Spelling suggestions: "subject:"topologia algébrica"" "subject:"topologia algébricas""
41 |
Homologia e cohomologia de variedades flag reais / Homology and cohomology of real flag manifoldsRabelo, Lonardo, 1983- 21 August 2018 (has links)
Orientador: Luiz Antonio Barrera San Martin / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-21T00:23:49Z (GMT). No. of bitstreams: 1
Rabelo_Lonardo_D.pdf: 1560307 bytes, checksum: ad1323aadd78f3943acaf2c6e13b96d0 (MD5)
Previous issue date: 2012 / Resumo: Esta tese apresenta uma abordagem para o estudo da topologia das variedades flag reais. A homologia é obtida pela determinação do operador fronteira da homologia celular. Isto se dá a partir de uma parametrização explícita das células de Shubert que fornecem a estrutura celular destas variedades. Para o anel de cohomologia de uma variedade flag maximal, encontram-se os seus geradores como classes de Stiefel-Whitney de um fibrado de linha sobre a variedade flag / Abstract: This thesis presents an approach for the study of topology of real flag manifolds. The homology is obtained by the determination of the boundary operator for the cellular homology. This follows from an explicit parametrization of the Schubert cells which gives a cellular structure for these manifolds. For the cohomology ring of a maximal flag manifold, its generators are found as Stiefel-Whitney classes of a line fiber bundle over the flag manifold / Doutorado / Matematica / Doutor em Matemática
|
42 |
Homologia simplicial e a característica de Euler-Poincaré / Simplicial homology and the Euler-Poincaré characteristicGonçalves, André Gomes Ventura 30 May 2019 (has links)
Desenvolvemos as ideias centrais da Homologia Simplicial e provamos a invariância topológica dos grupos de homologia para espaços homeomorfos. Discutimos também a invariância topológica da característica de Euler-Poincaré mostrando a sua relação com os grupos de homologia através dos números de Betti. Adicionalmente apresentamos conceitos da Álgebra Abstrata, especificamente da teoria de Grupos, importantes para o entendimento formal da álgebra homológica. Ao final, propomos atividades didáticas com objetivo de trazer as ideias de triangulação e invariância topológica ao contexto da sala de aula. / We develop central ideas of Simplicial Homology and prove the topological invariance of homology groups for homeomorphic spaces. We also discuss topological invariance of Euler- Poincaré characteristic showing its relation with the homology groups through Betti numbers. In addition, we present concepts of abstract algebra, specifically of group theory, which are important to formal understanding of homological algebra. In the end, we propose didactic activities in order to bring the ideas of triangulation and topological invariance to context of math classes on basic education.
|
43 |
Construção de uma teoria quântica dos campos topológica a partir do invariante de Kuperberg / Construction of a Topological Quantum Field Theory from the Kuperberg InvariantSilva, Anderson Alves da 28 September 2015 (has links)
Resumo Neste trabalho apresentamos, em detalhes, a construção de uma teoria quântica dos campos topológica (TQCT). Podemos definir uma TQCT como um funtor simétrico monoidal da categoria dos cobordismos para a categoria dos espaços vetoriais. Em duas dimensões podemos encontrar uma descrição completa da categoria dos cobordismos e classificar todas as TQCT\'s. Em três dimensões é possível estender alguns invariantes para 3-variedades e construir uma TQCT 3D. Nossa construção é baseada no invariante para 3-variedades de Kuperberg, o qual envolve diagramas de Heegaard e álgebras de Hopf. Começamos com a apresentação do invariante de Kuperberg definido para toda variedade 3D compacta, orientável e sem bordo. Para cada álgebra de Hopf de dimensão finita constrói-se um invariante. Por fim, apresentamos a TQCT associada com o invariante de Kuperberg. Isto é feito usando-se o fato de que o invariante de Kuperberg é definido como uma soma de pesos locais tal qual uma função de partição. A TQCT decorre dos operadores advindos de variedades com bordo. / Abstract In this work we present in detail a construction of a topological quantum field theory (TQFT). We can define a TQFT as a symmetric monoidal functor from cobordism categories to category of vector spaces. In two dimension, we can give a complete description of cobordism categories and classify all TQFT\'s. In three dimension it is possible to extend some specific 3-manifold invariants and to construct a TQFT 3D. Our construction is based on the Kuperberg 3-manifold invariant which involves Heegaard diagrams and Hopf algebras. We start with the presentation of the Kuperberg invariant defined for every orientable compact 3-manifold without boundary. For each finite-dimensional Hopf algebra we can construct a invariant. Finally we presente the TQFT associated with the Kuperberg invariant. This is made using the fact that the Kuperberg invariant is defined like a sum of local weights in the same way as a partition function. The TQFT is constructed from the operators given by manifolds with boundary.
|
44 |
Conjuntos minimais de pontos fixos e coincidências de aplicações fibradas / Conjuntos minimais de pontos fixos e coincidências de aplicações fibradasSilva, Weslem Liberato 23 October 2012 (has links)
Made available in DSpace on 2016-06-02T20:27:40Z (GMT). No. of bitstreams: 1
4629.pdf: 1448309 bytes, checksum: c6f5e451b1247c565791c643df7dc7d5 (MD5)
Previous issue date: 2012-10-23 / Financiadora de Estudos e Projetos / This thesis was developed in two parts. Firstly, we consider a pair of fiber-preserving maps f1, f2 : M → M in a fiber bundle with base S1 and fiber Klein bottle. Using an algebraic system of equations we found in what situations the minimal coincidence set over S1 of the pair (f1, f2) is empty. In the second part, motivated by this problem, we consider a fiber-preserving map f : M → M in a fiber bundle with base S1 and fiber torus. Using the one-parameter fixed point theory we studied the minimal fixed point set over S1 of the map f. In some fiber bundle we classified completely this sets. / Esta tese foi desenvolvida em duas partes. Inicialmente, consideramos um par de aplicações que preserva fibra, f1, f2 : M → M, em um fibrado com base S1 e fibra garrafa de Klein. Utilizando-se de um sistema algébrico de equações, descobrimos em que situações o conjunto minimal de coincidências sobre S1 do par (f1, f2) é vazio. Na segunda parte, motivado por esse problema, consideramos uma aplicação que preserva fibra, f : M → M, em um fibrado com base S1 e fibra toro. Usando a teoria algébrica de ponto fixo a 1-parâmetro estudamos o conjunto minimal dos pontos fixos sobre S1 da aplicação f. Em alguns fibrados foi possível obter uma classificação completa desses conjuntos.
|
45 |
O complexo de Morse-Witten via sequências espectrais / The Morse-Witten complex via spectral sequencesVieira, Ewerton Rocha, 1987- 17 August 2018 (has links)
Orientador: Ketty Abaroa de Rezende / Dissertação (mestrado) - Universidade Estadual de Campiknas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-17T15:05:58Z (GMT). No. of bitstreams: 1
Vieira_EwertonRocha_M.pdf: 3301438 bytes, checksum: 3fe2a609518ad6e7e190afc243b53ea4 (MD5)
Previous issue date: 2011 / Resumo: Nesse trabalho, estudaremos o complexo de Morse-Witten via sequências espectrais, utilizando a matriz de conexão sobre z que codifica as orbitas de conexão do uso de Morse associado ao complexo. O algoritmo do Método da Varredura aplicado à matriz de conexão sobre z produz uma sequência espectral (Er; dr), que por sua vez nos fornece informações importantes sobre a dinâmica. Dada a necessidade de computarmos os geradores dos -modulos Erp,q e as diferencias drp,q da seqüência espectral, utilizamos o software Sweeping Algorithm,que calcula os Erp,q e drp,q de forma rápida e eficiente. Apresentamos uma forma de estender o complexo de Morse-Witten, conforme [BaC1] e [BaC]. Tal complexo apresenta informações entre pontos críticos não consecutivos, ate então não obtidas pelo complexo de Morse-Witten. Para esse complexo estendido temos também uma seqüência espectral associada, através da qual obtemos informações dinâmicas, conforme os trabalhos [BaC1] e [BaC] / Abstract: In this work, we study the Morse-Witten Complex via spectral sequences, using the connection matrix over z, which codi_es the connecting orbits of the Morse ow associated to the complex. The Sweeping Method algorithm applied to the connection matrix over z produces a spectral sequence (Er; rd), which in turn gives us important information on the dynamics. Given the need to compute the generators of Z-modules Erp,q and the diferentials drp,q of the spectral sequence, we use the software Sweeping Algorithm, calculates Erp,q and drp,q quickly and efficiently. We present a way to extend the Morse-Witten as [BaC1] and [BaC]. This complex exhibits information between non-consecutive critical points, not obtainable using the Morse-Witten complex. For this extended Morse Complex we also have an associated spectral sequence, whereby dynamical information is also obtained as in [BaC1] and [BaC] / Mestrado / Mestre em Matemática
|
46 |
Construção de uma teoria quântica dos campos topológica a partir do invariante de Kuperberg / Construction of a Topological Quantum Field Theory from the Kuperberg InvariantAnderson Alves da Silva 28 September 2015 (has links)
Resumo Neste trabalho apresentamos, em detalhes, a construção de uma teoria quântica dos campos topológica (TQCT). Podemos definir uma TQCT como um funtor simétrico monoidal da categoria dos cobordismos para a categoria dos espaços vetoriais. Em duas dimensões podemos encontrar uma descrição completa da categoria dos cobordismos e classificar todas as TQCT\'s. Em três dimensões é possível estender alguns invariantes para 3-variedades e construir uma TQCT 3D. Nossa construção é baseada no invariante para 3-variedades de Kuperberg, o qual envolve diagramas de Heegaard e álgebras de Hopf. Começamos com a apresentação do invariante de Kuperberg definido para toda variedade 3D compacta, orientável e sem bordo. Para cada álgebra de Hopf de dimensão finita constrói-se um invariante. Por fim, apresentamos a TQCT associada com o invariante de Kuperberg. Isto é feito usando-se o fato de que o invariante de Kuperberg é definido como uma soma de pesos locais tal qual uma função de partição. A TQCT decorre dos operadores advindos de variedades com bordo. / Abstract In this work we present in detail a construction of a topological quantum field theory (TQFT). We can define a TQFT as a symmetric monoidal functor from cobordism categories to category of vector spaces. In two dimension, we can give a complete description of cobordism categories and classify all TQFT\'s. In three dimension it is possible to extend some specific 3-manifold invariants and to construct a TQFT 3D. Our construction is based on the Kuperberg 3-manifold invariant which involves Heegaard diagrams and Hopf algebras. We start with the presentation of the Kuperberg invariant defined for every orientable compact 3-manifold without boundary. For each finite-dimensional Hopf algebra we can construct a invariant. Finally we presente the TQFT associated with the Kuperberg invariant. This is made using the fact that the Kuperberg invariant is defined like a sum of local weights in the same way as a partition function. The TQFT is constructed from the operators given by manifolds with boundary.
|
47 |
Formalidade geométrica e números de Chern em variedades flag / Geometric formality and Chern numbers on flag manifoldsOliveira, Ailton Ribeiro de, 1987- 27 August 2018 (has links)
Orientadores: Caio José Colletti Negreiros, Lino Anderson da Silva Grama / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-27T16:12:58Z (GMT). No. of bitstreams: 1
Oliveira_AiltonRibeirode_D.pdf: 1000877 bytes, checksum: 4f91902c1ef47fbb7b02f75348402924 (MD5)
Previous issue date: 2015 / Resumo: A primeira parte do trabalho é dedicada ao estudo da formalidade geométrica em variedades flag. Uma Estrutura Riemanniana (M,g) é geometricamente formal se g possui a propriedade que todos os produtos wedge de formas harmônicas são harmônicos. Tal métrica g é chamada formal. Vamos analisar esse fato quando M é uma variedade flag usando métodos topológicos. Na verdade, mostraremos que muitas variedades flag não admitem nenhuma métrica formal g. Na segunda parte do trabalho, calcularemos os números de Chern de várias variedades flag e vamos usá-los para classificar algumas estruturas quase complexas invariantes. Além disso, mostraremos, com o auxílio do Teorema de Kodaira, que os números de Chern satisfazem algumas relações impostas pelo Teorema de Hirzebruch-Riemann-Roch / Abstract: The first part of work is dedicated to the study of geometric formality on flag manifolds. A Riemannian Structure (M,g) is geometrically formal if g has the property that all wedge products of harmonic forms are harmonic. Such metric g is called formal. We are going to analyse this fact when M is a flag manifold using topological methods. Indeed, we will show that many flag manifolds do not admit a formal metric g. In the second part of work, we will calculate Chern numbers of many flag manifolds and we are going to use them to classify some invariant almost complex structures. Furthermore, we will show with help of the Kodaira Theorem that the Chern numbers satisfy some relations imposed by the Hirzebruch-Riemann-Roch Theorem / Doutorado / Matematica / Doutor em Matemática
|
48 |
Topologia algébrica não-abeliana / Non-abelian algebraic topologyVieira, Renato Vasconcellos 07 February 2014 (has links)
O presente trabalho é uma apresentação de aplicações de estruturas da álgebra de dimensões altas para a teoria de homotopia. Mais precisamente mostramos que existe uma equivalência entre as categorias dos cat$^n$-grupos e a dos $n$-cubos cruzados de grupos, ambas equivalentes a categoria das $n$-categorias estritas internas à categoria de grupos, e uma certa subcategoria da categoria dos $n$-cubos fibrantes, os chamados $n$-cubos de Eilenberg-MacLane. Além disso existe uma equivalência entre uma localização dessa subcategoria e a categoria homotópica dos $(n+1)$-tipos homotópicos, o que sugere a utilidade de usar as estruturas algébricas apresentadas como invariantes topológicas. O teorema central dessa teoria, o teorema generalizado de Seifert-van Kampen, diz que o funtor dos $n$-cubos de fibração aos cat$^n$-grupos usado para mostrar a equivalência mencionada preserva o colimite de certos diagramas e que nesses casos conectividade é preservada, o que permite certas computações. Apresentaremos definições das estruturas algébricas mencionadas além de como calcular certos colimites na categoria de $n$-cubos cruzados de grupos, demonstraremos os teoremas principais da teoria e mostramos como usar esses resultados para generalizar resultados clássicos da topologia algébrica como o teorema de Blakers-Massey, o teorema de Hurewicz e a fórmula de Hopf para homologia de grupos. / The present work is a presentation of applications to homotopy theory of structures in higher dimensional algebra. More precisely we show how the categories of crossed $n$-cubes of groups and of cat$^n$-groups, both equivalent to the category of strict $n$-categories internal to the category of groups, are equivalent to a subcategory of the category of fibrant $n$-cubes, namely the Eilenberg-MacLane $n$-cubes. There is also an equivalence between a localization of the category of Eilenberg-MacLane $n$-cubes and the homotopy category of homotopy $(n+1)$-types, which suggests the usefulness of the presented algebraic structures as topological invariants. The central theorem of this theory, the generalized Seifert-van Kampen theorem, states that the functor from $n$-cube of fibrations to the cat$^n$-groups used to show the aforementioned equivalence preserves the colimit of certain diagrams, and in these cases connectivity is preserved, which permits some computations. We present definitions of the relevant algebraic structures and also how to calculate certain colimits in the category of crossed $n$-cubes of groups, we demonstrate the main theorems of the theory and then we show how to generalize classical results in algebraic topology like the Blakers-Massey theorem, Hurewicz theorem and Hopf\'s formula for the homology of groups.
|
49 |
Grupo de tranças e espaços de configuraçõesMaríngolo, Fernanda Palhares 27 June 2007 (has links)
Made available in DSpace on 2016-06-02T20:28:22Z (GMT). No. of bitstreams: 1
DissFPM.pdf: 979275 bytes, checksum: 1b13e7e3772ecbeac26224804b180369 (MD5)
Previous issue date: 2007-06-27 / Universidade Federal de Sao Carlos / In this work, we study the Artin braid group, B(n), and the confguration spaces (ordered and unordered) of a path connected manifold of dimension ¸ 2. The fundamental group of confguration space (unordered) of IR2 is identifed with the Artin braid group. This identifcation is used to conclude that the confguration space of IR2
is an Eilenberg-MacLane space of type K(B(n), 1). Therefore, it can be proved that the
braid group B(n) contains no nontrivial element of the finite order. We use this fact to
prove a generalization of a 2−dimensional version of the Borsuk-Ulam theorem presented
by Connett [3]. / Neste trabalho, apresentamos o grupo de tranças de Artin, B(n), e os espaços de configurações (ordenado e não ordenado) de uma variedade conexa por caminhos de
dimensão ¸ 2, a fim de identificar o grupo fundamental do espaço de configurações (não
ordenado) de IR2 com o grupo de tranças de Artin. Usamos este fato para concluir que
o espaço de configurações de IR2 é um espaço de Eilenberg-MacLane do tipo K(B(n), 1).
Deste modo pode ser provado que o grupo de tranças B(n) não possui elementos não
triviais de ordem finita, e usamos este fato na demonstração de uma generalização da
versão bi-dimensional do teorema de Borsuk-Ulam apresentado por Connett [3].
|
50 |
Detectando fatores de variedade de codimensão um com propriedades de posição geralMonteiro, Silvestre da Cruz 18 May 2010 (has links)
Made available in DSpace on 2016-06-02T20:28:24Z (GMT). No. of bitstreams: 1
3158.pdf: 931917 bytes, checksum: b087d03944cb71331eae19f40f0fe194 (MD5)
Previous issue date: 2010-05-18 / Universidade Federal de Sao Carlos / This work is an approach to the famous "Product with a Line Problem". It investigates the class of topological spaces whose cartesian product with R is a topological manifold. Such spaces are called "Codimension One Manifold Factors". Based mainly on [5, 7, 14, 15, 24], we introduce the concept of generalized manifolds, which are separable ANR spaces with same local homological behavior that the topological manifolds, we define DAP, DADP, DDP, DHP, DCP general position properties and, through these concepts and a machinery topological-algebraic, we have got answers to the motivator problem. Even about the strategic importance of the DHP general position property, we studied a criterion to detect it into the generalized manifolds category, namely, the P2MP. / Este trabalho é uma abordagem do famoso "Problema do Produto com uma Reta", o qual investiga a classe dos espaços topológicos cujo produto cartesiano com R é uma variedade topológica. Tais espaços são chamados de "Fatores de Variedade de Codimensão Um". Com base principalmente em [5, 7, 14, 15, 24], introduzimos o conceito de variedades generalizadas, as quais são espaços separáveis ANR que têm mesmo comportamento homológico local que as variedades topológicas, definimos as propriedades de posição geral DAP, DADP, DDP, DHP e DCP e, através desses conceitos e um ferramentário topológico-algébrico, obtivemos respostas ao problema motivador. Dada ainda a importância estratégica da propriedade de posição geral DHP, estudamos um critério para detectá-la na categoria das variedades generalizadas, qual seja, a P2MP.
|
Page generated in 0.0438 seconds