• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 243
  • 59
  • 41
  • 15
  • 15
  • 8
  • 7
  • 6
  • 5
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 477
  • 69
  • 63
  • 60
  • 57
  • 47
  • 39
  • 35
  • 34
  • 33
  • 32
  • 31
  • 30
  • 28
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
471

CUDA-based Scientific Computing / Tools and Selected Applications

Kramer, Stephan Christoph 22 November 2012 (has links)
No description available.
472

Das neue Kontaktmodell in Mechanica WF 4.0 mit Reibung : Theoretische Grundlagen und Anwendungsbeispiele

Jakel, Roland 11 May 2009 (has links)
Der Vortrag stellt das neue, unendlich reibungsbehaftete Kontaktmodell der FEM-Berechnungssoftware Pro/ENGINEER Mechanica in der Version Wildfire 4.0 von PTC vor. Dabei werden sowohl die Grundlagen des reibungsfreien Kontaktes als auch die Theorie des unendlich reibungsbehafteten Kontaktmodells behandelt sowie die Grundlagen der zur numerischen Lösung in der Software verwendeten Penalty- und Newton-Raphson-Methode erläutert. Als Anwendungsbeispiel für das reibungsfreie Kontaktmodell wird ein Zylinderrollenlager vollständig mit sämtlichen Wälzkontakten für verschiedene Lager- und Einbauspiele berechnet, die Ergebnisse umfassend dargestellt sowie eine analytische Gegenrechnung nach der Hertzschen Theorie ausgeführt, die sehr gute Übereinstimmung mit der numerischen Simulation zeigt. Für das reibungsbehaftete Kontaktmodell wird exemplarisch eine geschrumpfte Welle-Nabe-Verbindung unter Torsion berechnet. Diese wird einer analytischen Lösung sowie verschiedenen 2D-Idealisierungen (ebener Spannungszustand, ebener Dehnungszustand, 2D-Axialsymmetrie) gegenübergestellt.
473

Advanced electronic structure theory: from molecules to crystals

Buth, Christian 10 November 2005 (has links)
In dieser Dissertation werden ab initio Theorien zur Beschreibung der Zustände von perfekten halbleitenden und nichtleitenden Kristallen, unter Berücksichtigung elektronischer Korrelationen, abgeleitet und angewandt. Als Ausgangsbasis dient hierzu die Hartree-Fock Approximation in Verbindung mit Wannier-Orbitalen. Darauf aufbauend studiere ich zunächst in Teil I der Abhandlung den Grundzustand der wasserstoffbrückengebundenen Fluorwasserstoff und Chlorwasserstoff zick-zack Ketten und analysiere die langreichweitigen Korrelationsbeiträge. Dabei mache ich die Basissatzextrapolationstechniken, die für kleine Moleküle entwickelt wurden, zur Berechnung von hochgenauen Bindungsenergien von Kristallen nutzbar. In Teil II der Arbeit leite ich zunächst eine quantenfeldtheoretische ab initio Beschreibung von Elektroneneinfangzuständen und Lochzuständen in Kristallen her. Grundlage hierbei ist das etablierte algebraische diagrammatische Konstruktionsschema (ADC) zur Approximation der Selbstenergie für die Bestimmung der Vielteilchen-Green's-Funktion mittels der Dyson-Gleichung. Die volle Translationssymmetrie des Problems wird hierbei beachtet und die Lokalität elektronischer Korrelationen ausgenutzt. Das resultierende Schema wird Kristallorbital-ADC (CO-ADC) genannt. Ich berechne damit die Quasiteilchenbandstruktur einer Fluorwasserstoffkette und eines Lithiumfluoridkristalls. In beiden Fällen erhalte ich eine sehr gute Übereinstimmung zwischen meinen Resultaten und den Ergebnissen aus anderen Methoden. / In this dissertation, theories for the ab initio description of the states of perfect semiconducting and insulating crystals are derived and applied. Electron correlations are treated thoroughly based on the Hartree-Fock approximation formulated in terms of Wannier orbitals. In part I of the treatise, I study the ground state of hydrogen-bonded hydrogen fluoride and hydrogen chloride zig-zag chains. I analyse the long-range contributions of electron correlations. Thereby, I employ basis set extrapolation techniques, which have originally been developed for small molecules, to also obtain highly accurate binding energies of crystals. In part II of the thesis, I devise an ab initio description of the electron attachment and electron removal states of crystals using methods of quantum field theory. I harness the well-established algebraic diagrammatic construction scheme (ADC) to approximate the self-energy, used in conjunction with the Dyson equation, to determine the many-particle Green's function for crystals. Thereby, the translational symmetry of the problem and the locality of electron correlations are fully exploited. The resulting scheme is termed crystal orbital ADC (CO-ADC). It is applied to obtain the quasiparticle band structure of a hydrogen fluoride chain and a lithium fluoride crystal. In both cases, a very good agreement of my results to those determined with other methods is observed.
474

Learning, Improvisation, and Identity Expansion in Innovative Organizations

Keidan, Joshua January 2020 (has links)
No description available.
475

A promise kept: the mystical reach through loss

Collins, Jody 04 October 2019 (has links)
The meaning of loss is love. I know this through attention to experience. Whether loss or love is experienced in abundance or in absence, the meaning is mystical with an opening of body, mind, heart and soul to spirit. And so, in the style of a memoir, in the way of contemplative prayer, I contemplate and share my soul as a promise kept in the mystical reach through loss. With the first, initiating loss, the loss of my nine-year-old nephew, Caleb, I experience an epiphany that gives me spiritual instructions that will not be ignored. I experience loss as an abundance of meaning that comes to me as gnosis, as “knowledge of the heart” according to Elaine Pagels or divine revelation in what Evelyn Underhill calls mystical illumination in the experience of “losing-to-find” in union with the divine. Then, with gnostic import, in leaving the ordinary for the extraordinary, I enter the empty room in the painful yet liberating experience of the loss of my self. In the embrace of emptiness, I proceed to the first wall, the second wall, the third wall, the dark corner of denial, the return to centre, and, finally, to breaking the fourth wall in the empty room so as to keep my promise to you. Who are “you”? You are God. You are Caleb. You are spirit. You are my higher soul or self. And, you are the reader. You are my dear companion in silence. And then, through a series of broken promises and more loss, within what John of the Cross calls, “the dark night of the soul,” I am stopped by the ineffability of the dark corner of denial, the horror of separation and the absence of meaning, which is depicted as the grueling gap between the spiritual abyss and the breakthrough. What does it mean to keep going through a solemn succession of losses? I don’t know. In going into the empty room, I simply put pain to work in order to reach you. Through loss, though there are infinite manifestations, there is only one way: keep going. And so, in a triumph of the spirit, I keep going so as to be: a promise kept in the mystical reach through loss. As for you, through my illumined and dark experiences of loss, what is my promise to you? I keep going to reach the unreachable you. In the loss of self, with embodied emptiness, in going into the dark corner of denial, with a return to the divine centre of my emptied self, in an invitation to you, I give my soul to you in union with you. / Graduate / 2020-06-25
476

Highway Development Decision-Making Under Uncertainty: Analysis, Critique and Advancement

El-Khatib, Mayar January 2010 (has links)
While decision-making under uncertainty is a major universal problem, its implications in the field of transportation systems are especially enormous; where the benefits of right decisions are tremendous, the consequences of wrong ones are potentially disastrous. In the realm of highway systems, decisions related to the highway configuration (number of lanes, right of way, etc.) need to incorporate both the traffic demand and land price uncertainties. In the literature, these uncertainties have generally been modeled using the Geometric Brownian Motion (GBM) process, which has been used extensively in modeling many other real life phenomena. But few scholars, including those who used the GBM in highway configuration decisions, have offered any rigorous justification for the use of this model. This thesis attempts to offer a detailed analysis of various aspects of transportation systems in relation to decision-making. It reveals some general insights as well as a new concept that extends the notion of opportunity cost to situations where wrong decisions could be made. Claiming deficiency of the GBM model, it also introduces a new formulation that utilizes a large and flexible parametric family of jump models (i.e., Lévy processes). To validate this claim, data related to traffic demand and land prices were collected and analyzed to reveal that their distributions, heavy-tailed and asymmetric, do not match well with the GBM model. As a remedy, this research used the Merton, Kou, and negative inverse Gaussian Lévy processes as possible alternatives. Though the results show indifference in relation to final decisions among the models, mathematically, they improve the precision of uncertainty models and the decision-making process. This furthers the quest for optimality in highway projects and beyond.
477

Highway Development Decision-Making Under Uncertainty: Analysis, Critique and Advancement

El-Khatib, Mayar January 2010 (has links)
While decision-making under uncertainty is a major universal problem, its implications in the field of transportation systems are especially enormous; where the benefits of right decisions are tremendous, the consequences of wrong ones are potentially disastrous. In the realm of highway systems, decisions related to the highway configuration (number of lanes, right of way, etc.) need to incorporate both the traffic demand and land price uncertainties. In the literature, these uncertainties have generally been modeled using the Geometric Brownian Motion (GBM) process, which has been used extensively in modeling many other real life phenomena. But few scholars, including those who used the GBM in highway configuration decisions, have offered any rigorous justification for the use of this model. This thesis attempts to offer a detailed analysis of various aspects of transportation systems in relation to decision-making. It reveals some general insights as well as a new concept that extends the notion of opportunity cost to situations where wrong decisions could be made. Claiming deficiency of the GBM model, it also introduces a new formulation that utilizes a large and flexible parametric family of jump models (i.e., Lévy processes). To validate this claim, data related to traffic demand and land prices were collected and analyzed to reveal that their distributions, heavy-tailed and asymmetric, do not match well with the GBM model. As a remedy, this research used the Merton, Kou, and negative inverse Gaussian Lévy processes as possible alternatives. Though the results show indifference in relation to final decisions among the models, mathematically, they improve the precision of uncertainty models and the decision-making process. This furthers the quest for optimality in highway projects and beyond.

Page generated in 0.0375 seconds