• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Standarder för att mäta byggnaders lufttäthet / Standards to measure buildings airtightness

Johansson, Emmy, Spahic, Alisa January 2016 (has links)
Svensk Standard ger ständigt ut nya versioner av sina standarder. I rapporten undersöks standarden EN 13829:2000 och den nyare versionen av samma standard, EN 9972:2015. Dessa innehåller båda metoder för bedömning av byggnaders termiska egenskaper, bestämning av byggnaders lufttäthet och tryckmetoder. En jämförelse görs för att se vilka eventuella förändringar den nya versionen kan få för företaget BoKlok och liknande byggföretag i deras arbete med lufttäthet. Provtryckningar har utförts och utifrån resultat från dessa presenteras beräkningsresultat avseende värmeförluster genom transmission, ventilations och luftläckage, vilket syftar till att belysa vilken inverkan lufttäthet har på energiförbrukningen.
2

Energianvändning för driftsatta ventilationsaggregat med värmeåtervinning / Enerygy use of operational air assemblies with heat recovery

Nordbåge, Peter, Engwall, Anton January 2018 (has links)
I dagens samhälle ligger stort fokus på energianvändningen för bostäder och kommersiella fastigheter. Energianvändningen beskriver inte bara en byggnads energibehov, utan också miljö- och ekonomiska aspekter. Flerbostadshus är en del av Sveriges bostad- och servicesektor, som utgör 40 % av Sveriges totala energianvändning (Henning, 2017). Ventilationssystem i flerbostadshus utgör således en betydande del av fastighetens energianvändning och måste därför ständigt effektiviseras för att tjäna ett hållbart samhälle. I nuläget är den verkliga energianvändningen för ett flertal av JM:s driftsatta FTX-aggregat (till- och frånluftssystem med värmeåtervinning) okänd. Detta på grund av att tillgängliga energiberäkningar och deklarationer redovisar byggnadens totala energianvändning uppdelat i fyra huvudkategorier; uppvärmning, komfortkyla, tappvatten och byggnadens fastighetsenergi. Energianvändningen för ventilationssystemet framgår inte specifikt från dessa beräkningar, utan delas in i kategorierna uppvärmning och byggnadens fastighetsenergi. Rapporten undersöker, under perioden mars – juni 2018, energianvändningen för totalt elva stycken FTX-aggregat i två av JM:s projekt i Stockholm, Kista Torn och Nya Kvarnen 2. Undersökningens syfte är att försöka beräkna den verkliga energianvändningen för dessa FTX-aggregat. Energiberäkningar har genomförts med värden hämtade från egna samt tidigare utförda mätningar, som jämförts med projekterade värden. Resultatet indikerar att den genomsnittliga energianvändningen för FTX-aggregaten i Kista Torn är ca 120 000 kWh/år. Den större delen av energianvändningen går åt till att värma tilluften. Undersökningen visar på att den genomsnittliga temperaturverkningsgraden är ca 7 % lägre än den projekterade verkningsgraden. De beräkningar som genomförts visar även att uppvärmningskostnaden har ökat med ca 150 000 kr/år, i jämförelse med de projekterade värdena. Det beror till stor del på den minskade temperaturverkningsgraden, men också på grund av förändrade luftflöden i aggregaten. Undersökningen i Nya Kvarnen 2 har inte kunnat göras lika omfattande. Beräkningarna som genomförts här tyder på att energianvändningen uppgår till ca 61 000 kWh/år och aggregat. Tillförlitligheten av beräkningarna störs dock av att inga egna mätningar kunde utföras, att dokumentationen var bristfällig, samt att övervakningssystemet SCADA redovisade orimliga värden. Slutsatsen för rapporten indikerar att den verkliga energianvändningen för FTX-aggregaten generellt är högre än vad som tidigare projekterats. Energianvändningen varierar markant beroende på luftflöden och temperaturverkningsgrad. Störst påverkan på energianvändningen har dock temperaturverkningsgraden. Det visade sig att temperaturverkningsgraden vara svår att bestämma, då många felkällor och faktorer påverkar framtagningen, samt att resultatet varierar beroende på vald mätmetod. För bättre kontroll på energianvändning rekommenderas fler och mer kontinuerligt genomförda mätningar. Alternativt skulle övervakningsprogrammet SCADA kunna användas i större utsträckning för beräkning av energianvändning, förutsatt att precisionen och placering av temperaturgivare förbättras. / In today's society the energy use within residential and commercial real estate is of great importance. Energy use does not only describe a building's energy needs, but also its environmental and economic aspects. Apartment buildings are a part the Swedish residential and service sector, which constitutes 40 % of Sweden's total energy use (Henning, 2017). The ventilation system in apartment buildings makes up a significant part of the property's energy use, it must therefore continuously be improved to work towards a more sustainable society. The actual energy use for several of JM's powered air assemblies is unknown today. Energy calculations and declarations show that the building's total energy use is divided into four main categories; heating, comfort cooling, tap water and property energy. The energy use of the ventilation system is not made apparent in these aforementioned calculations since it is distrubuted into two of the main categories, heating and property energy. The report examines the energy use for a total of eleven air assemblies within two of JM's projects in Stockholm, Kista Torn and Nya Kvarnen 2. The purpose of the study is to find the actual energy use of these air assemblies. Energy calculations will be carried out using values ​​taken from our own and previously performed measurements, which will be compared to expected projected data. The result indicate that the average energy use of the air assemblies in Kista Tower is approximately 120 000 kWh/year. The majority of the energy use goes to heating the supply air. The study shows that the average heat recovery efficiency is circa 7 % lower than the projected efficiency. The calculations show that the cost of heating has increased by approximately 150 000 SEK/year compared to projected data. This is largely due to the reduced heat recovery efficiency but partly due to changes in the airflow within the air assemblies. The study made in Nya Kvarnen 2 was not as extensive, although calculations of energy use have been carried out. These calculations show an energy use of approximately 61 000 kWh/year for each separate air assembly. The reliability of these numbers is considered low because no control measurements could be made. The documentation was inadequate along with the monitoring system, SCADA, which reported unrealistic values. The conclusion of the report shows that the actual energy use of the air assemblies is in general higher than expected. The energy use varies depending on the airflow and heat recovery efficiency, however the greatest impact comes from the heat recovery efficiency in the air assemblies. Heat recovery efficiency was proven difficult to determine because of the multiple sources and factors affecting the measurement. This made the results fluctuate greatly depending on the method chosen of calculating the heat recovery efficiency. To oversee the actual energy use in these air assemblies, more frequent measurements are recommended. Alternatively, the SCADA monitoring program could be used to calculate the energy use, but to do so the accuracy and placement of temperature sensors needs to be improved.
3

Avalia??o da cinem?tica do complexo t?raco-abdominal durante repouso e endurance muscular respirat?ria em obesos

Nascimento, Angelo Augusto Paula do 15 April 2011 (has links)
Made available in DSpace on 2014-12-17T15:16:13Z (GMT). No. of bitstreams: 1 AngeloAPN_DISSERT.pdf: 995336 bytes, checksum: 4255a44d807a847caa19fe61283e58b9 (MD5) Previous issue date: 2011-04-15 / Background: Obesity may affect the respiratory system, causing changes in respiratory function and in the pulmonary volumes and flows. Objectives: To evaluate the influence of obesity in the movement of thoracoabdominal complex at rest and during maximal voluntary ventilation (MVV), and the contribution between the different compartments of this complex and the volume changes of chest wall between obese and non-obese patients. Materials and Methods: We studied 16 patients divided into two groups: the obese group (n = 8) and group non-obese (n = 8). The two groups were homogeneous in terms of spirometric characteristics (FVC mean: 4.97 ? 0.6 L - 92.91 ? 10.17% predicted, and 4.52 ? 0.6 L - 93.59 ? 8.05%), age 25.6 ? 5.0 and 26.8 ? 4.9 years, in non-obese and obese respectively. BMI was 24.93 ? 3.0 and 39.18 ? 4.3 kg/m2 in the groups investigated. All subjects performed breathing calm and slow and maneuver MVV, during registration for optoelectronic plethysmography. Statistical analysis: we used the unpaired t test and Mann-Whitney. Results: Obese individuals had a lower percentage contribution of the rib cage abdominal (RCa) during breathing at rest and VVM. The variation of end expiratory (EELV) and end inspiratory (EILV) lung volumes were lower in obese subjects. It has been found asynchrony and higher distortion between compartments of thoracoabdominal complex in obese subjects when compared to non-obese. Conclusions: Central obesity impairs the ventilation lung, reducing to adaptation efforts and increasing the ventilatory work / Contextualiza??o: A obesidade pode afetar o sistema respirat?rio, causando altera??es na mec?nica ventilat?ria, nos volumes e fluxos pulmonares. Objetivos: Avaliar a influ?ncia da obesidade no movimento do complexo t?raco-abdominal durante o repouso e durante a ventila??o volunt?ria m?xima (VVM), assim como a contribui??o entre os diferentes compartimentos desse complexo e as varia??es de volume da parede tor?cica e entre obesos e n?o obesos. Materiais e M?todos: Foram avaliados 16 indiv?duos divididos em dois grupos: grupo de obesos (n = 8) e grupo de eutr?ficos (n = 8). Os dois grupos foram homog?neos quanto ?s caracter?sticas espirom?tricas (m?dia de CVF: 4,97 ? 0,6 L 92,91 ? 10,17 % do predito, e 4,52 ? 0,6 L 93,59 ? 8,05 %), idade 25,6 ? 5,0 e 26,8 ? 4,9 anos, em eutr?ficos e obesos respectivamente. O IMC foi de 24,93 ? 3,0 e 39,18 ? 4,3 kg/m2, nos grupos investigados. Todos os sujeitos realizaram respira??o calma e lenta e a manobra de Ventila??o volunt?ria m?xima, durante o registro por pletismografia optoeletr?nica. Para an?lise estat?stica, foram utilizados os testes t n?o pareado e de Mann-Whitney. Resultados: Os indiv?duos obesos apresentaram menor contribui??o percentual da caixa tor?cica abdominal (RCa) durante a respira??o em repouso e na VVM. A varia??o dos volumes pulmonares expirat?rio (VEE) e inspirat?rio finais (VEI) foram menores nos sujeitos obesos. Foram constatados maiores assincronia e distor??o entre os compartimentos do complexo t?raco-abdominal nos obesos, quando comparados aos eutr?ficos. Conclus?es: A obesidade central interfere negativamente na ventila??o pulmonar, reduzindo a adapta??o aos esfor?os e incrementando o trabalho ventilat?rio
4

Fallstudie om Prediktivt och Tillståndsbaserat Underhåll inom Läkemedelsindustrin / Case study regarding Predictive and Condition-based Maintenance in the Pharmaceutical Industry

Redzovic, Numan, Malki, Anton January 2022 (has links)
Underhåll är en aktivitet som varje produktion vill undvika så mycket som möjligt på grund av kostnaderna och tiden som anknyts till den. Trots detta så är en väl fungerande underhållsverksamhet väsentlig för att främja produktionens funktionssäkerhet och tillgänglighet att tillverka. En effektiv underhållsorganisation går däremot inte ut på att genomföra mer underhåll än vad som egentligen är nödvändigt utan att genomföra underhåll i rätt tid. På traditionellt sätt så genomförs detta genom att ersätta slitage delar och serva utrustningen med fastställda mellanrum för att förebygga att haveri, vilket kallas för förebyggande underhåll. De tidsintervaller som angivits för service bestäms av leverantörerna och grundar sig i en generell uppskattning av slitagedelarnas livslängd utifrån tester och analys. Till skillnad från att köra utrustningen till den går sönder som kallas för Avhjälpande underhåll så kan underhåll genomföras vid lämpliga tider så att det inte påverkar produktion och tillgänglighet. Men de tidsintervall som leverantörerna rekommenderar till företagen garanterar inte att slitage delen håller sig till det intervallet, delarna kan exempelvis rasa tidigare än angivet eller till och med hålla längre. Av denna anledning är det naturliga steget i underhållets utveckling att kunna övervaka utrustningens hälsa i hopp om att kunna förutspå när och varför ett haveri ska uppstå. Den här typen av underhåll kallas för tillståndsbaserat och prediktivt underhåll och medför ultimat tillgänglighet av utrustning och den mest kostnadseffektiva underhållsorganisationen, då god framförhållning och översikt uppnås för att enbart genomföra underhåll när det behövs. Det som gör tillståndsbaserat och prediktivt underhåll möjligt är den fjärde industriella revolutionen “Industri 4.0” och teknologierna som associeras med den som går ut på absolut digitalisering av produktionen och smarta fabriker. Teknologier som IoT, Big Dataanalys och Artificiell Intelligens används för att koppla upp utrustning till nätet med hjälp av givare för att samla in och lagra data som ska användas i analyser för att prognosera dess livslängd. Uppdragsgivaren AstraZeneca i Södertälje tillverkar olika typer av läkemedel som många är livsviktiga för de patienter som tar dessa mediciner. Om AstraZenecas produktion står still på grund av fel i utrustningen kommer det inte enbart medföra stora ekonomiska konsekvenser utan även påverka de människor som med livet förlitar sig på den medicin som levereras. För att försäkra produktionens tillgänglighet har AstraZeneca gjort försök att tillämpa tillståndsbaserat och prediktivt underhåll men det är fortfarande enbart i startgroparna. Eftersom ventilation är kritisk del av AstraZeneca produktion då ett fel i ventilationssystemet resulterar i totalt produktionsstopp i byggnaden förens problemet åtgärdas och anläggningen sanerats blev det även rapportens fokusområde. Arbetets uppgift går därför ut på att undersöka möjligheter för AstraZeneca att utveckla deras prediktiva och tillståndsbaserat underhåll på deras ventilationssystem, för att sedan kunna identifiera och presentera förslag på åtgärder. Dessa förslag analyserades sedan med hjälp av verktygen QFD-Matris och Pugh-Matris för att kunna uppskatta vilket förslag som är mest kostnadseffektivt, funktions effektivt samt vilket förslag som kommer tillföra mest nytta för underhållet på AstraZeneca. / Maintenance is an activity that every production wants to avoid as much as possible due to the costs and the time associated with it. Despite this, a well-functioning maintenance operation is essential to promote the production's availability to manufacture and operational reliability. Running an efficient maintenance operation is not about carrying out more maintenance than is necessary but carrying out the right amount of maintenance at the right time. Traditionally speaking this is done by replacing worn parts and servicing the equipment at set intervals to prevent breakdowns, this method is called preventive maintenance. The intervals specified for service are determined by the suppliers and are based on general estimates of the service life for the spare parts from test and analytics. Preventive maintenance allows for maintenance to be carried out at appropriate time to not affect production and availability unlike running the equipment until breakdown, which is called reactive maintenance. However, these intervals that the suppliers recommend do not guarantee that the parts adhere to the given interval, the part can for example break down earlier than expected or even outlast its prescribed lifetime. Because of this, the natural step in the development of maintenance is giving companies the ability to monitor the health of the equipment in hope of being able to predict potential breakdowns. This is what Condition-Based and predictive maintenance is and it provides the ultimate availability of equipment and the most cost-effective maintenance organization, because the good foresight and overview allows maintenance to be carried out only when needed. The fourth industrial revolution “Industry 4.0”, absolute digitalization of production, smart factories and all the technologies associated with this is what makes this type of maintenance possible. Technologies such as IoT, Big Data Analytics and Artificial Intelligence are used to connect equipment to the network using sensors so that data can be stored and collected to be analyzed to forecast the lifespan of parts and equipment. AstraZeneca in Södertälje manufactures different types of medicine, many of which are vital for the patients who take them. If their production comes to a standstill due to equipment failure, it will not only have major financial consequences but also greatly affect the people who rely on the medicine offered with their lives. To ensure the availability of production, AstraZeneca has made attempts to apply condition-based and predictive maintenance, but it is still only in its infancy. Since ventilation is a critical part of AstraZeneca's production, as a failure here will result in a total production stoppage for the building affected and will not resume before the problem is remedied and the plant is decontaminated, it also became the report's focus area. The task at hand is therefore to investigate the opportunities AstraZeneca must develop their predictive and condition-based maintenance for their ventilation systems, in order to be able to present proposals for measures. The proposals will then be analyzed using tools like the QFD-Matrix and the Pugh-Matrix in order to estimate which is more cost effective, function effective and which one will bring the most benefit to AstraZeneca.

Page generated in 0.127 seconds