• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 4
  • 3
  • Tagged with
  • 22
  • 9
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Étude de faisabilité d'un dispositif photovoltaïque à porteurs chauds

Le Bris, Arthur 09 September 2011 (has links) (PDF)
La cellule photovoltaïque à porteurs chauds se caractérise par une population électronique hors équilibre thermique avec le réseau, ce qui se traduit par une température électronique supérieure à la température du matériau. Il devient alors possible de récupérer non seulement l'énergie potentielle des porteurs, mais également leur énergie cinétique, et donc d'extraire un surcroît de puissance qui n'est pas exploitée dans des cellules conventionnelles. Cela permet d'atteindre des rendements potentiels proches de la limite thermodynamique. L'extraction des porteurs hors équilibre se fait au moyen de membranes sélectives en énergie afin de limiter les pertes thermiques. Dans cette thèse, l'influence de la sélectivité des contacts sur les performances de la cellule est analysée par des simulations de rendement. Il apparaît que ce paramètre est moins critique qu'annoncé dans la littérature, et que des rendements élevés sont possibles avec des contacts semi-sélectifs, permettant l'extraction de porteurs au dessus d'un seuil d'énergie. De tels contacts sont non seulement beaucoup plus facilement réalisables en pratique que des contacts sélectifs, mais sont également plus compatibles avec les densités de courant élevées qui sont attendues dans de tels dispositifs. Une méthodologie expérimentale est également proposée pour analyser la vitesse de thermalisation des porteurs hors équilibre. Des porteurs sont photogénérés par un laser continu et leur température en régime stationnaire est sondée par photoluminescence en fonction de la densité de puissance excitatrice. Un modèle empirique est obtenu reliant la puissance dissipée par thermalisation à la température électronique. Ce modèle est ensuite utilisé pour simuler le rendement de cellules présentant une thermalisation partielle des porteurs. Enfin, un rendement de cellule réaliste présentant une absorption non idéale, une vitesse de thermalisation mesurée sur des matériaux réels et des contacts semi-sélectifs est calculé. Il ressort qu'une augmentation substantielle de rendement est possible en comparaison d'une simple jonction ayant le même seuil d'absorption, mais que la vitesse de thermalisation observée est néanmoins trop élevée pour permettre de dépasser les records de rendement actuels. Des idées sont proposées afin d'améliorer les performances des structures étudiées.
2

Collective behaviours in interacting spin systems / Comportements collectifs dans des systèmes de spins en interaction

Rodríguez-Arias, Inés 27 September 2018 (has links)
La polarisation dynamique nucléaire (DNP pour son acronyme en anglais) est une des techniques les plus prometteuses d’amélioration de l’IRM. En pratique, on voudrait utiliser la résonance magnétique nucléaire (RMN) sur d’autres noyaux que ceux d’hydrogène, par exemple le carbone. Pour pouvoir détecter le carbone, sa polarisation de spin doit être augmentée. À l’équilibre thermodynamique — à basse température et forts champs magnétiques — les électrons sont bien plus polarisés que tout système de spin nucléaires, ce qui est dû à leur plus petite masse. La technique de DNP consiste à amener le système hors d’équilibre avec une irradiation par des microondes. Cette irradiation va induire le transfer de polarisation des spins électroniques vers les spins nucléaires. Pendant ma thèse, j’ai étudié, par des méthodes analytiques et numériques, la compétition entre les interactions dipolaires présentes entre les spins électroniques (qui peuvent se régler expérimentalement) et le désordre naturellement présent dans l’échantillon. Pour ce faire, j’ai proposé deux modèles : une chaîne de spins d’Heisenberg et un système de fermions libres dans le modèle d’Anderson. J’ai trouvé l’existence de deux régimes : Pour le régime de fortes interactions, l’état stationnaire a des traces d’un comportement thermodynamique, étant caractérisé par une température effective. Dans le régime de faibles interactions, il n’est pas possible de définir une température effective, et l'on peut le relier à une phase de many-body localization (ou localisation d'Anderson). Mes recherches portent sur l’étude des propriétés deux phases en relation avec la performance de la DNP et j’ai trouvé qu’elle est optimale à la transition entre les deux phases. Ce résultat intéressant a récemment été confirmé par des expériences menées à l’École Normale Supérieure de Paris. / Dynamic nuclear polarization (DNP) is one of the most promising techniques towards a new generation of Magnetic Resonance Imaging (MRI). The idea is to use the Nuclear Magnetic Resonance (NMR) in other nuclei rather than the traditional hydrogen, such as carbon. For the carbon signal to be detected, one needs to enhance its spin polarization. In thermal equilibrium — at low temperature and high magnetic field — electron spins are far more polarized than any system of nuclear spins, which is due to their smaller mass. With the DNP technique we bring the system out-of-equilibrium irradiating it with microwaves. This triggers polarization transfer from the electron spins to the nuclear ones. During my Ph.D, I have studied both analytically and numerically the competition between the dipolar interactions among electron spins (which can be tuned experimentally) and the disorder naturally present in the sample. I proposed two models to study DNP: a Heisenberg spin-chain and a system free-fermions in the Anderson model. Two different regimes were found : For strongly interacting electron spins, the out-of-equilibrium steady state displays an effective thermodynamic behavior characterised by a very low spin temperature. In the weakly interacting regime, it is not possible to define a spin temperature, and it is associated to a many-body localized phase (or an Anderson-localized phase). My research was focused on the properties of the two phases with respect to the performance of DNP, and I found it to be optimal at the transition between the two. This is a very important result that has been verified by recent experiments carried in École Normale Supérieure de Paris.
3

Thermalisation dans une nanogoutte : évaporation versus réactivité / Thermalisation in a nanodroplet : evaporation vs reactivity

Salbaing, Thibaud 26 September 2019 (has links)
Les systèmes moléculaires sous irradiation sont présents dans le monde vivant et la matière inerte. D’un point de vue macroscopique, ils sont constitués d’un très grand nombre de molécules mais l’action d’un rayonnement agit à travers les électrons localisés sur une molécule, créant ainsi, localement et sur des échelles de temps courts, une situation manifestement très éloignée de l’équilibre thermodynamique. Etudier les nanosystèmes moléculaires sous irradiation permet d’accéder à la manière dont l’énergie déposée dans une molécule va être redistribuée dans le système, via les interactions entre molécules. Les distributions de vitesses d’une molécule évaporée mesurées pour les nanogouttes de méthanol protonées présentent un comportement bimodal avec, comme observé pour l’eau, l’évaporation de molécules avec des vitesses nettement supérieures à celles attendues après redistribution complète de l’énergie. De plus, une réaction dans l’agrégat, conduisant à la formation du diméthyléther protoné avec élimination d’une molécule d’eau, a été observée. La possibilité d’étudier la compétition suite à l’irradiation entre l’évaporation moléculaire et une réaction d’élimination pourra contribuer à contraindre les hypothèses quant à la formation de molécules prébiotiques en conditions interstellaires.Les résultats sur les nanogouttes mixtes eau-méthanol ont été comparés à ceux obtenus avec celles dopées en pyridine et celles d’eau pure. L’analyse de la partie basse vitesse des distributions de vitesses des molécules d’eau évaporées montrent que l’évaporation intervient avant la redistribution complète de l’énergie dans l’ensemble de l’agrégat. Il apparaît qu’il y a moins d’énergie disponible pour l’évaporation d’une molécule d’eau quand l’excitation initiale est déposée sur le méthanol protoné ou sur l’ion pyrimidium. Ainsi, à la différence de l’ion hydronium qui est parfaitement solvaté, les impuretés favorisent la croissance de ces petits agrégats d’eau dont la présence dans l’atmosphère facilite les premières étapes de la formation des aérosols / Molecular systems under irradiation are present in the living as well as in inert matter. From a macroscopic point of view, the matter is made up of a very large number of molecules but the action of radiation acts through the electrons located on a molecule and thus, creating locally and on short time scales a situation clearly far from the thermodynamic equilibrium. Studying molecular nanosystems under irradiation provides access to understanding of how the energy deposited in a molecule will be redistributed into the system through interactions between surrounding molecules.The velocity distributions of evaporated molecules measured for irradiated protonated methanol nanodroplets have a bimodal behaviour, as observed for water, including evaporation of molecules with much higher velocities than expected after complete redistribution of energy. In addition, a reaction in the cluster leading to the formation of protonated dimethyl-ether with elimination of a water molecule was observed. The possibility of studying the competition between molecular evaporation and an elimination reaction following irradiation of a nanodroplet will contribute to constrain the hypothesis on the formation of prebiotic molecules under interstellar conditions. The results for the water-methanol mixed nanodroplets were compared with those obtained with pyridine doped water nanodroplets and protonated water nanodroplets. Analysis of the low velocity part of the velocity distributions of the evaporated water molecules shows that evaporation occurs before the complete redistribution of energy in the cluster. It appears that there is less energy available for evaporation of a water molecule when the initial excitation is located on the protonated methanol ion or on the pyrimidium. Thus, unlike the hydronium ion which is fully solvated, impurities promote the growth of these small water clusters, whose presence in the atmosphere facilitates the early stages of aerosol formation
4

La thermalisation des électrons dans une atmosphère stellaire

Chevallier, Loïc 29 September 2000 (has links) (PDF)
Cette thèse présente une étude théorique d'un modèle d'atmosphère stellaire, modélisée comme une couche plan-parallèle irradiée sur une face, avec des électrons non thermalisés a priori. Les électrons sont caractérisés par leur fonction de distribution des vitesses (fdv), que l'on cherche à calculer en même temps que les autres grandeurs de l'atmosphère. Notre principal objectif est de comprendre le mécanisme de thermalisation des électrons, qui tend à rapprocher leur fdv de la fonction de Maxwell-Boltzmann lorsque les collisions élastiques dominent les interactions inélastiques des électrons avec le milieu ambiant, une hypothèse universellement admise en théorie des atmosphères stellaires. Les processus inélastiques (collisionnels ou radiatifs) perturbent cet équilibre, et la fdv des électrons peut s'écarter considérablement de l'équilibre maxwellien aux hautes énergies. De tels écarts modifient fortement les populations atomiques et le champ radiatif. Les calculs numériques consistent en la comparaison de trois modèles d'atmosphères: en équilibre thermodynamique local (ETL), hors ETL avec électrons thermalisés, et hors ETL avec électrons non thermalisés a priori. Nous avons résolu ce problème dans un plasma d'hydrogène pur en prenant en compte les principaux types d'interaction présents dans les atmosphères stellaires. L'équation cinétique des électrons a été résolue en calculant son terme de collision élastique à l'aide d'un modèle BGK longuement justifié dans la thèse. Notre principale contribution se situe au niveau du transfert de rayonnement. Nous avons utilisé, et surtout développé, les codes de l'équipe "Transfert" de l'Observatoire de Lyon. Les calculs montrent que la fdv des électrons s'écarte considérablement d'une maxwellienne dans la région hors ETL de l'atmosphère stellaire. Pour conclure, nous envisageons quelques extensions possibles de ce travail et certaines applications astrophysiques.
5

Thermalisation, correlations and entanglement in Bose-Einstein condensates

Andrew James Ferris Unknown Date (has links)
This thesis investigates thermalisation, correlations and entanglement in Bose-Einstein condensates. Bose-Einstein condensates are ultra-cold collections of identical bosonic atoms which accumulate in a single quantum state, forming a mesoscopic quantum object. They are clean and controllable quantum many-body systems that permit an unprecedented degree of experimental flexibility compared to other physical systems. Further, a tractable microscopic theory exists which allows a direct and powerful comparison between theory and experiment, propelling the field of quantum atom optics forward at an incredible pace. Here we explore some of the fundamental frontiers of the field, examining how non-classical correlations and entanglement can be created and measured, as well as how non-classical effects can lead to the rapid heating of atom clouds. We first investigate correlations between two weakly coupled condensates, a system analogous to a superconducting Josephson junction. The ground state of this system contains non-classical number correlation arising from the repulsion between the atoms. Such states are of interest because they may lead to more precise measurement devices such as atomic gyroscopes. Unfortunately thermal fluctuations can destroy these correlations, and great care is needed to experimentally observe non-classical effects. We show that adiabatic evolution can drive the isolated quantum system out of thermal equilibrium and decrease thermal noise, in agreement with a recent experiment [Esteve et al. Nature 455, 1216 (2008)]. This technique may be valuable for observing and using quantum correlated states in the future. Next, we analyse the rapid heating that occurs when a condensate is placed in a moving periodic potential. The dynamical instability responsible for the heating was the subject of much uncertainty, which we suggest was due to the inability of the mean-field approximation to account for important spontaneous scattering processes. We show that a model including non-classical spontaneous scattering can describe dynamical instabilities correctly in each of the regimes where they have been observed, and in particular we compare our simulations to an experiment performed at the University of Otago deep inside the spontaneous scattering regime. Finally, we proposed a method to create and detect entangled atomic wave-packets. Entangled atoms are interesting from a fundamental perspective, and may prove useful in future quantum information and precision measurement technologies. Entanglement is generated by interactions, such as atomic collisions in Bose-Einstein condensates. We analyse the type of entanglement generated via atomic collisions and introduce an abstract scheme for detecting entanglement and demonstrating the Einstein-Podolsky-Rosen paradox with ultra-cold atoms. We further this result by proposing an experiment where entangled wave-packets are created and detected. The entanglement is generated by the pairwise scattering that causes the instabilities in moving periodic potentials mentioned above. By careful arrangement, the instability process can be controlled to to produce two well-defined atomic wave-packets. The presence of entanglement can be proven by applying a series of laser pulses to interfere the wave-packets and then measuring the output populations. Realising this experiment is feasible with current technology.
6

Thermalisation, correlations and entanglement in Bose-Einstein condensates

Andrew James Ferris Unknown Date (has links)
This thesis investigates thermalisation, correlations and entanglement in Bose-Einstein condensates. Bose-Einstein condensates are ultra-cold collections of identical bosonic atoms which accumulate in a single quantum state, forming a mesoscopic quantum object. They are clean and controllable quantum many-body systems that permit an unprecedented degree of experimental flexibility compared to other physical systems. Further, a tractable microscopic theory exists which allows a direct and powerful comparison between theory and experiment, propelling the field of quantum atom optics forward at an incredible pace. Here we explore some of the fundamental frontiers of the field, examining how non-classical correlations and entanglement can be created and measured, as well as how non-classical effects can lead to the rapid heating of atom clouds. We first investigate correlations between two weakly coupled condensates, a system analogous to a superconducting Josephson junction. The ground state of this system contains non-classical number correlation arising from the repulsion between the atoms. Such states are of interest because they may lead to more precise measurement devices such as atomic gyroscopes. Unfortunately thermal fluctuations can destroy these correlations, and great care is needed to experimentally observe non-classical effects. We show that adiabatic evolution can drive the isolated quantum system out of thermal equilibrium and decrease thermal noise, in agreement with a recent experiment [Esteve et al. Nature 455, 1216 (2008)]. This technique may be valuable for observing and using quantum correlated states in the future. Next, we analyse the rapid heating that occurs when a condensate is placed in a moving periodic potential. The dynamical instability responsible for the heating was the subject of much uncertainty, which we suggest was due to the inability of the mean-field approximation to account for important spontaneous scattering processes. We show that a model including non-classical spontaneous scattering can describe dynamical instabilities correctly in each of the regimes where they have been observed, and in particular we compare our simulations to an experiment performed at the University of Otago deep inside the spontaneous scattering regime. Finally, we proposed a method to create and detect entangled atomic wave-packets. Entangled atoms are interesting from a fundamental perspective, and may prove useful in future quantum information and precision measurement technologies. Entanglement is generated by interactions, such as atomic collisions in Bose-Einstein condensates. We analyse the type of entanglement generated via atomic collisions and introduce an abstract scheme for detecting entanglement and demonstrating the Einstein-Podolsky-Rosen paradox with ultra-cold atoms. We further this result by proposing an experiment where entangled wave-packets are created and detected. The entanglement is generated by the pairwise scattering that causes the instabilities in moving periodic potentials mentioned above. By careful arrangement, the instability process can be controlled to to produce two well-defined atomic wave-packets. The presence of entanglement can be proven by applying a series of laser pulses to interfere the wave-packets and then measuring the output populations. Realising this experiment is feasible with current technology.
7

Thermalization of a 1-dimensional Rydberg gas and entanglement distribution across quantum networks / Thermalisation d'un gaz de Rydberg unidimensionel et distribution d'intrication dans les réseaux quantiques

Cohen, Ruben Y. 18 April 2017 (has links)
Le comportement collectif des atomes de Rydberg est au cœur de nombreux protocoles d'information quantique, notamment de répéteurs quantiques. Cette thèse traite de deux sujets distincts: la dynamique collective de nuages d'atomes de Rydberg et l'utilisation de répéteurs quantiques dans des réseaux complexes. Dans la première partie, nous étudions un système simple composé d'une chaîne 1D d'atomes de Rydberg couplée à un laser résonnant sur la transition vers un niveau de Rydberg dans le régime contenant quelques excitations. Les atomes de Rydberg sont soumis à une forte interaction dipolaire qui tend à empêcher l'excitation simultanée de deux atomes proches l'un de l'autre. C'est ce phénomène de blocage de Rydberg qui fait des atomes de Rydberg d'éminents candidats pour des protocoles d'information quantique. Ce blocage induit une distribution spatiale particulière des excitations le long de la chaîne d'atomes. Le calcul exact de cette distribution est souvent impossible en pratique même numériquement, et des approximations sont a priori nécessaires:- l'approximation des sphères de Rydberg dures: l'interaction dipolaire est modélisée par une sphère centrée autour de chaque excitation, à l'intérieur de laquelle toute autre excitation est impossible;- l'hypothèse de thermalisation: le système est supposé thermaliser, c'est-à-dire qu'après suffisamment de temps, même sans effets dissipatifs, le système tendra vers un état quasi-thermique qui peut être décrit par la physique statistique et plus précisément l'ensemble microcanonique. Cette thèse présente une étude de la thermalisation d'un ensemble 1D d'atomes de Rydberg et, plus particulièrement, de l'acuité des prédictions de l'ensemble microcanonique en supposant l'hypothèse des sphères dures. Nous avons simulé numériquement la dynamique d'un tel système composé de 100 atomes, dans le régime contenant au plus deux excitations dans l'ensemble. De plus, un modèle analytique à 6 dimensions est présenté. Comparant les trois approches, nous montrons que le modèle analytique corrobore la simulation numérique, tandis que simulation et modèle mis ensemble contredisent les prédictions microcanoniques. Dans ce régime, l'utilisation de cet ensemble est donc inadaptée. La seconde partie de cette thèse porte sur la distribution d'intrication dans un réseau de répéteurs quantiques. Ces derniers devraient permettre la communication quantique de deux parties distantes. Ces répéteurs quantiques sont presque toujours connectés en un réseau linéaire. Dans cette thèse, nous explorons les possibilités offertes par des réseaux arbitraires constitués de ces répéteurs connectant une multitude de clients. Nous avons représenté ces réseaux à l'aide de graphes non orientés. Nous avons étudié deux scénarios de routage:- le routage classique d'intrication qui corresponds au cas où des clients, très limités par leurs dispositifs quantiques, souhaitent partager des paires intriqués. Sur ces réseaux, les problèmes de communication sont équivalents à des problèmes de chemins disjoints. Lorsque les clients souhaitant communiquer ensemble (les terminaux) sont choisis par un adversaire, nous avons obtenu deux bornes: l'une proportionnelle au genre topologique, et l'autre au degré minimal du graphe. Nous proposons deux architectures de réseau saturant la plus contraignante, celle due au degré minimal. D'autre part, lorsque les clients sont répartis dans un espace à 2-3 dimensions, nous avons montré une limitation géométrique sur la fraction de clients pouvant communiquer simultanément.- le routage quantique utilisant le codage de réseau, qui correspond au cas où le réseau quantique est composé de petits processeurs quantiques capable d'effectuer des opérations locales. Nous avons étudié un problème de communication, le réseau papillon, où le routage classique de l'intrication entre deux paires de clients est impossible. Grâce au codage de réseau, nous avons résolu ce problème de communication. / The collective behavior of Rydberg gases is at the heart of many proposals for quantum information. This thesis treats two distinct topics: the collective dynamic of a Rydberg ensemble and the use of quantum repeaters across quantum networks.In the first part of this thesis, we choose to focus on a simple system involving Rydberg atoms: a 1-dimensional Rydberg gas coupled to a laser resonant with the Rydberg transition. Rydberg atoms interact together through the dipole-dipole interaction. This particular feature is used for quantum information purposes, like applying multi-qubits gates for example. This interaction is strong enough so that the dynamic of such system in the regime of few excitations in the gas ensemble is already intractable without any assumptions. One of them is the hardcore Rydberg sphere assumption: we approximate this interaction by a sphere around each excitation inhibiting any second excitation within it. Another one is to suppose that the system thermalizes in such regime; a statistical treatment could then be applied. We have investigated the thermalization of a 1D-Rydberg gas and evaluated the accuracy of the microcanonical ensemble predictions under the first assumption. To do so, we have numerically simulated the dynamic of such system constituted by 100 atoms, in the regime of at most two excitations in the chain, in the initial excitation-less state. Furthermore, we constructed a 6-dimensional analytical model. Comparing the three approaches together, we have concluded that the numerical simulation and the analytical model both agree together but contradicts the microcanonical treatment. In this regime, the microcanonical ensemble is unadapted.In the second part of this thesis, we have studied the distribution of entanglement across a generic quantum network. We have mapped these quantum networks to undirected graphs and studied two different routing scenarios:- the classical routing of quantum entanglement corresponding to the scenario where clients of the network can perform only a single Bell measurement or keep a single qubit. This is the usual model of quantum repeaters. On these networks, peer-to-peer communication problems are equivalent to the vertex disjoint path problem. When the peers are chosen by an adversary, we have found two limitations due to the topological genus and the minimum degree of the graph. We have found two network architectures (almost) saturating the most constraining one, the minimum degree inequality. For the case where the peers are chosen at random, we have studied a specific graph lying in a 2- or 3-dimensional manifold and investigated the trade-off between the quantum links and the number of peers that can communicate simultaneously through the network.- true quantum routing problem (using network coding) corresponding to the situation where the quantum network is composed by small quantum processors that could apply local gates. We focus on a particular communication problem, namely the butterfly network, where classical routing is impossible. Using network coding, this communication is solved.
8

Thermalisation and Relaxation of Quantum Systems / Thermalisation et relaxation des systèmes quantiques

Wald, Sascha Sebastian 28 September 2017 (has links)
Cette thèse traite la dynamique hors équilibre des systèmes quantiques ouverts couplés à un réservoir externe. Un modèle spécifique exactement soluble, le modèle sphérique, sert comme exemple paradigmatique. Ce modèle se résout exactement en toute dimension spatiale et pour des interactions très générales. Malgré sa simplicité technique, ce modèle est intéressant car ni son comportement critique d’équilibre ni celui hors équilibre est du genre champ moyen. La présentation débute avec une revue sur la mécanique statistique des transitions de phases classique et quantique, et sur les propriétés du modèle sphérique. Sa dynamique quantique ne se décrit point à l’aide d’une équation de Langevin phénoménologique. Une description plus complète à l’aide de la théorie de l’équation de Lindblad est nécessaire. Les équations de Lindblad décrivent la relaxation d’un système quantique vers son état d’équilibre. En tant que premier exemple, le diagramme de phases dynamique d’un seul spin sphérique quantique est étudié. Réinterprétant cette solution en tant qu’une approximation champ moyen d’un problème de N corps, le diagramme de phases quantique est établi et un effet « congeler en réchauffant » quantique est démontré. Ensuite, le formalisme de Lindblad est généralisé au modèle sphérique quantique de N particules: primo, la forme précise de l’équation de Lindblad est obtenue des conditions que (i) l’état quantique d’équilibre exacte est une solution stationnaire de l’équation de Lindblad et (ii) dans le limite classique, l’équation Langevin de mouvement est retrouvée. Secundo, le modèle sphérique permet la réduction exacte du problème de N particules à une seule équation intégro-différentielle pour le paramètre sphérique. Tertio, en résolvant pour le comportement asymptotique des temps longs de cette équation, nous démontrons que dans la limite semi-classique, la dynamique quantique effective redevient équivalente à une dynamique classique, à une renormalisation quantique de la température T près. Quarto, pour une trempe quantique profonde dans la phase ordonnée, nous démontrons que la dynamique quantique dépend d’une manière non triviale de la dimension spatiale. L’émergence du comportement d’échelle dynamique et des corrections logarithmiques est discutée en détail. Les outils mathématiques de cette analyse sont des nouveaux résultats sur le comportement asymptotique de certaines fonctions hypergéométriques confluentes en deux variables / This study deals with the dynamic properties of open quantum systems far from equilibrium in d dimensions. The focus is on a special, exactly solvable model, the spherical model (SM), which is technically simple. The analysis is of interest, since the critical behaviour in and far from equilibrium not of mean-field type. We begin with a résumé of the statistical mechanics of phase transitions and treat especially the quantum version of the SM. The quantum dynamics (QD) of the model cannot be described by phenomenological Langevin equation and must be formulated with Lindblad equations.First we examine the dynamic phase diagram of a single spherical quantum spin and interpret the solution as a mean-field approximation of the N-body problem. Hereby, we find a quantum mechanical ‘freezing by heating’ effect. After that, we extend the formalism to the N-body problem, determining first the form of the Lindblad equation from consistency conditions. The SM then allows the reduction to a single integro-differential equation whose asymptotic solution shows, that the effective QD in the semi-classical limit is fully classical. For a deep quench in the ordered phase, we show that the QD strongly and non-trivially depends on d and derive the dynamic scaling behaviour and its corrections. The mathematical tools for this analysis are new results on the asymptotic behaviour of certain confluent hypergeometric functions in two variables
9

Spin and energy transport in boundary-driven low-dimensional open quantum systems

Mendoza Arenas, Juan José January 2014 (has links)
In spite of being the subject of intense research, several key but complex questions on the nonequilibrium physics of correlated quantum systems remain controversial. For example, the nature of particle and energy transport in different interacting regimes, the relevance of integrability and the impact of environmental coupling are still under active debate. These problems can now be approached numerically, due to the development of powerful algorithms which allow the efficient simulation of the dynamics of correlated systems. In the present thesis we study numerically and analytically the transport properties of low-dimensional quantum systems. In particular, we consider the steady-state spin and energy conduction through XXZ boundary-driven spin-1/2 chains. In the first part, we analyse the transport through chains with only coherent processes in the bulk. For spin transport induced by a magnetisation imbalance between the boundaries, previously identified ballistic, diffusive and negative differential conductivity regimes are reproduced. We provide a comprehensive explanation of the latter. The energy conduction induced by this driving scheme features the same properties as spin transport. For thermally-driven chains, we discuss the nature of energy transport and the emergence of local thermal states when the integrability of the Hamiltonian is broken. In the second part of the thesis we analyse the effect of bulk incoherent effects on the transport properties previously discussed. First we find that for weak particle-particle interactions, pure dephasing degrades spin and energy conduction. In contrast, for strong interactions dephasing induces a significant transport enhancement. We identify the underlying mechanism and discuss its generality. Finally, motivated by the lattice structure of several organic conductors, we study the interplay between coherent and incoherent processes in systems of weakly-coupled chains. We find an enhancement effect due to incoherent interchain hopping, stronger than that by dephasing, which increases with the chain length and relates to superdiffusive transport.
10

Low-linear energy transfer radiolysis of liquid water at elevated temperatures up to 350[degrees]C Monte-Carlo simulations

Sanguanmith, Sunuchakan January 2012 (has links)
A re-examination of our Monte-Carlo modeling of the high-temperature radiolysis of liquid water by low-linear energy transfer (LET~0.3 keV/[micro]m) radiation has been undertaken in an attempt to reconcile our computed g-values (primary yields) of the various radiolytic products (e[superscript -][subscript aq], ¨OH, H¨, H[subscript 2], and H[subscript 2]O[subscript 2]) with recently reevaluated experimental data over the range from 25 up to 350 [degrees]C. The temperature dependence of the rate constant for the self-reaction of the hydrated electron (e[superscript -][subscript aq]) measured under alkaline conditions, and in particular the abrupt drop observed above 150 [degrees]C, was assumed, in contrast to previous study, to be valid also in near-neutral pH water. To best reproduce the currently available temperature-dependent g-values, we found it necessary to introduce a discontinuity in the temperature dependence at 150 [degrees]C of certain parameters that intervene in the physicochemical stage of the radiolysis, including the thermalization distance (r[subscript]th) and the dissociative attachment (DEA) of subexcitation electrons, and the dissociative decay of electronically and vibrationally excited water molecules. With the exception of g(H[subscript 2]) above 200 [degrees]C, all calculated g-values were consistent with the general observation that when the temperature is increased, the yields of free radicals g(e[superscript]-[subscript]aq), g(¨OH), and g(H¨) increase while the molecular yield g(H[subscript 2]O[subscript 2]) decreases.Although H[subscript 2] is a molecular product, g(H[subscript 2]) was observed to continue to increase with temperature for a reason that has been a matter of controversy recently. Our simulations show that the reaction of H¨ atoms with water previously proposed by Swiatla-Wojcik and Buxton can indeed account for the anomalous increase in g(H[subscript 2]) at high temperature if we use for the rate constant of this reaction the value of 10[superscript 4] M[superscript 1] s[superscript -1] at 300 [degrees]C. Finally, as a direct application of the Fricke (ferrous sulfate) dosimeter, we have calculated the spur lifetime ([tau]s) and its temperature dependence. The results show that our calculated [tau]s value is decreasing from 4.2×10[superscript -7] to 5.7×10[superscript -8] s over the temperature range 25-350 [degrees]C.

Page generated in 0.1062 seconds