• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 5
  • 4
  • 3
  • Tagged with
  • 23
  • 23
  • 9
  • 7
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

UMA METODOLOGIA PARA ALOCAÇÃO DE PERDAS ATIVAS DE TRANSMISSÃO EM AMBIENTE COMPETITIVO / A METHODOLOGY FOR LOSS ACTIVE ALLOCATION OF TRANSMISSION IN COMPETITIVE ENVIRONMENT

Santos Junior, Bartolomeu Ferreira dos 13 April 2007 (has links)
Made available in DSpace on 2016-08-17T14:53:08Z (GMT). No. of bitstreams: 1 Bartolomeu ferreira.pdf: 2681101 bytes, checksum: 05d2fad3f69568c193c20ccd8addecd7 (MD5) Previous issue date: 2007-04-13 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The goal of loss allocation methodologies is to share the responsibility for transmission losses among generators and loads. Several loss allocation methods have been developed to solve this problem. However, there is not consensus regarding to the most appropriated approach methodology. There are some methods presenting suitable accuracy, however, still remains the equity question. It can say that there isn t an ideal method, although it is desirable that any method achieve efficient allocation criteria. In this work, it is proposed a methodology for active power transmission loss allocation, based on circuit laws, proportional sharing and superposition principles. The methodology uses a load flow solution to share the global loss of the system among market participants. The problem is divided into operation scenarios and taking into account transmission paths used by generators to supply the loads. Tests, analyses and comparison with some methods proposed in literature are performed, using a five bus test system, and IEEE 30 and IEEE 118 systems. / Os métodos de alocação de perdas têm como objetivo distribuir entre os geradores e cargas a responsabilidade por perdas no sistema de transmissão, de uma forma equilibrada. Embora existam vários métodos de alocação propostos na literatura para resolver este problema, ainda não existe um consenso sobre o melhor critério a ser seguido, sendo que atualmente cada país utiliza uma metodologia diferente com maior ou menor grau de aproximação. Há alguns métodos que poderiam ser considerados como exatos , entretanto a questão da equidade ainda continua em aberto. Pode-se afirmar que ainda não existe nenhum método ideal, embora seja desejável que qualquer metodologia objetive atingir a critérios eficientes de alocação. Neste trabalho é proposta uma metodologia para alocação de perdas ativas de transmissão, baseada nas leis de circuito, no princípio da divisão proporcional e no teorema da superposição. A metodologia utiliza os resultados de um fluxo de carga para alocar eficientemente a perda total do sistema entre os participantes do mercado, dividindo o problema em cenários de operação e considerando os caminhos de transmissão utilizados pelos geradores para suprir as demandas das cargas. São realizadas simulações e análises e comparações com alguns métodos já propostos na literatura, utilizando-se: um sistema teste de cinco barras, e os sistemas IEEE 30 e IEEE 118.
12

ENERGIRENOVERING AV ETT SMÅHUS- Tilläggsisolering och solceller : ENERGY RENOVATION OF A VILLA- additional insulation and solar cell

Potila, Elma January 2023 (has links)
Energibehov och energibesparing är något som är en viktig fråga får många hushåll just nu.Med skenande elpriser är det många som vill, och behöver, reducera sin förbrukning. En godidé för att minska energibehoven i gamla hus är att tilläggsisolera. Genom att tilläggsisoleragår det att minska energibehovet och även de uppvärmningskostnader som uppkommer.Detta arbete går ut på att studera ett småhus, byggt på 1970-talet, där den nuvarandeenergiförbrukningen jämförs med den förbrukning som blir efter att vinden hartilläggsisolerats. Efter att den nya förbrukningen har tagits fram görs även en beräkning på hurmycket solceller gynnar energiförbrukningen.Det genomförs en litteraturstudie för att få övergripande fakta om energianvändning, solcelleroch tilläggsisolering. Insamling av fakta och relevanta värden för det studerade huset erhållsgenom ett möte med de boende. Beräkningarna behandlar bland annat transmissionsförlustergenom bjälklag, energiförbrukning och producerad solel, och utförs med hjälp av två olikametoder.Huset som studeras är placerat i Degerfors, och har en boarea på 102,5 m2. Det värde somanvänds för energiförbrukningen är ett medelvärde som har räknats fram från åren 2021 och2022. Det beräknade värdet ligger på cirka 11 786 kWh per år.Resultatet av beräkningarna visar att energiförbrukningen minskar mellan 13 och 14 procentmed endast tilläggsisolering, och mellan 52 och 69 procent med tilläggsisolering och solceller.Slutsatsen är att det absolut är en god idé att tilläggsisolera om de boende vill sänkaenergiförbrukningen. Solceller gynnar energiförbrukningen, men det är endast påsommarhalvåret som de visar en tydlig skillnad. / Energy demand and energy saving is something that is an important question for manyhouseholds right now. With growing electricity prices, many people want, and need, to reducetheir consumption. A good idea to reduce energy needs in old houses is to add additionalinsulation. By additional insulation, it is possible to reduce the energy demand and also theheating costs that arise.This work consists of studying a villa, built in the 1970s, where the current energyconsumption is compared with the consumption that will be after the attic has beenadditionally insulated. After the new consumption has been estimated, a calculation is alsomade of how much solar cells benefit the energy consumption.The method used is first a literature study to obtain overall facts about energy use, solar cellsand additional insulation. Collection of facts and relevant values for the studied house isobtained through a meeting with the residents. The calculations deal with, among other things,transmission losses through joists, energy consumption and produced solar electricity, and arecarried out using two different methods.The house under study is located in Degerfors, and has a living area of 102.5 m2. The valueused for energy consumption is an average value that has been calculated from the years 2021and 2022. The calculated value is approximately 11,786 kWh per year.The results of the calculations show that energy consumption is reduced between 13 and 14percent with only additional insulation, and between 52 and 69 percent with additionalinsulation and solar cells.In conclusion, it is absolutely a good idea to additionally insulate if the residents want toreduce energy consumption. Solar cells benefit energy consumption, but it is only in thesummer half that they show a clear difference.
13

Estudo do acoplamento elétrico-energético no planejamento da operação de curto-curtíssimo prazo utilizando FPOCA / The study of electric-energetic coupling in the short-shortest term operation planning using FPOCA

Rodrigues, Luiz Giovani Lopes 15 December 2003 (has links)
Este trabalho traz um estudo inicial do acoplamento elétrico-energético no planejamento da operação de curto-curtíssimo prazo utilizando Fluxo de Potência Ótimo em Corrente Alternada (FPOCA) com o objetivo de averiguar possíveis desvios entre o planejamento energético e o planejamento elétrico. É feita uma análise da influência dos aspectos elétricos do sistema de transmissão no planejamento energético de curto prazo utilizando-se um FPOCA, juntamente com a minimização do custo da geração e das perdas na transmissão. A minimização do custo da geração é feita através de uma otimização do sistema hidrotérmico utilizando-se um Programa de Otimização de Sistema Hidrotérmico (POSH) baseado em um algoritmo simplex convexo e na aplicação da teoria de fluxo em rede, enquanto que a minimização das perdas na transmissão é feita utilizando-se um FPOCA baseado no método Dual-Newton. Estas ferramentas permitem analisar a necessidade de ajustes para compatibilizar a otimização energética e a otimização elétrica de um sistema eletroenergético, e buscar um planejamento \"ótimo\" que atenda os planejamentos energético e elétrico. Dessa forma, a interface elétrico-energética se torna mais \"forte\", pois as metas de geração obtidas pelo planejamento de curto prazo que serão passadas para o planejamento de curtíssimo prazo, já incluem o efeito dos aspectos elétricos do sistema. Isto proporciona um controle dos desvios da trajetória \"ótima\" do sistema, o que contribui para melhorar a otimização global do planejamento da operação eletroenergética. / This work brings a beginning study of the electric-energetic coupling in the short-shortest term operation planning using Optimal Power Flow in Alternate Current (OPFAC) aiming to inquire possible mismatches between the energetic planning and the eletric planning. It is made an analysis of the electrical aspects influence in the short term energetic planning using OPFAC together with the minimization of generation cost and the transmission losses. The generation cost minimization is made for the hidrothermal system optimization using a Hydrothermal System Optimization Program (POSH) based on a convex simplex algorithm and the application of the network flow theory, while the transmission losses minimization is made using an OPFAC based on the Dual-Newton method. These tools allow to analyze the necessity of adjustments to make compatible the energetic optimization and the electric optimization of the power system, and to search an \"optimal\" planning that attends both the energetic planning and electric planning. Like this, the electric-energetic interface becomes strongest, therefore the generation goals gotten by the short-term planning, that will be passed to the shortest-term planning, already includes the effect of the electric system aspects. These one provide the mismatches control in the optimal trajectory of the system and it contributes to improve the global optimization of power system operation planning. The analyzed system is the 440 kV Equivalent System of CESP (Energetic Company of São Paulo), with 53 bus, being 7 generation bus, 85 transmission lines and 48 transformers.
14

ASSESSMENT OF LOCATIONAL MARGINAL PRICE SCHEMES FOR TRANSMISSION CONGESTION MANAGEMENT IN A DEREGULATED POWER SYSTEM

Muhammad Bachtiar Nappu Unknown Date (has links)
The growth of electricity markets around the world has introduced new challenges in which one of the challenges is the uncertainty that has become a structural element in this new environment. Market players have to deal with it to guarantee the appropriate power system planning and operation as well as its own economical liquidity. Under an open access environment in a deregulated power system, transmission management holds a vital role in supporting transactions between suppliers and customers. Nevertheless, a transmission network has some constraints that should be addressed in order to ensure sufficient control to maintain the security level of a power system while maximizing market efficiency. The most obvious drawback of transmission constraints is a congestion problem that becomes an obstacle of perfect competition among the market participants since it can influence spot market pricing. The system becomes congested when the supplier and customer agree to produce and consume a particular amount of electric power, but this can cause the transmission network to exceed its thermal limits. Congestion can cause the market players to exercise market power that can result in price volatility beyond the marginal costs. Thus, it is important to manage congestion efficiently in the design of a power market. One mechanism that has direct correlation with transmission management is market clearing price (MCP). Under an open access environment, energy prices throughout the network will be different and measured based on transmission constraint and network losses. When network losses are ignored and there is no congestion on the transmission lines, the power price will be the same at all nodes. This is known as uniform marginal pricing (UMP). However, as the power flow violates transmission constraints, redispatching generating units is required and this will cause the price at every node to vary. This phenomenon is defined as locational marginal pricing (LMP). Therefore, the market clearing price has a strong relationship with transmission management, which is needed to be assessed in order to obtain an efficient and transparent price but satisfying all market participants. This project investigates an alternative solution to the dispatch mechanism, and then formulates a new Locational Marginal Price scheme using optimization technique that may well control congestion as the main issue. The model will vary and be improved, to be distilled into energy price, congestion revenue, cost of losses, as well as transmission usage tariff. The objective of the project is to support developing standard market design (SMD) in managing transmission systems which promotes economic efficiency, lowers delivered energy costs, maintains power system reliability and mitigates exercising market power.
15

ASSESSMENT OF LOCATIONAL MARGINAL PRICE SCHEMES FOR TRANSMISSION CONGESTION MANAGEMENT IN A DEREGULATED POWER SYSTEM

Muhammad Bachtiar Nappu Unknown Date (has links)
The growth of electricity markets around the world has introduced new challenges in which one of the challenges is the uncertainty that has become a structural element in this new environment. Market players have to deal with it to guarantee the appropriate power system planning and operation as well as its own economical liquidity. Under an open access environment in a deregulated power system, transmission management holds a vital role in supporting transactions between suppliers and customers. Nevertheless, a transmission network has some constraints that should be addressed in order to ensure sufficient control to maintain the security level of a power system while maximizing market efficiency. The most obvious drawback of transmission constraints is a congestion problem that becomes an obstacle of perfect competition among the market participants since it can influence spot market pricing. The system becomes congested when the supplier and customer agree to produce and consume a particular amount of electric power, but this can cause the transmission network to exceed its thermal limits. Congestion can cause the market players to exercise market power that can result in price volatility beyond the marginal costs. Thus, it is important to manage congestion efficiently in the design of a power market. One mechanism that has direct correlation with transmission management is market clearing price (MCP). Under an open access environment, energy prices throughout the network will be different and measured based on transmission constraint and network losses. When network losses are ignored and there is no congestion on the transmission lines, the power price will be the same at all nodes. This is known as uniform marginal pricing (UMP). However, as the power flow violates transmission constraints, redispatching generating units is required and this will cause the price at every node to vary. This phenomenon is defined as locational marginal pricing (LMP). Therefore, the market clearing price has a strong relationship with transmission management, which is needed to be assessed in order to obtain an efficient and transparent price but satisfying all market participants. This project investigates an alternative solution to the dispatch mechanism, and then formulates a new Locational Marginal Price scheme using optimization technique that may well control congestion as the main issue. The model will vary and be improved, to be distilled into energy price, congestion revenue, cost of losses, as well as transmission usage tariff. The objective of the project is to support developing standard market design (SMD) in managing transmission systems which promotes economic efficiency, lowers delivered energy costs, maintains power system reliability and mitigates exercising market power.
16

ASSESSMENT OF LOCATIONAL MARGINAL PRICE SCHEMES FOR TRANSMISSION CONGESTION MANAGEMENT IN A DEREGULATED POWER SYSTEM

Muhammad Bachtiar Nappu Unknown Date (has links)
The growth of electricity markets around the world has introduced new challenges in which one of the challenges is the uncertainty that has become a structural element in this new environment. Market players have to deal with it to guarantee the appropriate power system planning and operation as well as its own economical liquidity. Under an open access environment in a deregulated power system, transmission management holds a vital role in supporting transactions between suppliers and customers. Nevertheless, a transmission network has some constraints that should be addressed in order to ensure sufficient control to maintain the security level of a power system while maximizing market efficiency. The most obvious drawback of transmission constraints is a congestion problem that becomes an obstacle of perfect competition among the market participants since it can influence spot market pricing. The system becomes congested when the supplier and customer agree to produce and consume a particular amount of electric power, but this can cause the transmission network to exceed its thermal limits. Congestion can cause the market players to exercise market power that can result in price volatility beyond the marginal costs. Thus, it is important to manage congestion efficiently in the design of a power market. One mechanism that has direct correlation with transmission management is market clearing price (MCP). Under an open access environment, energy prices throughout the network will be different and measured based on transmission constraint and network losses. When network losses are ignored and there is no congestion on the transmission lines, the power price will be the same at all nodes. This is known as uniform marginal pricing (UMP). However, as the power flow violates transmission constraints, redispatching generating units is required and this will cause the price at every node to vary. This phenomenon is defined as locational marginal pricing (LMP). Therefore, the market clearing price has a strong relationship with transmission management, which is needed to be assessed in order to obtain an efficient and transparent price but satisfying all market participants. This project investigates an alternative solution to the dispatch mechanism, and then formulates a new Locational Marginal Price scheme using optimization technique that may well control congestion as the main issue. The model will vary and be improved, to be distilled into energy price, congestion revenue, cost of losses, as well as transmission usage tariff. The objective of the project is to support developing standard market design (SMD) in managing transmission systems which promotes economic efficiency, lowers delivered energy costs, maintains power system reliability and mitigates exercising market power.
17

Estudo do acoplamento elétrico-energético no planejamento da operação de curto-curtíssimo prazo utilizando FPOCA / The study of electric-energetic coupling in the short-shortest term operation planning using FPOCA

Luiz Giovani Lopes Rodrigues 15 December 2003 (has links)
Este trabalho traz um estudo inicial do acoplamento elétrico-energético no planejamento da operação de curto-curtíssimo prazo utilizando Fluxo de Potência Ótimo em Corrente Alternada (FPOCA) com o objetivo de averiguar possíveis desvios entre o planejamento energético e o planejamento elétrico. É feita uma análise da influência dos aspectos elétricos do sistema de transmissão no planejamento energético de curto prazo utilizando-se um FPOCA, juntamente com a minimização do custo da geração e das perdas na transmissão. A minimização do custo da geração é feita através de uma otimização do sistema hidrotérmico utilizando-se um Programa de Otimização de Sistema Hidrotérmico (POSH) baseado em um algoritmo simplex convexo e na aplicação da teoria de fluxo em rede, enquanto que a minimização das perdas na transmissão é feita utilizando-se um FPOCA baseado no método Dual-Newton. Estas ferramentas permitem analisar a necessidade de ajustes para compatibilizar a otimização energética e a otimização elétrica de um sistema eletroenergético, e buscar um planejamento \"ótimo\" que atenda os planejamentos energético e elétrico. Dessa forma, a interface elétrico-energética se torna mais \"forte\", pois as metas de geração obtidas pelo planejamento de curto prazo que serão passadas para o planejamento de curtíssimo prazo, já incluem o efeito dos aspectos elétricos do sistema. Isto proporciona um controle dos desvios da trajetória \"ótima\" do sistema, o que contribui para melhorar a otimização global do planejamento da operação eletroenergética. / This work brings a beginning study of the electric-energetic coupling in the short-shortest term operation planning using Optimal Power Flow in Alternate Current (OPFAC) aiming to inquire possible mismatches between the energetic planning and the eletric planning. It is made an analysis of the electrical aspects influence in the short term energetic planning using OPFAC together with the minimization of generation cost and the transmission losses. The generation cost minimization is made for the hidrothermal system optimization using a Hydrothermal System Optimization Program (POSH) based on a convex simplex algorithm and the application of the network flow theory, while the transmission losses minimization is made using an OPFAC based on the Dual-Newton method. These tools allow to analyze the necessity of adjustments to make compatible the energetic optimization and the electric optimization of the power system, and to search an \"optimal\" planning that attends both the energetic planning and electric planning. Like this, the electric-energetic interface becomes strongest, therefore the generation goals gotten by the short-term planning, that will be passed to the shortest-term planning, already includes the effect of the electric system aspects. These one provide the mismatches control in the optimal trajectory of the system and it contributes to improve the global optimization of power system operation planning. The analyzed system is the 440 kV Equivalent System of CESP (Energetic Company of São Paulo), with 53 bus, being 7 generation bus, 85 transmission lines and 48 transformers.
18

Val av stomsystem för en offentlig lokal : Fallstudie avseende entreprenadformen partnering och beaktade av miljöperspektiv / Choice of frame system for a public premise : Case study regarding contractual partnerships and consideration of environmental perspectives

Athanasiadis, Michail, Al Sahi, Hussein January 2018 (has links)
Produktion och drift av byggnader står för en stor del av de globalakoldioxidutsläppen och därför är det viktigt att utreda vilken betydelse valet avbyggnaders stomsystem har avseende energiförbrukning och klimatpåverkan underen livscykel. Syfte med denna studie är dels att visa hur olika delar av ett stomsystemi en offentlig lokal kan utvärderas och väljas med hänsyn till miljöpåverkan och delsatt utreda hur entreprenad-/samarbetsformen partnering fungerar vid utvecklingen aven offentlig lokal. En fallstudie på en nyligen uppförd psykiatrilokal genomfördes och studien somomfattade genomgång av projekthandlingar, intervjuer med aktörer i projektet ochberäkningar visade att byggnaden till stor del kunde har byggts med trästommeistället för med betongstomme. Detta hade kunnat leda till såväl minskadetransmissioner som minskade koldioxidutsläpp från tillverkningen av material.Orsaker till att man i partneringprojektet valde prefabricerade betongytterväggar,snarare än en lösning med trästomme, var framför allt byggentreprenörens störrevana vid att arbeta med betong, i kombination med att beställaren inte ville riskera enlång produktionstid eller oväntade kostnader. Mer tid för dialog, analys och störreöppenhet för att arbeta med nya lösningar hade kunnat leda till en mer miljövänligstomlösning. / Production and operation of buildings accounts for a large part of global carbondioxide emissions, and it is therefore important to investigate the importance of thechoice of buildings' frame systems in terms of energy consumption and climateimpact over a lifecycle. The purpose of this study is partly to show how differentparts of a frame system in a public premise can be evaluated and chosen on the basisof environmental impact and partly to investigate how the contractual-/collaborativepartnership work in the development of a public premise. A case study of a newly established psychiatric clinic was conducted, and the studyincluded review of project documents, interviews with project participants andcalculations. The results showed that the building could, to a large extent, beconstructed with wood rather than with concrete. This would have resulted in bothreduced transmissions of heat and reduced carbon dioxide emissions from theproduction of materials. The reasons for choosing the prefabricated concrete slabs inprefabricated concrete walls, rather than a wood-based solution, were above all thecontractor's greater experience of working with concrete, coupled with the fact thatthe client would not risk a long production time or unexpected costs. More time fordialogue, analysis and greater openness for working with new solutions could haveled to a more environmentally friendly solution.
19

Bed Material Characteristics and Transmissions Losses in an Ephemeral Stream

Murphey, J. B., Lane, L. J., Diskin, M. H. 06 May 1972 (has links)
From the Proceedings of the 1972 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - May 5-6, 1972, Prescott, Arizona / An average of 6 to 13 streamflows from intense summer convective storms occurs annually in the walnut gulch experimental station, 58 square miles in southeastern Arizona. Flows last generally less than 6 hours, and the channels are dry 99 percent of the time. The limiting factors imposed by the geology and geomorphology of the channel to transmission losses of a 6 square mile channel in the station are described. The Precambrian to quaternary geology is outlined, and geomorphology of the channels are described. Volume, porosity and specific yield of alluvium were determined. There is 106 acre-feet of alluvium with a mean specific yield of 28 percent, and a maximum water absorbing capacity of 29 acre-feet or 7 acre-feet per mile of reach. Channel slope is insensitive to changes in geological material beneath it or to changes in flow regime. Channel cross section is highly sensitive to geology and flow regime. Transmission losses were highly correlated to volume of inflow.
20

Water Disposition in Ephemeral Stream Channels

Sammis, T. W. 06 May 1972 (has links)
From the Proceedings of the 1972 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - May 5-6, 1972, Prescott, Arizona / The contribution of flows from small watersheds to groundwater recharge is of interest. Water disposition depends on infiltration and evaporation characteristics. This study had the objective of developing an infiltration equation for estimating transmission losses during a flow event in an ephemeral stream near Tucson, Arizona, in the rocky mountain forest and range experiment station. Palo Verde, desert hackberry, cholla, marmontea and mesquite are the major bank species of the sandy channels. A climatic section consisting of a hydrothermograph recording rain gage and class a evaporation pan was installed. A water balance method was used to estimate evapotranspiration. A specially designed infiltrometer was used to simulate flow events. The data allowed the following conclusions: Philip's infiltration equation is an excellent mathematical model, initial moisture affects initial infiltration rate, the Philip coefficients are determinable by the infiltrometer constructed, soil moisture affects infiltration rates, and transpiration rates diminish linearly proportional to the ratio of available water to field capacity.

Page generated in 0.0772 seconds