• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 82
  • 16
  • 16
  • 13
  • 10
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 185
  • 33
  • 22
  • 20
  • 20
  • 19
  • 18
  • 15
  • 15
  • 14
  • 14
  • 12
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

The calibration and sensitivity analysis of a storm surge model for the seas around Taiwan

Pai, Kai-chung 10 August 2009 (has links)
The topographical variations of the seas around Taiwan are great, which make the tides complicated. Taiwan is located in the juncture of the tropical and subtropical area. Geographically, it is located within the region of northwestern Pacific typhoon path. These seasonal and geographical situations causing Taiwan frequently threaten by typhoons during summer and autumn. In addition to natural disasters, the coastal area is over developed for the last few decades, which destroys the balance between nature and man. Storms and floods constantly threaten the lowland areas along the coast. An accurate and efficient storm surge model can be used to predict tides and storm surges. The model can be calibrated and verified with the field observations. Data measured by instruments at the tidal station constituting daily tidal variations and storm surge influences during typhoons. The model can offer both predictions to the management institutions and to the general public as pre-warning system and thus taking disaster-prevention measures. This study implements the numerical model, developed by Yu (1993) and Yu et al. (1994) to calculate the hydrodynamic in the seas around Taiwan. The main purpose of this study is to make a calibration and sensitivity analysis of the model parameters. Tidal gauge data around Taiwan coastal stations collected from June to October 2005 are used for the analysis and the comparison between the modeled data and the observations. Two steps have been taken for the model calibration and sensitivity analysis. First step is to calibrate the model for accurate prediction of the astronomical tide, and then the compound tide with meteorological influences. For the calibration of the astronomical tides, sensitivity analysis has been carried out by adjusting the horizontal diffusion coefficient and the bottom friction coefficients used in the model. The sensitivity of the time-step size used in the model and model grids fitted to coastlines are also checked. A depth dependent Chézy numbers are used in the model to describe bottom friction. The model has a better result when the Chézy value varied within 65 to 85. Modifying grids fitted to the coastline has improved the model results significantly. By improving the dynamic phenomenon brought about by the land features, the model calculation fits the real tidal phenomenon better. The analysis has shown that the model is less sensitive to the horizontal diffusion coefficient. Data from 22 tidal stations around Taiwan have been used for the comparisons. The maximum RMSE (root-mean-square error) is about 10 cm at WAi-Pu, whereas the minimum RMSE is about 1 cm for the stations along eastern coast. The calibration of the compound tide is divided into three cases. The first case is to calibrate the forecasted wind field. This has been done by comparing the forecasted wind field from the Central Weather Bureau with the satellite data obtained from QuikSCAT¡XLevel 3. The satellite wind speed has been applied to adjust the forecasted wind speed. The adjusted forecast wind field has shown improvement to the model predictions in the tidal stations south of Taichung, slightly improved in the eastern coast. The second case is tuning the drag coefficient on sea surface used by the hydrodynamic model. Several empirical formulas to describe the sea surface drag have been tested. The model result has shown little influence using various drag formulations. The third case is to single the influences by the meteo-inputs, i.e. the wind field and the atmospheric pressure. The tidal level is more sensitive to the variation of the atmospheric pressure through out the tests carried out during typhoon periods. The model simulation for 2006 using the best selected parameters has shown that the model is consisted with good stability and accuracy for both stormy and calm weather conditions.
122

Sea surface height: A versatile climate variable for investigations of decadal change

Thompson, Philip Robert 01 January 2012 (has links)
Decadal variations in climate are important, because the magnitude of sustained decadal change is often much larger than the often discussed background trends. Climate variability at interannual and longer periods is most often discussed in the context of climate modes defined by sea level pressure (SLP) and sea surface temperature (SST) patterns. However, SLP and SST are not capable descriptors of ocean dynamics. The approximately two decades of global sea surface height (SSH) measurements from satellite altimetry reveal substantial low-frequency redistributions of heat and salt in the ocean, which may or may not be related to defined climate modes. In addition, coastal sea level responds directly to synoptic variability in the atmosphere, providing long records of weather events in coastal areas. The unifying idea in the following analyses is the value and versatility of SSH from altimetry and sea level from tide gauges for investigations of decadal climate variability. Three applications of SSH and coastal sea level to the study of decadal change demonstrate the merits of using sea level for investigations of oceanic and atmospheric, episodic and continuous processes. The analyses concern a multidecadal change in storminess along the coast of the Southeast U.S., basin-scale coherent sea level variations in the western boundary of the North Atlantic, and the low-frequency response of the ocean to atmospheric forcing in the Northeast Pacific.
123

A chemistry-inspired middleware for flexible execution of service based applications

Wang, Chen 28 May 2013 (has links) (PDF)
With the advent of cloud computing and Software-as-a-Service, Service-Based Application (SBA) represents a new paradigm to build rapid, low-cost, interoperable and evolvable distributed applications. A new application is created by defining a workflow that coordinates a set of third-party Web services accessible over the Internet. In such distributed and loose coupling environment, the execution of SBA requires a high degree of flexibility. For example, suitable constituent services can be selected and integrated at runtime based on their Quality of Service (QoS); furthermore, the composition of service is required to be dynamically modified in response to unexpected runtime failures. In this context, the main objective of this dissertation is to design, to develop and to evaluate a service middleware for flexible execution of SBA by using chemical programming model. Using chemical metaphor, the service-based systems are modeled as distributed, selforganized and self-adaptive biochemical systems. Service discovery, selection, coordination and adaptation are expressed as a series of pervasive chemical reactions in the middleware, which are performed in a distributed, concurrent and autonomous way. Additionally, on the way to build flexible service based systems, we do not restrict our research only in investigating chemical-based solutions. In this context, the second objective of this thesis is to find out generic solutions, such as models and algorithms, to respond to some of the most challenging problems in flexible execution of SBAs. I have proposed a two-phase online prediction approach that is able to accurately make decisions to proactively execute adaptation plan before the failures actually occur.
124

Momentum transfer between semidiurnal internal waves and subinertial flow at a dissipating surface reflection

Jenkyns, Reyna L. 31 August 2009 (has links)
Full-depth profile data reveal semidiurnal internal waves radiating from Mendocino Escarpment. Energy- and momentum-fluxes are lost between stations bracketing the first surface reflection to the north. A plausible interpretation is that wave energy is dissipated as a consequence of superposition of incident and reflected waves. Because there are no profiler data in the superposition region, a theoretical approach is used to bridge the gap. Assuming zonal independence, constant stratification and linear decay in the dissipation region, the forcing on the mean equations is evaluated with parameters consistent with Mendocino Escarpment data. Both superposition and dissipation cause momentum-flux divergence forcing. An Ekman-like balance is anticipated with predicted mean zonal flows u~O(1-2 cm/s), comparable to surface wind-forced Ekman currents.
125

Chemically-mediated interactions in the plankton: defenses against grazing and competitors by a red tide dinoflagellate

Prince, Emily Katherine 19 March 2008 (has links)
The species composition of planktonic communities is determined not only by abiotic factors, such as nutrient availability, temperature, and water column stratification but also by biotic interactions between hosts and parasites, predators and prey, and among competitors. Blooms of the red tide dinoflagellate, Karenia brevis, can dramatically alter the planktonic community, reaching densities of millions of cells per liter and occurring nearly monospecifically. I investigated whether K. brevis uses chemical compounds to defend against grazing or to inhibit the growth of competitors. Because K. brevis is known to produce brevetoxins which act as potent neurotoxins in mammals, I also investigated whether brevetoxins played a role in competition or predator resistance. Experiments revealed that copepods fed diets rich in Karenia brevis experienced lowered fitness, however, nutritional inadequacy, rather than toxicity, was responsible for the decrease in grazer fitness. Compounds exuded from natural samples of K. brevis blooms did, however, inhibit the growth of four of five model competitors. Compounds exuded from K. brevis cultures were similarly allelopathic to competitors. Exposure to these allelopathic compounds resulted in lowered photosynthetic efficiency of all competitors, and decreased cell membrane integrity of three competitors. The allelopathic potency of K. brevis blooms was variable between collections and years, but allelopathy did not correlate with bloom density or concentration of brevetoxins. However, the variability of allelopathy could partially be explained by the presence of specific competitors. The diatom Skeletonema costatum reduced the growth-inhibiting effects of K. brevis bloom exudates, suggesting that S. costatum has a mechanism for undermining K. brevis allelopathy. Allelopathic compounds exuded by K. brevis that inhibited the growth of the diatom Asterionellopsis glacialis were partially characterized. K. brevis produced multiple, polar, organic compounds that inhibited A. glacialis growth. Exuded brevetoxins, on the other hand, had no effect on A.glacialis growth. Taken together, these results indicate that K. brevis is not chemically defended against grazing, but does produce yet-unidentified allelopathic compounds that inhibit the growth of competing phytoplankton. Blooms of K. brevis may be facilitated by the exudation of potent allelopathic compounds, but the specific phytoplankton assemblage has the potential to alter bloom dynamics.
126

Ondes internes divergentes et convergentes : étude expérimentale de la marée interne / Diverging and converging internal waves : a laboratory study of the internal tide

Shmakova, Natalia 15 December 2016 (has links)
Les océans de la Terre sont stratifiés en densité par les gradients de température et de salinité.L'interaction des courants de marée avec la topographie du fond océanique entraîne donc le rayonnement des ondes de gravité interne dans l'intérieur de l'océan. Ces ondes sont appelées marées internes et leur dissipation due à le déferlement des ondes nonlinéaires joue un rôle important dans le mélange de l'océan abyssal, et donc dans la circulation océanique à la grande échelle.Dans ce contexte, nous étudions la génération des ondes internes par l’oscillation d’objet de différentes géométries simplifiées afin de modéliser le marée barotropique sur la topographie océanique et considérons les effets linéaires et nonlinéaires sur ces ondes résultant d’interactions avec l'objet et entre ces ondes.La contribution relativement nouvelle de cette thèse est l'étude des aspects de flux tridimensionnels qui étaient accessibles avec notre approche expérimentale, et sont généralement difficiles à étudier par modélisation numérique et analytique.Nous étudions d'abord la structure des ondes fundamentale et des harmoniques supérieur pour un sphéroïde oscillant, émettant des ondes divergentes. Les harmoniques supérieures sont générées par l'instabilité non linéaire à la surface de l'objet avec des effets nonlinéaires dans la zone d'intersection des faisceaux fundamentales. Ils peuvent se croiser et se concentrer, donc augmenter d'énergie, et devenir dominant sur les ondes fundamentales. On détermine les structures horizontales des ondes fundamentale et des harmoniques supérieures.Subséquemment, nous considérons les ondes générées par un tore oscillant, qui convergent vers un point focal. En dehors de cette région focale, les résultats expérimentaux et les prédictions théoriques sont en bon accord, mais dans la région focale, l'amplitude de l'onde est deux fois plus grande que près du tore, conduisant à une amplification locale nonlinéaire et à un déferlement des onde pour les grandes amplitudes d'oscillations. En conséquence, la propagation des ondes fundamentales se trouve entravée dans la région focale. L'onde stationnaire se forme alors que de nouvelles ondes sont générées et émises de cette région focale.Un tore plus grand a été testé sur la plate-forme Coriolis pour comparer la focalisation des ondes de gravité internes, inertie-gravité et des ondes inertielles dans un régime faiblement visqueux. En raison de la complexité de la zone focale, une seconde harmonique est observée même quand l'amplitude d'oscillation est faible. Le champ de vorticité verticale des ondes de gravité interne présente une structure dipolaire dans la zone focale, qui se transforme dans le cas tournant en une structure de vortex "Yin-Yang". La structure globale des faisceaux des ondes inertiels est proche de celle pour des ondes de gravité internes, bien q'elle est relativement plus intense. / The Earth's oceans are stratified in density by temperature and salinity gradients.The interaction of tidal currents with ocean bottom topography results therefore in the radiation of internal gravity waves into the ocean interior. These waves are called internal tides and their dissipation owing to nonlinear wave breaking plays an important role in the mixing of the abyssal ocean, and hence in the large-scale ocean circulation.In this context we investigate the generation of internal waves by oscillating objects of different idealized geometries as a model of barotropic flow over ocean topography, and consider linear as well as nonlinear effects on these waves resulting from interactions with the object and from wave--wave interactions.The relatively novel contribution of this thesis is the investigation of three-dimensional flow aspects that were accessible with our experimental approach, and are generally difficult to investigate by numerical and analytical modelling.First we investigate the wave structure of the first and higher harmonics for an oscillating spheroid, emitting diverging waves. Higher harmonics are generated by nonlinear instability at the surface of the object together with nonlinear effects in the zone of intersection of the primary beams. They may intersect and focus, therefore increase in energy, and become dominant over the first harmonic. The horizontal structures of both, first and higher harmonics are determined.We then consider waves generated by an oscillating torus, that are converging to a focal point. Outside this focal region experimental results and theoretical predictions are in good agreement, but in the focal region the wave amplitude is twice as large as it is close to the torus, leading to local nonlinear wave amplification and incipient wave breaking for large oscillation amplitudes. As a result, the propagation of the first harmonic waves is found to be hindered in the focal region. A standing pattern forms, while new waves are generated and emitted away from this focal region.A larger torus has been tested at the Coriolis platform to compare the focusing of internal gravity, inertia--gravity and inertial waves in a low viscous regime. Owing to the complexity of the focal region, a second harmonic is observed even at low oscillation amplitude. The vertical vorticity field of internal gravity waves exhibits a dipolar structure in the focal zone, which transforms in the rotating case into a ``Yin--Yang-shaped'' monopolar vortex structure. The overall structure of the inertial wave beams is close to that for internal gravity waves, though relatively more intense.
127

Utilising probabilistic techniques in the assessment of extreme coastal flooding frequency-magnitude relationships using a case study from south-west England

Whitworth, Michael Robert Zordan January 2015 (has links)
Recent events such as the New Orleans floods and the Japanese tsunami of 2011 have highlighted the uncertainty in the quantification of the magnitude of natural hazards. The research undertaken here has focussed on the uncertainty in evaluating storm surge magnitudes based on a range of statistical techniques including the Generalised Extreme Value distribution, Joint Probability and Monte Carlo simulations. To support the evaluation of storm surge frequency magnitude relationships a unique hard copy observed sea level data set, recording hourly observations, was acquired and digitised for Devonport, Plymouth, creating a 40 year data set. In conjunction with Devonport data, Newlyn (1915-2012) tide gauge records were analysed, creating a data set of 2 million data points. The different statistical techniques analysed led to an uncertainty range of 0.4 m for a 1 in 250 year storm surge event, and 0.7 m for a 1 in 1000 storm surge event. This compares to a 0.5 m uncertainty range between the low and high prediction for sea level rise by 2100. The Geographical Information system modelling of the uncertainty indicated that for a 1 in 1000 year event the level uncertainty (0.7 m) led to an increase of 100% of buildings and 50% of total land affect. Within the study area of south-west England there are several critical structures including a nuclear licensed site. Incorporating the uncertainty in storm surge and wave height predictions indicated that the site would be potentially affected today with the combination of a 1 in 1000 year storm surge event coincident with a 1 in 1000 wave. In addition to the evaluation of frequency magnitude relations this study has identified several trends in the data set. Over the data period sea level rise is modelled as an exponential growth (0.0001mm/yr2), indicating the modelled sea level rise of 1.9 mm/yr and 2.2 mm/yr for Newlyn and Devonport, will potentially increase over the next century by a minimum of 0.2 m by 2100.The increase in storm frequency identified as part of this analysis has been equated to the rise in sea level, rather than an increase in the severity of storms, with decadal variations in the observed frequency, potentially linked to the North Atlantic Oscillation. The identification as part of this study of a significant uncertainty in the evaluation of storm surge frequency magnitude relationships has global significance in the evaluation of natural hazards. Guidance on the evaluation of external hazards currently does not adequately consider the effect of uncertainty; an uncertainty of 0.7 m identified within this study could potentially affect in the region of 500 million people worldwide living close to the coast.
128

Tides, Rossby and Kelvin waves simulated with the COMMA-LIM Model

Fröhlich, Kristina, Pogoreltsev, Alexander, Jacobi, Christoph 18 January 2017 (has links) (PDF)
A 48-layer version of the COMMA-LIM (Cologne Model of the Middle Atmosphere – Leipzig Institute for Meteorology) three-dimensional global mechanistic model of the Earth\'s atmosphere from 0 km to 135 km with logarithmic pressure height coordinates was developed. The model is capable of reproducing the global structures and propagation of different planetary waves in the middle atmosphere. The contribution of gravity waves, tides, Rossby and Kelvin waves into the zonally averaged momentum budget of the mesosphere / lower thermosphere region has been investigated. / Eine neue Version des COMMA-LIM (Cologne Model of the Middle Atmosphere – Leipzig Institute for Meteorology) wurde im Zusammenhang mit der Erhöhung der vertikalen Schichtauflösung entwickelt. Das COMMA ist ein dreidimensionales globales mechanistisches Modell der Erdatmosphäre mit einer Ausdehnung von ca. 0 – 135 km in logarithmischen Druckkoordinaten. Damit können globale Eigenschaften der mittleren Atmosphäre sowie die Ausbreitung verschiedener planetarer Wellen nachvollzogen werden. Die Beiträge der Schwerewellen, thermischer Gezeiten, Rossby und Kelvin Wellen zur zonal gemitteltem Impulsbalance der Mesosphäre und unteren Thermosphäre wurden untersucht.
129

Deep Green, en jämförande analys / Deep Green, a comparative analysis

Ahlin Wigardt, Oliver January 2016 (has links)
Marin energi har stor potential att på ett relativt miljövänligt sätt utvinna energi ur bl.a. vind, vågor och strömmar. Prototyper och kraftverk för att skörda energi ur tidvattenströmmar har de senaste 10 åren blivit mer populärt, inte minst för att uppnå de miljökraven som ställts internationellt. Minesto är ett företag som utvecklar ett tidvattenkraftverk som heter Deep Green, som har ett väldigt unikt utförande, och har analyserats och jämförts mot två andra relevanta konkurrerande tidvattenkraftverk, DeltaStream och Seagen S. Studien har fokuserats på de vanligaste utförandena och variation vad gäller transmission, fundament, installation, strategi för att utföra underhåll och reparationer, reglering och elnätsanslutningar, för att sedan på ett mer strukturerat sätt förklara och beskriva de tre kraftverken. Deep Green är en så kallad tidvattensdrake. Tidvattensdraken består av en vinge med gondol och turbin som är monterad i havsbotten med ett tjuder. När tidvattnet förs över vingen börjar Deep Green att färdas framåt, på grund av den lyftkraft som bildas över vingen, i en bana formad som en åtta. Kraftverket uppnår sin märkeffekt på 0,5MW vid tidvattenströmmar på 1,4 m/s. DeltaStream och Seagen S är båda tidvattenkraftverk med horisontal axiala monterade turbiner, dvs. samma princip som vindkraftverk men tillämpad under vatten. DeltaStream och Seagen S producerar vid märkeffekt 1,2MW respektive 1,2MW - 2,0MW vid strömhastighet på 3,1 m/s respektive 2,5 m/s. Den jämförande analysen påvisar att Deep Green har störst potential och var bäst på 8 av 18 punkter. Analysen sammanställdes och rangordnades genom poängen 1-3, med avseende på egenskaper i förhållande till varandra då kraftverket med bäst egenskap under en rad fick 3 poäng och den minst bra får 1 poäng. Saknas uppgift ges ett poäng och likadana/liknande egenskaper ger 2 eller 1 poäng beroende på egenskap. Denna sammanställning gav Deep Green 42 poäng, Seagen S 36 poäng och DeltaStream 34 poäng. / Marine Energy has a great potential to extract energy in a relatively environmentally stable order from e.g. wind, waves and streams. Prototypes and power plants to extract energy from tidal streams have gotten quite popular the last 10 years, none the less because of the international environmental agreements. Minesto is a business that’s developing a tidal power plant called Deep Green that has a very unique design, and has been analysed and compared with two other relevant competitive tidal power plants, DeltaStream and Seagen S. This study has focused on the most common designs and variation by transmission, foundation, installation, strategy for maintenance and repairs, control and grid connections, to in a more structured way explain and introduce the three tidal power plants. Deep Green is a so called tidal kite. The tidal kite consists of a wing with nacelle and a turbine, and the unit is mounted to the seabed with a tether. Deep Green starts to move forward when the tide flows over the wing, due to the lift force, in a 8 shaped trajectory. The power plant reaches its max power extraction of 0,5 MW in tides from 1,4 m/s. DeltaStream and Seagen S are both tidal power plants with horizontally mounted turbines, by the same principle as wind power plants but design for underwater use. DeltaStream and Seagen S are producing 1,2 MW and 1,2MW – 2,0MW in tides from 3,1 m/s and 2,5 m/s, respectively. The comparing analysis shows that Deep Green has the greatest potential and was the best in 8 out of 18 points The analysis was compiled and was ranked through the points 1-3, with respect to characteristics relative to each other where the power plant with the best characteristic in one row got 3 points and the least good characteristic got 1 point. Is any information missing is 1 point given and equivalent properties get 2 or 1 point depending on the property. This compilation gave Deep Green 42 points, Seagen S 36 points and DeltaStream 34 points.
130

Reproductive ecology and population dynamics of two sympatric species of Macoma (Bivalvia)

Rae, John Gibson, III 01 January 1975 (has links)
Populations of the sympatric intertidal bivalves, Macoma secta and M. nasuta are compared as to reproductive ecology and population dynamics. Histological examination of seasonal gonadal changes indicate that both species undergo dormancy in the winter months and rapid gamete proliferation in the spring. However, the timing of spawning differs. The M. secta population synchronously spawned in August while the M. nasuta population spawned lightly in late spring and more heavily in the fall. Fecundity estimates indicate M. nasuta adds 140% of winter weight in gametes and M. secta only adds 43% of winter weight in gametes. Spat fall was detected in January for both species and was light in intensity, for either species only 24 per m2. Nursery areas were determined for M. nasuta, which corresponds to adult distributions, and for M. secta, which correspond to the upper and lower fringes of the intertidal distribution but not the center. Analysis of variance on distributional data indicate the temporal stability of density and size for M. secta. M. nasuta densities were also temporally stable but sizes were not. Both species demonstrated significant changes in density with tidal height. A measure of seasonal population variability, the Population-Time Mean Square, was found to have zero correlation with tidal height for M. secta, meaning that environmental stress was the same for individuals at each tidal height . This is believed related to the gradient of calm size to tidal height. An argument for density dependence in M. secta is given with emphasis on individual growth and realized population fecundity; the null hypothesis: As density increases, the resources per individual decrease, therefore the growth rate of individuals decreases. Analysis of sympatric populations indicate differing patterns of life history, pointing out that selection has favored these two species coexistence. Analysis of population dynamics indicated that in comparison to M. nasuta (Low Tide Horizon), M. secta (Mid Tide Horizon) was more stable (terminology from Ricketts, Calvin and Hedgpeth, 1969). This supports Castenholz’ (1967) idea that where climates are mild, the intertidal communities are more stable than the subtidal communities.

Page generated in 0.0426 seconds