• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 4
  • 2
  • 2
  • 2
  • Tagged with
  • 19
  • 19
  • 19
  • 19
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Estudos estruturais e de interações proteína-proteína envolvendo componentes de um sistema de secreção do tipo IV de Xanthomonas axonopodis pv. citri / Structural and protein-protein interaction studies of type IV secretion system components from Xanthomonas axonopodis pv. citri

Diorge Paulo de Souza 25 May 2010 (has links)
Xanthomonas axonopodis pv. citri (Xac) é o causador do cancro de plantas cítricas. Entre os potenciais fatores de virulência codificados por Xac, está o Sistema de Secreção do Tipo IV (T4SS), um grande complexo multiprotéico que atravessa o periplasma e as membranas interna e externa de bactérias Gram-negativas. O T4SS está envolvido com secreção de proteínas e/ou DNA para o meio extracelular ou diretamente no interior da célula do hospedeiro. Este Sistema requer tipicamente 12 proteínas para realizar suas funções: VirB1-VirB11 e VirD4. O T4SS codificado pelo cromossomo de Xac está aparentemente incompleto, devido a não codificar nenhuma proteína com similaridade de seqüência a VirB7. Os objetivos deste trabalho são estudar a estrutura, função e interações das proteínas do T4SS de Xanthomonas. Foram clonados 23 genes que codificam proteínas ou domínios relacionados ao T4SS, e os polipeptídeos foram produzidos de forma recombinante em E. coli. Treze deles foram purificados e submetidos a estudos estruturais, espectroscópicos e de interações proteína-proteína. A estrutura em solução de Xac262224-139 foi resolvida, apresentando uma região N-terminal desenovelada de aproximadamente 30 resíduos e um domínio globular. Este polipeptídeo oligomeriza em troca química rápida na escala de tempo de RMN e o seu N-terminal desenovelado reconhece o domínio C-terminal de VirB9 (VirB9154-255) em troca lenta. Análise de RMN demonstrou que VirB9154-255 possui uma estrutura flexível em solução, sofrendo uma marcante mudança conformacional na presença de Xac262224-139. Ambas proteínas se tornam rígidas após a interação. Xac2622 é o equivalente a VirB7 em Xanthomonas, baseado na localização do seu gene no lócus do T4SS, localização subcelular predita do polipeptídeo codificado e sua interação com VirB9. Porém, diferente de outras proteínas da família VirB7, Xac2622 possui um domínio globular adicional, com topologia e estrutura similares a domínios presentes apenas em proteínas associadas à membrana externa de bactérias Gram-negativas. Nocaute do gene xac2622, contudo, não afetou a virulência de Xac na infecção de plantas de laranja pêra. O domínio enovelado de Xac2622 foi cristalizado, e os cristais obtidos difrataram até uma resolução de 1,0 Å, pertencendo ao grupo espacial C2221. O modelo preliminar possui Rfactor de 0,121 e Rfree de 0,147. Foram obtidos cristais de outras 3 proteínas relacionadas ao T4SS de Xac, porém somente um deles difratou em alta resolução (2,0 Å, pertencendo ao grupo espacial C2). O potencial sinal de secreção pelo T4SS de Xanthomonas é um domínio C-terminal conservado de aproximadamente 115 resíduos, encontrado nos substratos putativos do T4SS. Caracterizamos um destes domínios, presente na proteína Xac2609, e ele é intrinsicamente desestruturado. Essa observação pode ter implicações funcionais, visto que os substratos são desenovelados antes de sua passagem pelo canal de secreção do T4SS / Xanthomonas axonopodis pv. citri (Xac) is a gram-negative bacterial phytopathogen that infects citrus. One possible virulence determinant is a chromosomally encoded Type IV Secretion System (T4SS), a multiprotein complex that spans the bacterial periplasm and both inner and outer membranes. The T4SS is used by some bacteria to secrete proteins and/or DNA to the extracellular milieu or the host interior. The model T4SS from Agrobacterium tumefaciens is made up of twelve structural proteins: VirB1-VirB11 and VirD4. The Xanthomonas T4SS is apparently incomplete because of the lack of a polypeptide with sequence similarity to VirB7. The aim of this project is the study of structure-function relationships in the Xanthomonas T4SS. Twenty-three T4SS protein-coding genes, including full-length proteins or domains, were cloned and the proteins were produced in different E. coli strains. Thirteen polypeptides were purified and some of them were submitted to structural, spectroscopic and protein-protein interaction studies. We used NMR to solve the solution structure of Xac262224-139 which consists of an unfolded N-terminal segment of ~30 residues followed by a globular domain. Xac262224-139 oligomerizes in fast exchange at the NMR time scale and interacts via its unfolded N-terminus with the VirB9 C-terminus (VirB9154-255) in slow exchange. NMR analysis showed that VirB9154-255 has a flexible structure in solution. However, this polypeptide undergoes a significant conformational modification in the presence of Xac2622,24-139 and both proteins become rigid upon interaction. Xac2622 is the Xanthomonas VirB7, based on the chromosomal localization of its gene, predicted subcellular localization and protein interaction analysis. But surprisingly, unlike other VirB7 proteins, Xac2622 has an extra C-terminal folded domain whose topology and structure are strikingly similar to that of periplasmic domains found in outer membrane proteins of many bacterial Secretion Systems. Knockout of the xac2622 gene, however, does not affect the Xac virulence in orange leaf infection assays. The Xac2622 folded domain was also crystallized, and these crystals diffracted up to 1.0 Å resolution and belong to the space group C2221. The preliminary refined model has Rfactor of 0.121 and Rfree of 0.147. Crystals of three other T4SS proteins have been obtained, but only one of them diffracted to high resolution (2.0 Å; space group C2). Xac2610 is a hypothetical protein whose gene is located in the T4SS locus, and its interactions were studied with VirB9, VirB11 and Xac2609, a putative T4SS substrate. The potential T4SS secretion signal is a conserved, approximately 115 residues, C-terminal domain found in the putative substrates of the Xanthomonas T4SS. This sequence mediates interactions with VirD4. We have characterized this domain from one substrate and it is mainly unfolded. This observation may have functional implications, as the substrates are unfolded before their secretion through the T4SS channel
12

Molécules anti-facteurs de virulence : étude de l’efficacité et de l’amélioration d’une molécule inhibitrice du système de sécrétion de type IV de Helicobacter pylori

Morin, Claire 08 1900 (has links)
Helicobacter pylori est une bactérie à Gram négatif qui colonise plus de 50% de la population humaine. Cette bactérie est l'un des pathogènes les plus présents dans la population et la colonisation se fait dans l'enfance et l'adolescence. H. pylori est responsable de l'apparition de maladies gastriques chez l'humain comme des ulcères gastriques, mais aussi des cancers gastriques. Plusieurs mécanismes contribuent aux maladies gastriques dont une infection chronique à long terme ainsi que des facteurs de virulence comme le système de sécrétion de type 4 (SST4). Le SST4 forme une seringue protéique utilisée par la bactérie pour injecter la protéine CagA dans les cellules humaines. Cette protéine a été la première protéine bactérienne classifiée comme une oncoprotéine par sa capacite à interférer et modifier de nombreuses fonctions et signaux métaboliques des cellules épithéliales gastriques. Afin d'éradiquer Helicobacter, une antibiothérapie est utilisée, cependant depuis les 10 dernières années plus de 50% des bactéries isolées de patients ont été identifiés comme étant porteuses de résistances contre aux moins un antibiotique de première ligne. L’utilisation de petites molécules organiques capables d'interférer avec les facteurs de virulence est une alternative intéressante à la thérapie aux antibiotiques. L'utilisation de ces molécules possède des avantages dont la faible pression de sélection de résistance parce qu’elles n’impactent pas des fonctions vitales des bactéries. Le SST4 de H. pylori est composé de nombreuses protéines essentielles qui pourraient être de potentielles cibles pour des molécules inhibitrices. Nous avons choisi la cible Cagα, une ATPase homologue à VirB11 de Agrobacterium tumefaciens. Cette protéine est essentielle pour l’injection de CagA. Précédemment, notre laboratoire a identifié une petite molécule nommée 1G2 qui était capable d’interagir avec Cagα et de diminuer l’induction de l’interleukine 8 produit par les cellules gastriques lors de l’infection par des souches de H. pylori possédant un SST4 fonctionnel. A partir d’une structure cristallographique de Cagα liée à 1G2 et nous avons créé des protéines Cagα avec des mutations aux site de liaison de 1G2. En utilisant la fluorimétrie différentielle à balayage (DSF) nous avons pu identifier les acides aminés qui contribuent à la liaison de 1G2 (K41, R73 et F39). Basé sur cette information nous avons utilisé la chimie médicinale pour créer une librairie de molécules dérivées de 1G2 dans le but d’identifier des inhibiteurs plus puissants. Après avoir éliminé les molécules ayant un effet toxique sur les cellules gastriques et H. pylori, nous avons sélectionné cinq molécules (1313, 1338, 2886, 2889 et 2902) qui inhibent la production d’IL-8 plus que 1G2 dans notre modèle d’infection cellulaire. Nous avons montré par DSF que les molécules interagissent toujours avec Cagα et 1338, 2889 et 2902 sont des inhibiteurs plus puissants de son activité d’ATPase. Avec le modèle d’infection, nous avons déterminé que les cinq molécules n’affectent par la présence de CagA dans le lysat de l’infection. Cependant, nous avons observé par microscopie électronique à balayage que le SST4 pilus n’était pas présent en présence des inhibiteurs. En plus, nous avons testé les effets de 1G2 sur des souches de H. pylori résistantes, à un ou plusieurs antibiotiques de première ligne, isolées de biopsie gastriques de patients. Comme dans le cas de la bactérie modèle de laboratoire, nous avons observé une diminution de l’induction des IL-8 lors de l’infection ainsi qu’une inhibition de la formation du SST4 pilus. Nous avons aussi identifié que le gène de la protéine Cagα d’une des bactéries résistantes à 1G2 (souche #3822) porte un remplacement de R73 à K ce qui pourrait expliquer la résistance à 1G2. Pour conclure, nous avons dans cette étude caractérisé le site de liaison de 1G2 à Cagα et nous avons identifié des molécules qui sont plus puissantes comme inhibiteurs que 1G2. / Helicobacter pylori is a Gram-negative bacterium that colonizes more than 50% of the human population. This bacterium is one of the most common pathogens in the population and colonization occurs in childhood and adolescence. H. pylori is implicated in the manifestation of gastric diseases in humans such as gastric ulcers and also gastric cancer. Several mechanisms are involved in the formation of gastric diseases including long-term chronic infection as well as virulence factors such as the type 4 secretion system (T4SS). The T4SS forms a protein syringe used by the bacteria to inject the protein CagA into mammalian cells. This protein is the first bacterial protein classified as an oncoprotein by its ability to interact with numerous metabolic functions of gastric epithelial cells. To eradicate Helicobacter, antibiotic therapy is used, but for the last 10 years more than 50% of the bacteria isolated from patients have been identified as carrying resistance against at least one first-line antibiotic. The use of small molecules capable of interfering with virulence factors is being studied as an alternative to antibiotic therapy. The use of these molecules has many advantages, and they may cause lower selection pressure for resistance than antibiotics. The H. pylori T4SS is composed of many essential proteins that could be potential targets for inhibitory molecules. We chose the target Cagα, an ATPase homologous to the model VirB11 from Agrobacterium tumefaciens. This protein is essential for the injection of CagA. Previously, our laboratory identified a small molecule coined 1G2 that interacts with Cagα and decreases the induction of interleukin-8 produced by gastric cells upon infection with H. pylori strains with functional T4SS. Based on a crystallographic study of Cagα bound to 1G2, we created Cagα proteins with mutations at the 1G2 binding site. Using differential scanning fluorimetry, we identified amino acids that contribute to 1G2 binding (K41, R73 and F39). Based on these observations, we used medicinal chemistry to create a library of molecules derived from 1G2 to create more potent inhibitors. After eliminating the molecules with a toxic effect on gastric cells and H. pylori growth, we selected five molecules with stronger effects than 1G2 on IL8 induction in our cell infection model (1313, 1338, 2886, 2889 and 2902). We observed by DSF that the molecules interact with Cagα and 1338, 2889 and 2902 are stronger inhibitors of the ATPase 8 activity than 1G2. With our infection model, we determined that the five molecules do not affect the presence of CagA. However, by scanning electron microscopy we observed that the T4SS pilus was not present. In addition to the tests on a laboratory model bacterium, we evaluated 1G2 on resistant strains of H. pylori isolated from gastric biopsy from patients. Similar to the laboratory model bacterium, 1G2 decreased IL-8 induction and inhibited T4SS pilus formation. We have also identified that strain #3822 that is resistant to 1G2 carries a R73 to K mutation in the Cagα gene, which could explain the 1G2 resistance. To conclude, we have here characterized the 1G2 binding site on Cagα and we created inhibitors that are more potent than 1G2.
13

Untersuchungen zum Aufbau, zur Funktion und zur Verbreitung von genomischen Inseln in der Gattung Legionella

Lautner, Monika 25 February 2013 (has links)
Der Austausch von genetischem Material über horizontalen Gentransfer, stellt einen wichtigen Mechanismus in der bakteriellen Evolution dar. Legionella pneumophila Stämme codieren für verschiedene Typ IV Sekretionssysteme (T4SS) und integrative konjugative Elemente, die zur genomischen Variabilität der intrazellulären Erreger beitragen. L. pneumophila Corby codiert auf der genomischen Insel Trb-1 für ein funktionelles Konjugations- und T4ASS. Trb-1 ist innerhalb des tRNAPro Gens integriert und kann in einer chromosomalen oder zirkulären episomalen Form existieren. Zusätzlich zu den trb/tra Genen sind auf der Insel eine Integrase (int-1) und die Gene lvrRABC der Legionella vir Region (lvr) lokalisiert. Durch die Deletion von int-1 konnte gezeigt werden, dass die Exzision von Trb-1 unter Beteiligung der Integrase erfolgt. Zudem wurde in dieser Arbeit zum ersten Mal demonstriert, dass die lvr-Region, vor allem der putative Phagen-Repressor LvrR an der Regulation der Exzision von Trb-1 beteiligt ist. Die Konjugation von Trb-1 in L. oakridgensis, hatte keinen Effekt auf die in vivo Fitness der Transkonjuganten in humanen Makrophagen. Die genomischen Inseln LpcGI-1 und LpcGI-2 codieren für ein neues putatives GI-T4SS. Für LpcGI-2 konnte erstmals gezeigt werden, dass das T4SS funktionell ist und die Konjugation der genomischen Insel in einen anderen L. pneumophila Stamm vermitteln kann. LpcGI-2 kann anschließend ortsspezifisch in das Genom der Transkonjuganten integriert werden. LpcGI-1 und LpcGI-2 werden vom tRNAThr bzw. tRNAMet Gen flankiert und können in verschiedenen chromosomalen und zirkulären, episomalen Formen existieren. Die Exzision von LpcGI-2 erfolgt ähnlich zu Trb-1, in Abhängigkeit einer ortsspezifischen Integrase. Im Genom von Lp Corby wurden zwei weitere genomische Inseln (LpcGI-Asn und LpcGI-Phe) identifiziert. In silico Analysen zeigten zudem, dass genomische Inseln mit einer Ähnlichkeit zu Trb-1, LpcGI-2 bzw. LpcGI-1 im Genus Legionella verbreitet sind. / Exchange of genetic information by horizontal gene transfer is an important mechanism for the evolution of bacterial genomes. Legionella pneumophila strains encode different type IV secretion systems and integrative conjugative elements contribute to the variability of the intracellular pathogen. The genomic island Trb-1 of L. pneumophila Corby encodes a functional conjugation and T4ASS. Trb-1 is integrated within the tRNAPro gene and can exist in a chromosomal or an episomal circular form. In addition to the trb/tra genes, a site-specific integrase (int-1) and a Legionella vir region (lvrRABC) are also localized on the genomic island. By deleting the int-1 gene, it could be demonstrated that the excision and of Trb-1 is integrase dependent. Furthermore, in this work it was shown for the first time that the lvr region and especially the putative phage repressor LvrR, is involved in the regulation of Trb-1 excision. Conjugation of Trb-1 in L. oakridgensis does not influence the in vivo fitness of the transconjugants in human macrophages. The genomic islands LpcGI-1 and LpcGI-2 encode a new putative T4SS. For the first time it could be demonstrated, that the T4SS localized on LpcGI-2 is functional. Although LpcGI-2 could be mobilized and transferred via conjugation to another L. pneumophila strain, followed by the site-specific integration into the genome of the transconjugants. LpcGI-1 and LpcGI-2 are flanked by the tRNAThr or tRNAMet gene respectively. Both islands can exist in different chromosomal and episomal forms. The excision of LpcGI-2 occurs similar to Trb-1 in an integrase dependent manner. Two additional genomic islands (LpcGI-Asn and LpcGI-Phe) could be identified in the genome of Lp Corby. Moreover, data of the in silico analysis demonstrated, that genomic islands similar to Trb-1, LpcGI-2 and LpcGI-1 are distributed within the genus Legionella.
14

Caracterização de dois pares efetor/inibidor associados ao sistema de secreção tipo IV de Xanthomonas citri / Characterization of the two effector/inhibitor pair associated with the type IV secretion system of Xanthomonas citri

Bueno, Natalia Fernanda 15 June 2018 (has links)
O sistema de secreção tipo IV (T4SS) da família de bactérias Xanthomonadaceae transfere efetores (X-Tfes) com a capacidade de matar outras bactérias, conferindo uma vantagem em comunidades bacterianas mistas para colonizar diferentes nichos como o solo ou as superfícies das plantas. Os X-Tfes possuem diferentes domínios putativos com atividades hidrolíticas contra componentes do envelope celular bacteriano do tipo: glicohidrolases, transglicosilases, amidases e lipases. Os X-Tfes por sua atividade biológica inata podem ocasionar dano intracelular para a bactéria que os produz. Para se proteger contra estas atividades, também são produzidas lipoproteínas com função inibitoria (X-Tfis) localizadas no periplasma. Os genes que codificam os X-Tfes e os X-Tfis estão organizados em operons, o que permite gerar os pares efetor/inibidor simultaneamente. Entre os potenciais X-Tfes do fitopatógeno Xanthomonas citri estão Xac1918 e Xac0574. Xac1918 é uma proteína com um domínio da superfamília da lisozima e um domínio conhecido como RTX (Repeats in Toxin) de ligação ao cálcio, enquanto Xac0574 tem um domínio da superfamília da lipase 3. Os seus possíveis inibidores, Xac1917 e Xac0573 respectivamente, apresentam um peptídeo sinal no N-terminal contendo o lipobox representativo das lipoproteínas. As proteínas Xac0574 e Xac0573 são monômeros em solução que formam um complexo estável 1:1, favorecido termodinamicamente (ΔG°= -12 Kcal/mol) com uma constante de dissociação de 2,45 nM, garantindo que a bactéria fique protegida contra os efeitos nocivos de Xac0574 quando é produzida intracelularmente. Xac0574 é uma fosfolipase A1, sem atividade lisofosfolipase, com a capacidade de hidrolisar os três fosfolipídios majoritários que compõem a membrana celular bacteriana, fosfatidilglicerol (PG), cardiolipina e fosfatidiletanolamina (PE), mostrando uma aparente preferência pelo último. A atividade enzimática de Xac0574 explica a forte inibição do crescimento celular em E. coli após da sua indução heteróloga, já que gera uma diminuição de quase 10 vezes da população celular comparada com a cultura não induzida com a mesma construção. Poroutro lado, Xac0573 inibe efetivamente a atividade enzimática de Xac0574 ao formar o complexo, além de não ter atividade fosfolipase nem lisofosfolipase. Foram produzidos cristais da Xac1918 e Xac0573 que difrataram com uma resolução de 3,0 e 2,5 Å, respectivamente. Porém, só foi gerado um modelo de Xac0573. Xac0573 está composta por duas folhas β antiparalelas com uma topologia característica de β sanduíche Com uma pequena hélice e duas voltas. Um alinhamento de homólogos de Xac0573 identificou nas extremidades da proteína as regiões conservadas, constituindo duas possíveis interfaces de interação que podem ser as responsáveis por bloquear o acesso dos fosfolipídios ao sítio catalítico ou impedir os rearranjos estruturais de Xac0574 que são necessários para a sua atividade enzimática. Adicionalmente, a topologia da Xac0573 é semelhante do domínio C2, conhecido em eucariotos como domínio de ligação ao lipídio e ao cálcio, e está envolvido em processos de sinalização de segundos mensageiros lipídicos, proteínas de trafego de membranas e mecanismos de fusão de membranas. Nossos resultados apontam para uma nova função biológica do domínio C2 como um inibidor enzimático intracelular em bactérias. / The type IV secretion system (T4SS) of the bacteria family Xanthomonadaceae transfers effectors (X-Tfes) with that can kill other bacterial cells, conferring an advantage to the bacterial community during colonization of different niches in the soil or on the plant surface. The X-Tfes possess different putative domains with hydrolytic activity against components of the bacterial cellular envelope, including glycohydrolase, transglycolase, amidase and lipase domain. The innate biological activity of X-Tfes can cause intracellular damage. Therefore, the bacteria that produce them also produce lipoproteins with inhibitor function (X-Tfis) located in the periplasm for their protection. The genes that code for X-Tfes and X-Tfis are organized in operons that allow for their simultaneous expression. Among the X-Tfes of the phytopathogen Xanthomonas citri are Xac1918 and Xac0574. Xac1918 is carries a lysozyme superfamily domain, as well as a domain known as RTX (Repeats in Toxic) predict to bind calcium, while, Xac0574 has a domain belonging to the lipase 3 superfamily. Their possible inhibitors, Xac1917 e Xac0573 respectively, carry an N-terminal signal peptide containing a lipobox found in bacterial lipoproteins. The Xac0574 and Xac0573 proteins are both monomers in solution, They can form a stable 1:1 complex, that is thermodynamically favored (ΔG°= -12 Kcal/mol) with a dissociation constant of 2,45 nM. This affinity ensure that the bacterium is protected against the harmful effects of Xac0574 when it is produced intracellularly. We show that Xac0574 is a phospholipase A1, without lisophospholipase activity, and is able to hydrolyze the three most common phospholipids found in the membranes of Gram negative bacteria, namely phosphatidylglycerol (PG), cardiolipin and phosphatidylethanolamine (PE), presenting an apparent preference for PE. The enzymatic activity of Xac0574 explains the strong inhibition of growth of E. coli cells after its heterologous induction: a nearly 10-fold decrease in the cell population is observed when compared to the non-induced culture with the same construct. On the other hand, Xac0573 effectively inhibits the enzymatic activity of Xac0574. Furthermore, Xac0573 does not possess when forming the complex, besides not having phospholipase nor lysophospholipase activity.Crystals of Xac1918 and Xac0573 were produced which diffracted with to resolution of 3.0 and 2.5 Å, respectively. However, we were able to resolve the structure of only Xac0573. Xac0573 is composed of two anti-parallel sheet that form a β-sandwich with three small helices. An alignment to Xac0573 homologs identified conserved regions at the ends of the protein that constitute two possible interfaces of interaction that may be responsible for blocking the access of the phospholipids to the catalytic site or impede the structural rearrangements of Xac0574 that are necessary for its enzymatic activity. Additionally, the topology of Xac0573 is similar to that to C2 domains, known in eukaryotes to bind lipids and calcium and to be involved in signaling processes mediated by lipid second messengers, membrane trafficking and membrane fusion mechanisms. Our results point to a new biological function of the C2 domain as an intracellular enzyme inhibitor in bacteria.
15

Caracterização de dois pares efetor/inibidor associados ao sistema de secreção tipo IV de Xanthomonas citri / Characterization of the two effector/inhibitor pair associated with the type IV secretion system of Xanthomonas citri

Natalia Fernanda Bueno 15 June 2018 (has links)
O sistema de secreção tipo IV (T4SS) da família de bactérias Xanthomonadaceae transfere efetores (X-Tfes) com a capacidade de matar outras bactérias, conferindo uma vantagem em comunidades bacterianas mistas para colonizar diferentes nichos como o solo ou as superfícies das plantas. Os X-Tfes possuem diferentes domínios putativos com atividades hidrolíticas contra componentes do envelope celular bacteriano do tipo: glicohidrolases, transglicosilases, amidases e lipases. Os X-Tfes por sua atividade biológica inata podem ocasionar dano intracelular para a bactéria que os produz. Para se proteger contra estas atividades, também são produzidas lipoproteínas com função inibitoria (X-Tfis) localizadas no periplasma. Os genes que codificam os X-Tfes e os X-Tfis estão organizados em operons, o que permite gerar os pares efetor/inibidor simultaneamente. Entre os potenciais X-Tfes do fitopatógeno Xanthomonas citri estão Xac1918 e Xac0574. Xac1918 é uma proteína com um domínio da superfamília da lisozima e um domínio conhecido como RTX (Repeats in Toxin) de ligação ao cálcio, enquanto Xac0574 tem um domínio da superfamília da lipase 3. Os seus possíveis inibidores, Xac1917 e Xac0573 respectivamente, apresentam um peptídeo sinal no N-terminal contendo o lipobox representativo das lipoproteínas. As proteínas Xac0574 e Xac0573 são monômeros em solução que formam um complexo estável 1:1, favorecido termodinamicamente (ΔG°= -12 Kcal/mol) com uma constante de dissociação de 2,45 nM, garantindo que a bactéria fique protegida contra os efeitos nocivos de Xac0574 quando é produzida intracelularmente. Xac0574 é uma fosfolipase A1, sem atividade lisofosfolipase, com a capacidade de hidrolisar os três fosfolipídios majoritários que compõem a membrana celular bacteriana, fosfatidilglicerol (PG), cardiolipina e fosfatidiletanolamina (PE), mostrando uma aparente preferência pelo último. A atividade enzimática de Xac0574 explica a forte inibição do crescimento celular em E. coli após da sua indução heteróloga, já que gera uma diminuição de quase 10 vezes da população celular comparada com a cultura não induzida com a mesma construção. Poroutro lado, Xac0573 inibe efetivamente a atividade enzimática de Xac0574 ao formar o complexo, além de não ter atividade fosfolipase nem lisofosfolipase. Foram produzidos cristais da Xac1918 e Xac0573 que difrataram com uma resolução de 3,0 e 2,5 Å, respectivamente. Porém, só foi gerado um modelo de Xac0573. Xac0573 está composta por duas folhas β antiparalelas com uma topologia característica de β sanduíche Com uma pequena hélice e duas voltas. Um alinhamento de homólogos de Xac0573 identificou nas extremidades da proteína as regiões conservadas, constituindo duas possíveis interfaces de interação que podem ser as responsáveis por bloquear o acesso dos fosfolipídios ao sítio catalítico ou impedir os rearranjos estruturais de Xac0574 que são necessários para a sua atividade enzimática. Adicionalmente, a topologia da Xac0573 é semelhante do domínio C2, conhecido em eucariotos como domínio de ligação ao lipídio e ao cálcio, e está envolvido em processos de sinalização de segundos mensageiros lipídicos, proteínas de trafego de membranas e mecanismos de fusão de membranas. Nossos resultados apontam para uma nova função biológica do domínio C2 como um inibidor enzimático intracelular em bactérias. / The type IV secretion system (T4SS) of the bacteria family Xanthomonadaceae transfers effectors (X-Tfes) with that can kill other bacterial cells, conferring an advantage to the bacterial community during colonization of different niches in the soil or on the plant surface. The X-Tfes possess different putative domains with hydrolytic activity against components of the bacterial cellular envelope, including glycohydrolase, transglycolase, amidase and lipase domain. The innate biological activity of X-Tfes can cause intracellular damage. Therefore, the bacteria that produce them also produce lipoproteins with inhibitor function (X-Tfis) located in the periplasm for their protection. The genes that code for X-Tfes and X-Tfis are organized in operons that allow for their simultaneous expression. Among the X-Tfes of the phytopathogen Xanthomonas citri are Xac1918 and Xac0574. Xac1918 is carries a lysozyme superfamily domain, as well as a domain known as RTX (Repeats in Toxic) predict to bind calcium, while, Xac0574 has a domain belonging to the lipase 3 superfamily. Their possible inhibitors, Xac1917 e Xac0573 respectively, carry an N-terminal signal peptide containing a lipobox found in bacterial lipoproteins. The Xac0574 and Xac0573 proteins are both monomers in solution, They can form a stable 1:1 complex, that is thermodynamically favored (ΔG°= -12 Kcal/mol) with a dissociation constant of 2,45 nM. This affinity ensure that the bacterium is protected against the harmful effects of Xac0574 when it is produced intracellularly. We show that Xac0574 is a phospholipase A1, without lisophospholipase activity, and is able to hydrolyze the three most common phospholipids found in the membranes of Gram negative bacteria, namely phosphatidylglycerol (PG), cardiolipin and phosphatidylethanolamine (PE), presenting an apparent preference for PE. The enzymatic activity of Xac0574 explains the strong inhibition of growth of E. coli cells after its heterologous induction: a nearly 10-fold decrease in the cell population is observed when compared to the non-induced culture with the same construct. On the other hand, Xac0573 effectively inhibits the enzymatic activity of Xac0574. Furthermore, Xac0573 does not possess when forming the complex, besides not having phospholipase nor lysophospholipase activity.Crystals of Xac1918 and Xac0573 were produced which diffracted with to resolution of 3.0 and 2.5 Å, respectively. However, we were able to resolve the structure of only Xac0573. Xac0573 is composed of two anti-parallel sheet that form a β-sandwich with three small helices. An alignment to Xac0573 homologs identified conserved regions at the ends of the protein that constitute two possible interfaces of interaction that may be responsible for blocking the access of the phospholipids to the catalytic site or impede the structural rearrangements of Xac0574 that are necessary for its enzymatic activity. Additionally, the topology of Xac0573 is similar to that to C2 domains, known in eukaryotes to bind lipids and calcium and to be involved in signaling processes mediated by lipid second messengers, membrane trafficking and membrane fusion mechanisms. Our results point to a new biological function of the C2 domain as an intracellular enzyme inhibitor in bacteria.
16

Analyse du rôle de l’interaction de VirB6 avec VirB10 dans le système de sécrétion de type IV

Mary, Charline 04 1900 (has links)
No description available.
17

Molekulare Charakterisierung von Typ IV Sekretionssytem-spezifischen Wirtszellantworten und bakteriellen Virulenzfaktoren des humanen Magenpathogens Helicobacter pylori

Bauer, Bianca 28 January 2010 (has links)
Das humane Magenpathogen Helicobacter pylori (H. pylori) besiedelt den menschlichen Magen und kann zu der Entstehung schwerwiegender Krankheiten wie Magenkrebs und Magengeschwüren führen. Die Pathogenese ist eng mit dem bakteriellen Typ IV Sekretionssystems (T4SS) assoziiert, das die Translokation des Effektorproteins CagA in die Wirtszelle vermittelt. Bisher ist noch unbekannt, in welchem Ausmaß wirtszellspezifische Faktoren die T4SS induzierte Pathogenese beeinflussen. Dieser Aspekt wurde in dieser Arbeit durch die Analyse verschiedenster Zelllinien das erste Mal systematisch untersucht. Interessanterweise unterschied sich die zelluläre Antwort auf die T4SS spezifische Infektion erheblich in Abhängigkeit der verwendeten Zelllinie. Die Ergebnisse beweisen, dass Wirtszellfaktoren eine ebenso große Rolle in der H. pylori induzierten Pathogenese spielen wie bakterielle Effektoren. Zusätzlich wurde in dieser Arbeit eine genomweite Screening-Methode etabliert, die es ermöglicht, neue Komponenten des T4SSs, translozierte NF-B Effektoren und bakterielle Adhäsine zu identifizieren. Auch der Einfluss von CagA auf den EGF-Rezeptor wurde hier näher untersucht. Der Rezeptor steht ebenfalls eng mit der Entstehung von Krebs in Verbindung. Hierbei stellte sich heraus, dass CagA die Endozytose des EGF-Rezeptors durch die Aktivierung der Nicht-Rezeptor Tyrosinkinase c-Abl hemmt und dadurch die Rezeptorpopulation auf der Wirtszelloberfläche erhöht. Interessanterweise führt dieser Effekt jedoch nicht zu einer Verstärkung der EGF-Rezeptor Signaltransduktion. Vielmehr kommt es zu einer Hemmung der EGF-Rezeptor Transaktivierung und zu einer Blockade der EGF vermittelten Wundheilung. Die Daten weisen auf eine Rolle des EGF-Rezeptors in der H. pylori induzierten Geschwürbildung hin. Auch der zu Grunde liegende molekulare Mechanismus der Rezeptor-Inhibierung konnte hier entschlüsselt werden, der sowohl von CagA als auch von der Phosphatase SHP-2 gesteuert wird. / The human gastric pathogen Helicobacter pylori (H. pylori) elicits a tremendous medical burden because of its causative association with peptic ulcer disease and gastric cancer. The pathogenic potential of H. pylori is intricately linked to the expression of a pathogenicity island encoded type IV secretion system (T4SS), which translocates the bacterial effector protein CagA into the eukaryotic host cell. The role of host cell determinants in T4SS mediated pathogenesis has not yet been systematically examined. To elucidate the role of host cell factors within T4SS induced host cell responses, different eukaryotic cell lines were analyzed systematically for respective phenotypes. Remarkably, T4SS mediated host responses among these cell lines varied considerably, thereby demonstrating the importance of host cell components in H. pylori induced pathogenesis. In addition, a H. pylori genome wide bacterial screen for factors important in pathogenesis, such as unknown T4SS components or novel NF-kappaB effector molecules, was developed and optimized. The precise function of the prominent effector protein CagA remains unclear. To functionally characterize the role of CagA, its impact on the epidermal growth factor (EGF)-receptor pathway was analyzed. The results suggest a mechanism where EGF-receptor endocytosis is completely blocked by a CagA induced activation of c-Abl, leading to an elevated receptor surface exposition. Surprisingly, EGF-receptor transactivation and EGF-dependent wound healing are selectively blocked during prolonged infections as well, indicating that an increased receptor-population on the cell surface does not necessarily promote signaling. This data suggests a role for the EGF-receptor in H. pylori- induced ulcer disease. The underlying molecular mechanism was identified as being SHP-2 and CagA dependent.
18

Caractérisation de délétions du gène et des effets d'inhibiteurs de la protéine Cagα d’Helicobacter pylori

Blier, Veronique 12 1900 (has links)
Les relations complexes entre un organisme et son microbiome stimulent beaucoup de recherche dans l’univers de la science. Les bases moléculaires des interactions avec le microbiome ne sont pas encore bien comprises et pourraient présenter des cibles potentielles pour différents traitements de maladies. Le cas d’Helicobacter pylori est très pertinent dans ce contexte. La bactérie a déjà été reconnue comme la cause d’ulcères gastriques et du cancer de l’estomac chez l’homme(1). Plus spécifiquement, elle infecte les cellules épithéliales gastriques par le biais de son îlot de pathogénicité du système de sécrétion de type IV (SST4) causant ainsi une réponse inflammatoire maintenue et cette réponse peut être quantifiée par la variation d’interleukine 8 (IL-8) sécrétée (2-4). Afin d’éclaircir la contribution mécanistique de Cagα, une ATPase nécessaire dans le bon fonctionnement du SST4 de H. pylori, un mutant Δcagα a été créé afin d’agir en tant que contrôle négatif lors de l’infection avec les cellules hôtes in vitro (3, 4). Deux façons de le caractériser ont été effectuées : l’identification d’expression protéique du SST4 et la mesure de la production de l’IL-8. Ensuite, une analyse d’expression différentielle a été effectuée avec ou sans une molécule inhibitrice de l’activité de Cagα. En somme, l’étude des interactions du microbiome représente un domaine stimulant et prometteur dans lequel la compréhension des bases moléculaires pourrait ouvrir des perspectives thérapeutiques intéressantes. / The complex relationships between an organism and its microbiome stimulate a lot of research in the field of science. The molecular basis of interactions with the microbiome are not yet well understood and could present potential targets for the treatment of various diseases. The case of Helicobacter pylori is very pertinent in this context. The bacterium has already been recognized as the cause of gastrointestinal ulcers and stomach cancer (1). More specifically, it infects gastric epithelial cells through its pathogenicity island of the type IV secretion system (T4SS), thus causing a sustained inflammatory response, which can be quantified by the variation in secreted interleukin-8 (IL-8) (2-4). To clarify the mechanistic contribution of Cagα, an ATPase necessary for the proper functioning of the T4SS of H. pylori, a Δcagα mutant has been created to act as a negative control during infection with host cells in vitro (3, 4). The strain was characterized using two approaches: analysis of T4SS protein expression and of the induction of IL-8. A differential expression analysis with or without an inhibitory molecule of interest targeting Cagα was conducted. In summary, the study of microbiome interactions represents a stimulating and promising field in which understanding the molecular foundations could lead to intriguing therapeutic prospects.
19

Caractérisation biochimique, structurale et inhibition du système de sécrétion de type IV par l’étude des protéines VirB8

Casu, Bastien 03 1900 (has links)
No description available.

Page generated in 0.0847 seconds