdf: 1926930 bytes, checksum: 341dd0f9759ced382e138cd14fc4ae2c (MD5) Previous issue date: 2013 / Resumo: O propósito desta tese é estudar fibrações de Lefschetz simpléticas, nas quais os ciclos evanescentes são subvariedades Lagrangianas das fibras. Para a descrição da teoria de interseção dos ciclos evanescentes utilizamos cohomologia de Floer Lagrangiana, cujo conceito revemos nesta tese. Apresentamos três exemplos principais e de caráteres distintos: (1) twists de Dehn generalizados, (2) o "espelho" da reta projetiva, e (3) uma fibração numa órbita adjunta de sl(3,C). O terceiro destes exemplos é original e utiliza um teorema recente de Gasparim- Grama-San Martin / Abstract: The objective of this thesis is to study symplectic Lefschetz fibrations, in which the vanishing cycles are Lagrangian submanifolds of the fibres. In order to describe the intersection theory of vanishing cycles we use Lagrangian intersection Floer cohomology, which we review. We present three main examples of distinct characters: (1) generalized Dehn twists, (2) the "mirror" of the projective line, and (3) a fibration on an adjoint orbit of sl(3,C). The third of these examples is original and uses a recent theorem of Gasparim- Grama-San Martin / Mestrado / Matematica / Mestre em Matemática
20

On the minimal number of periodic Reeb orbits on a contact manifold / Sur le nombre minimal d'orbites de Reeb périodiques sur une variété de contact

Gutt, Jean 27 June 2014 (has links)
Le sujet de cette thèse est la question du nombre minimal d'orbites de Reeb distinctes sur une variété de contact qui est le bord d'une variété symplectique compacte.<p>L'homologie symplectique $S^1$-équivariante positive est un des outils principaux de cette thèse; elle est construite à partir d'orbites périodiques de champs de vecteurs hamiltoniens sur une variété symplectique<p>dont le bord est la variété de contact considérée.<p>Nous analysons la relation entre les différentes variantes d'homologie symplectique d'une variété symplectique exacte compacte (domaine de Liouville) et les orbites de Reeb de son bord.<p>Nous démontrons certaines propriétés de ces homologies.<p>Pour un domaine de Liouville plongé dans un autre, nous construisons un morphisme entre leurs homologies.<p>Nous étudions ensuite l'invariance de ces homologies par rapport au choix de la forme de contact sur le bord.<p>Nous utilisons l'homologie symplectique $S^1$-équivariante positive pour donner une nouvelle preuve d'un théorème de Ekeland et Lasry<p>sur le nombre minimal d'orbites de Reeb distinctes sur certaines hypersurfaces dans $R^{2n}$.<p>Nous indiquons comment étendre au cas de certaines hypersurfaces dans certains fibrés en droites complexes négatifs.<p>Nous donnons une caractérisation et une nouvelle façon de calculer l'indice de Conley-Zehnder généralisé, défini par Robbin et Salamon pour tout chemin de matrices symplectiques.<p>Ceci nous a mené à développer de nouvelles formes normales de matrices symplectiques.<p>/<p>This thesis deals with the question of the minimal number of distinct periodic Reeb orbits on a contact manifold which is the boundary of a compact symplectic manifold.<p>The positive $S^1$-equivariant symplectic homology is one of the main tools considered in this thesis.<p>It is built from periodic orbits of Hamiltonian vector fields in a symplectic manifold whose boundary is the given contact manifold.<p>Our first result describes the relation between the symplectic homologies of an exact compact symplectic manifold with contact type boundary (also called Liouville domain), and the periodic Reeb orbits on the boundary.<p>We then prove some properties of these homologies.<p>For a Liouville domain embedded into another one, we construct a morphism between their homologies.<p>We study the invariance of the homologies with respect to the choice of the contact form on the boundary.<p>We use the positive $S^1$-equivariant symplectic homology to give a new proof of a Theorem by Ekeland and Lasry about the minimal number of distinct periodic Reeb orbits on some hypersurfaces in $R^{2n}$.<p>We indicate how it extends to some hypersurfaces in some negative line bundles.<p>We also give a characterisation and a new way to compute the generalized Conley-Zehnder index defined by Robbin and Salamon for any path of symplectic matrices.<p>A tool for this is a new analysis of normal forms for symplectic matrices. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished

Page generated in 0.0649 seconds