• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 20
  • 20
  • 7
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Étude des nanostructures de ZnO pour leur application dans l'environnement : détection de gaz et dépollution de l'eau / Study of ZnO nanostructure for environment application : gas sensing and water purification

Habba, Yamina Ghozlane 11 May 2017 (has links)
L’oxyde de zinc (ZnO) est un semi-conducteur II-VI remarquable et très prometteur dans le développement des nouveaux matériaux pour l’énergie renouvelable et pour l’environnement. ZnO est l’un des rares matériaux multifonctionnels. Grâce à ses nombreuses propriétés physiques, chimiques et optoélectroniques très intéressantes, lui confèrent d’être un matériau utilisé dans différents domaines d’applications telles que les cellules solaires, les diodes électroluminescentes, les capteurs de gaz, la dépollution de l’eau et de l’air par effet photocatalytique, etc.Dans cette thèse, nous nous sommes intéressés tout d’abords à optimiser l’élaboration de nanofils de ZnO (ZnO NWs) par méthode hydrothermale. Un procédé à deux étapes a été optimisé qui nous a permis d’obtenir des nanofils de ZnO ayant des excellentes propriétés morphologiques et structurales, avec une très bonne reproductibilité. Une nouvelle méthode d’élaboration, dite Electrospinning, a été mise au point. Ce procédé nous permet d’obtenir des micro- et nanofibres contenant des nanocristallites de ZnO. La combinaison des deux méthodes de synthèse nous a permis d’obtenir des nanostructures hiérarchiques de ZnO (NWs/NFs) possédant une surface effective beaucoup plus importante que la nanostructure classique (ZnO NWs).Deux applications ont été développées dans cette thèse. Dans un premier temps, des tests de détection de trois gaz réducteurs ont été réalisés sur les deux types de nanostructures de ZnO. Par la suite, une étude de purification de l’eau par effet photocatalytique a été réalisée sur un réseau de nanofils de ZnO sous irradiation UV pour les trois colorants (MB, MO et AR14). Afin d'améliorer la performance de la photocatalyse, deux nouvelles méthodes ont été développées. La première consiste à mettre en place un système microfluidique en utilisant des microréacteurs contenant des nanofils de ZnO comme photocatalyseur permettant ainsi à raccourcir considérablement le temps de dépollution. La seconde méthode est basée sur un procédé de dopage de ZnO permettant ainsi d’améliorer l'efficacité de la photocatalyse / Zinc oxide (ZnO) is a remarkable and very promising wide-gap II-VI semiconductor in the development of new materials for renewable energy and for the environment. Thanks to its many interesting physical, chemical and optoelectronic properties, this multifunctional material is used in many application fields such as solar cells, light emitting diodes, gas sensors, and water & air purification by photocatalytic effect, etc.In this thesis, we were interested in optimizing the synthesis of ZnO nanowires (ZnO NWs) by hydrothermal method. A two-step process has been optimized allowing us to obtain ZnO NWs having excellent morphological and structural properties, with very good reproducibility. A new synthesis method “Electrospinning” has been developed and the micro- & nanofibers containing ZnO nanocristallites can be obtained by this process. The combination of the two synthesis methods results a hierarchical nanostructure of ZnO (NWs/NFs) with an effective surface much larger than the classical one (ZnO NWs).Two applications have been developed in this thesis. Firstly, three reducing gases sensing tests have been carried out on the two types of ZnO nanostructures. Then, a photocatalytic water purification study has been carried out on a ZnO nanowire array under UV irradiation for the three dyes (MB, MO and AR14). In order to improve the photocatalysis performance, two new methods have been developed. The first is to set up a microfluidic system using microreactors containing ZnO NWs as a photocatalyst, thus the depollution time has been considerably shortened. The second method is based on the ZnO doping in order to improve the photocatalysis efficiency
12

Elaboration et conception des dispositifs de la récupération d’énergie à base de nanofils de ZnO et de microfibres de PVDF-TrFE / Development and design of energy harvesting devices based on ZnO nanowires & PVDF-TrFE microfibers

Serairi, Linda 23 May 2017 (has links)
Le développement des énergies renouvelables peut non seulement compenser le manque d'énergie fossile à l'avenir, mais aussi sauver notre planète en réduisant la pollution par les émissions de CO2. Les matériaux piézoélectriques ont la capacité de convertir les mouvements mécaniques environnementaux en énergie électrique. Dans le cadre de cette thèse, deux types de matériaux piézoélectriques ont été étudiés pour la récupération d’énergie : les nanofils de ZnO et les microfibres de PVDF-TrFE. L’objectif ultime de cette thèse est de réaliser les dispositifs de la récupération d’énergie à faible coût pour rendre les capteurs autonomes.Au cours de la dernière décennie, les nanofils de ZnO ont suscité un grand intérêt dans le domaine de la recherche en raison de leurs multifonctionnalités avec un grand potentiel d’applications dans les différents domaines (récupération d’énergie par effet piézoélectrique et photovoltaïque, capteurs biologiques & chimiques, dépollution de l’eau & de l’air par effet photocatalytique, …). Le PVDF-TrFE est un polymère attrayant dans les applications de la récupération d'énergie en raison de ses propriétés piézoélectriques, son faible coût et sa grande flexibilité mécanique.Dans ce travail, deux méthodes de synthèse ont été employées pour obtenir les micro- & nanomatériaux piézoélectriques : Hydrothermale pour les réseaux verticaux des nanofils de ZnO et Electrospinning pour les microfibres de PVDF-TrFE. Les conditions de synthèse ont été optimisées afin d’obtenir les échantillons adéquats aux applications envisagées. Ensuite, deux types de dispositifs de la récupération d’énergie ont été fabriqués. Dans un premier temps, nous avons conçu des microgénérateurs (MGs) à base des microfibres de PVDF-TrFE déposées sur le substrat Kapton. Ces MGs flexibles basés sur l’effet piézoélectrique direct permettant la conversion de l’énergie mécanique en énergie électrique à basse fréquence de l’ordre d’hertz. Le second type de nanogénérateurs (NGs) est basé sur des nanofils verticaux de ZnO sur le substrat en silicium. Les tests de la récupération d’énergie ont été réalisés dans une gamme de fréquences de quelques centaines d’hertz pour l’application aéronautique / Development of renewable energy can not only compensate for the lack of fossil energy in the future, but also save our planet by reducing CO2 emission pollution. Piezoelectric materials have the ability to convert environmental mechanical movements into electrical energy. In this thesis, two types of piezoelectric materials have been studied for energy harvesting: ZnO nanowires and PVDF-TrFE microfibers. The ultimate goal of this thesis is to realize the low cost energy harvesting devices for self-powered sensors.Over the past decade, ZnO nanowires had attracted a great interest in the research field due to their multifunctionality with a great potential in the various applications (energy harvesting by piezoelectric and photovoltaic effect, bio & chemical sensors, water & air purification by photocatalytic effect ...). PVDF-TrFE is also an attractive polymer in energy harvesting due to its piezoelectric properties, high mechanical flexibility, and also for its low cost.In this work, two synthesis methods have been used to obtain the piezoelectric micro- & nanomaterials: Hydrothermal for the ZnO nanowire arrays and Electrospinning for the PVDF-TrFE microfibers. The synthesis conditions have been optimized in order to obtain the suitable samples for the applications. Then, two types of energy harvesting devices were manufactured. First, we realized the microgenerators (MGs) based on the PVDF-TrFE microfibers deposited on the Kapton substrate. These flexible MGs based on the direct piezoelectric effect allowing the conversion of mechanical energy into electrical energy at low frequency of the order of hertz. The second type of nanogenerators (NGs) is based on ZnO nanowire array on the silicon substrate. The energy harvesting tests were carried out in a frequency range of a few hundred hertz for the aeronautical application
13

Etude du dopage dans les nanofils d'oxyde de zinc / Doping studies of ZnO nanowires

Zehani, Emir 16 July 2015 (has links)
Le travail présenté dans cette thèse a pour objectif d’étudier le dopage p des nanofils de ZnO par deux procédés différents : in-situ (durant la croissance) et ex-situ par diffusion des impuretés dans les nanofils à partir d’une phase gazeuse. Les nanofils de ZnO étudiés ont été élaborés par MOCVD et caractérisés par différentes techniques : MEB, MET, EDX, XPS, nano-Auger, DRX, SIMS, Sonde atomique tomographique, Raman, PL et I(V). Les tentatives de dopage ex-situ n’ont pas permis aux dopants (arsenic, phosphore et antimoine) de diffuser et de s’incorporer dans la matrice de ZnO. Ces derniers sont restés en surface. Néanmoins, ce procédé a mis en évidence l’importance du traitement de surface des nanofils, avec un recuit sous zinc, afin de réduire d'une part les défauts associés à la surface très réactive de ZnO, et d'autre part de diminuer la densité d’impuretés résiduelle de type n, condition préliminaire à l’incorporation de dopants de type p électriquement actifs. Concernant le dopage in-situ des nanofils de ZnO, le dopant (azote) s’incorpore plus facilement dans la matrice ZnO atteignant une concentration de l’ordre de 1020 at.cm-3. Les analyses de μ-Raman et de μ-PL montrent que l’azote est reparti de façon inhomogène le long des fils. Si les mesures optiques confirment la présence d'accepteurs dans le matériau après dopage, les mesures électriques révèlent toutefois que la conduction des fils dopés azote restent de type n. / The work presented in this thesis aims to study the p-doping of ZnO nanowires by two different methods: in-situ (during growth) and ex-situ by diffusion of impurities in the nanowires from a gas phase. ZnO nanowires were prepared by MOCVD and characterized by different techniques: SEM, TEM, EDX, XPS, nano-Auger, XRD, SIMS, atom probe tomography, Raman, PL and I (V). The ex-situ doping attempts have not allowed the dopants (arsenic, phosphorus and antimony) to be diffused and incorporated into the ZnO matrix. They still remained on the surface. However, this process has highlighted the importance of nanowire surface annealing treatment with zinc, in order to reduce i) the density of surface related defects, and ii) the density of residual impurities n-type. This is a precondition for the incorporation of electrically active p-type dopants. For in-situ doping of ZnO nanowires, the dopant (nitrogen) is incorporated more easily into the ZnO matrix, reaching a concentration of about 1020 at.cm-3. Analyses of μ-Raman and μ-PL show that nitrogen atoms are inhomogeneously incorporated along the nanowires. If optical measurements confirm the presence of acceptors in the material after doping, the electrical measurements show, however, that nitrogen doped nanowires remain n-type.
14

Fabricação de microestruturas dopadas com nanofios de ZnO via fotopolimerização por absorção de dois fótons / Fabrication of microstructures doped with ZnO nanowires by two-photon absorption polymerization

Rodriguez, Ruben Dario Fonseca 24 July 2012 (has links)
No presente trabalho produzimos microestruturas, através da técnica de fotopolimerização via absorção de dois fótons, dopadas com nanofios de ZnO, um material que vem sendo amplamente explorado devido as suas interessantes propriedades ópticas e elétricas. Para a fabricação das microestruturas, utilizamos um oscilador laser de Ti:safira que produz pulsos de aproximadamente 100 fs em 800 nm. A intensidade dos pulsos de femtossegundos é alta o suficiente para induzir a absorção¬ de dois fótons em torno do volume focal, localizando a polimerização a esta região. Portanto, através da varredura do feixe na resina polimérica fabrica-se a estrutura desejada. Neste trabalho, desenvolvemos uma metodologia para introduzir nanofios de ZnO às microestruturas fabricadas, a partir da mistura do pó de nanofios de ZnO à resina acrílica. A resina utilizada é uma combinação de duas resinas, o etoxilated(6)trimethylolpropane triacrylate (SR-499) e tris(2-hydroxy ethyl)isocyanurate triacrylate (SR-368). Como fotoiniciador utilizamos o Lucirin TPO-L (2,4,6-trimetilbenzoiletoxifenil phosphine oxide). As microestruturas produzidas foram caracterizadas pelas técnicas de microscopia óptica, microscopia eletrônica de varredura, espectroscopia de energia dispersiva, difração de Raios X e espectroscopia de espalhamento micro-Raman. Através destas técnicas, foi possível observar a presença dos nanofios nas microestruturas, bem como caracterizar suas propriedades morfológicas que se mostram adequadas para o desenvolvimento de microdispositivos. Observamos também a emissão de fluorescência das microestruturas excitadas por um e dois fótons. Sendo assim, a metodologia de fabricação descrita aqui pode ser usada como mais uma opção na concepção de novos dispositivos tecnológicos. / In this study we fabricated microstructures, using the two-photon polymerization technique, containing ZnO nanowires, a material that has been widely exploited due to their interesting optical and electrical properties. For the microstructures fabrication, we used Ti:Sapphire laser oscillator operating at 800 nm with 100 fs pulses. The intensity of the fs-pulses is high enough to induce two-photon absorption, confining the excitation and thus the polymerization to the focal volume. By scanning the beam across the resin the desired microstructure is fabricated. In this work, we developed a method to introduce ZnO nanowires in the fabricated microstructure by mixing the ZnO nanowires powder to the acrylic resin. The used resin is a combination of two compounds, etoxilated(6)trimethylolpropane triacrylate (SR-499) and tris(2-hydroxy ethyl)isocyanurate triacrylate (SR-368). As a photoinitiator we have used Lucirin TPO-L (2,4,6-trimetilbenzoiletoxifenil phosphine oxide).The produced samples were characterized by optical microscopy, scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction spectroscopy and micro-Raman scattering. From these techniques it was possible to observe the presence of nanowires in the microstructures, as well as to characterize the morphological properties, which has been shown to be interesting for developing microdevices. We have also observed fluorescent emission of the microstructures excites by one and two-photons absorption. Therefore, the methodology described here can be used as an alternative in the design of new optical devices.
15

Solid State Material Systems for Light Emission and Light Detection

Robin, Ivan-Christophe 06 June 2011 (has links) (PDF)
A large variety of material systems for light emission and detection were studied: from very small band gap semiconductors for infra-red (IR) detectors to wide band gap semiconductors for ultra violet (UV) emission as well as CdSe/ZnSe QDs for single photon emitters and rare earth doped oxides for laser fabrication. The growth and characterization aspects were tackled. This work will focus on the relations between the growth procedures and the optical properties. The information that can be gained from optical studies as well as the limitations of those ones will be explained in each case. Following that, a number of projects will be presented. The main one will be based on how to circumvent the problems linked with p-type doping of wide bandgap semiconductors. This project, based on field effect hole injection in wide band-gap semiconductors addresses the major challenge of fabricating efficient deep UV emitters.
16

The role of the catalyst in the growth of one-dimensional nanostructures

Kirkham, Melanie 10 November 2009 (has links)
Quasi one-dimensional (1D) nanostructures show great promise for many applications, including in solar cells, nanogenerators and chemical sensors, due to the high surface-to-volume ratio and unique properties of nanostructures. The growth of these nanostructures is commonly catalyzed by metal nanoparticles and generally attributed to the vapor-liquid-solid (VLS) mechanism. The purpose of this research is to better understand the role of the catalyst nanoparticles in the growth of 1D nanostructures, in order to allow improved control of the synthesis process. To this end, nanostructures were grown with a variety of compositions, including Au- and Sn-catalyzed ZnO, Au-catalyzed FexOy and Au-catalyzed Si nanostructures. The morphology of the nanostructures was characterized with electron microscopy, and the crystallographic orientation with X-ray texture analysis. The catalyst particles were further characterized with both in-situ and post-growth X-ray diffraction. The types of bonding in the source material and catalyst play a significant role in the diffusion path of the source material to the growth front and in the catalyst particle state during growth. Dissimilar bonding types in the source material and catalyst prevent bulk diffusion of the source material through the catalyst, thereby preventing eutectic melting of the catalyst. These results bring new insight into the catalyzed growth of 1D nanostructures and assist in the informed choice of appropriate catalyst materials, which may aid the utilization of 1D nanostructures in energy-related and other applications.
17

Σύνθεση και χαρακτηρισμός της δομής και των οπτικών ιδιοτήτων νανοδομών του ZnO

Γκοβάτση, Αικατερίνη 02 March 2015 (has links)
Το οξείδιο του ψευδαργύρου (ZnO) ανήκει στην κατηγορία των διάφανων αγώγιμων οξειδίων και θεωρείται ως το ανόργανο υλικό που επιδεικνύει τη μεγαλύτερη ποικιλία χαμηλοδιάστατων νανοδομών. Νανοδομές διαφόρων μορφολογιών του ZnO αναπτύσσονται με πλήθος μεθόδων – με κυριότερες την αέρια μεταφορά σε υψηλή θερμοκρασία (VLS) και τη χημεία διαλυμάτων – και παρουσιάζουν μεγάλο εύρος πιθανών εφαρμογών σε τομείς όπως η οπτική, η οπτικοηλεκτρονική, οι αισθητήρες, η παραγωγή ενέργειας, οι βιοϊατρικές επιστήμες, κ.α. Παρά τη συστηματική έρευνα σχετικά με την ανάπτυξη των νανοδομών αυτών για πάνω από μια δεκαετία, η καθιέρωση μιας πειραματικής μεθοδολογίας ικανής να παρέχει με επαναλήψιμο τρόπο συγκεκριμένες μορφολογίες νανοδομών του ZnO είναι ακόμα ένα ανοικτό ερώτημα. Αυτό αποτελεί και μια από τις τρέχουσες ερευνητικές προκλήσεις αφού οι παραγόμενες μορφολογίες χαρακτηρίζονται από διαφορετικές φυσικές ιδιότητες ενώ είναι αρκετά ευαίσθητες σε μικρές μεταβολές των πειραματικών συνθηκών. Στόχος της παρούσας εργασίας είναι η συστηματική μελέτη του ρόλου διαφόρων παραμέτρων της σύνθεσης στα μορφολογικά χαρακτηριστικά και τις οπτικές ιδιότητες των νανοδομών του ZnO. Η ανάπτυξη των νανοδομών πραγματοποιήθηκε τόσο με αέρια μεταφορά σε υψηλή θερμοκρασία (VLS) όσο και με τη μέθοδο της κρυστάλλωσης σε υδατικά διαλύματα (CBD). Σκοπός είναι να κατανοηθεί πως συγκεκριμένες παράμετροι επηρεάζουν τη μορφολογία των νανοδομών, το μέγεθος, τις κατανομές των διαμέτρων των μονοδιάστατων νανονημάτων και τον προσανατολισμό αυτών στο υπόστρωμα. Στην πρώτη περίπτωση δόθηκε έμφαση στο ρόλο του πάχους του υμενίου του καταλύτη (Au), αλλά και στον τρόπο ανόπτησης αυτού ώστε να δημιουργηθεί η κατάλληλη μορφολογία του καταλύτη η οποία μέσω της ανάπτυξης με τη μέθοδο VLS επηρεάζει κατ’ επέκταση και τη μορφολογία των νανοδομών του ZnO. Έτσι, επιχρυσωμένα υποστρώματα πυριτίου (Si) με πάχος καταλύτη (h) από 2 nm έως 15 nm χρησιμοποιήθηκαν μετά από ανόπτησή τους σε διάφορες θερμοκρασίες και για διαφορετικούς χρόνους για την ανάπτυξη νανονημάτων ZnO. Διαπιστώθηκε ότι για πολύ λεπτά υμένια Au (h ≤ 3 nm) δημιουργούνται σφαιρικά νανοσωματίδια χρυσού και ο χρόνος ανόπτησης δεν επηρεάζει τη μορφολογία και την κατανομή μεγεθών. Για παχύτερα υμένια (h ≥ 5 nm), ανόπτηση για σύντομο χρόνο δεν επαρκεί για την ανάπτυξη νανοσωματιδίων αντίστοιχα με αυτά των λεπτών υμενίων. Στην περίπτωση αυτή, η αύξηση του χρόνου ανόπτησης ή/και αύξηση της θερμοκρασίας ανόπτησης είναι επιβεβλημένη για την ελάττωση του μέσου μεγέθους. Εν γένει, ανόπτηση σε χαμηλότερη θερμοκρασία (400 °C) για μεγάλο χρονικό διάστημα (30 λεπτά) μετατρέπει τα υμένια του Au σε νανοσωματίδια με ευρείες κατανομές μεγεθών και υψηλές μέσες τιμές. Η ανάπτυξη νανονημάτων ZnO εξαρτάται από το μέσο μέγεθος των νανοσωματιδίων του Au. Η ανάπτυξη παρεμποδίζεται στα μεγάλα μεγέθη νανοσωματιδίων Au αφού ο υπερκορεσμός τους με Zn και O είναι αργός. Ως εκ τούτου, για τα υμένια Au με πάχος μεγαλύτερο από ~10 nm η ανάπτυξη νανονημάτων του ZnO είναι εξαιρετικά περιορισμένη. Στη δεύτερη περίπτωση, εξετάστηκε διεξοδικά ένα πλήθος παραμέτρων όπως η συγκέντρωση των αντιδρώντων στο διάλυμα, η παρουσία οργανικών ενώσεων για τον έλεγχο της διαμέτρου, οι ιδιότητες του πρόδρομου υμενίου κρυστάλλωσης στο υπόστρωμα, ο χρόνος κρυστάλλωσης, κ.α. Γυάλινα αγώγιμα υποστρώματα (FTO) στα οποία είχε εναποτεθεί πρόδρομο υμένιο πυρηνοποίησης, χρησιμοποιήθηκαν σε αυτή την περίπτωση για την ανάπτυξη νανονημάτων. Καλά προσανατολισμένες δομές κάθετες στο υπόστρωμα με διάμετρο ~30 nm και μήκος μέχρι ~7 μm δημιουργήθηκαν με χρήση 0.04 Μ ZnAc, 0.02 M HMTA, 0.16 M PEI και 0.04 M NH4OH σε υδατικό διάλυμα στους 95 οC. H χρονική διάρκεια των πειραμάτων κυμάνθηκε στο διάστημα 1 – 24 h. Η τιμή του pH του διαλύματος ήταν περίπου 7. Ο προσανατολισμός των νανοδομών χειροτέρευε με αύξηση του μήκους τους καθώς κάμπτονταν και ενώνονταν με τα γειτονικά τους. Επομένως, για την βελτίωση της δομής τους βρέθηκε ότι είναι απαραίτητη η ανανέωση του διαλύματος κάθε ~2.30 h. Οι παραχθείσες νανοδομές εξετάστηκαν με ηλεκτρονική μικροσκοπία σάρωσης (SEM) και περίθλαση ακτίνων – Χ (XRD). Για την μελέτη των ατελειών στους κρυστάλλους του ZnO χρησιμοποιήθηκε η φασματοσκοπία Raman και η φασματοσκοπία φωτοφωταύγειας (Photoluminescence). Με την φασματοσκοπία Raman μελετήθηκαν οι τρόποι δόνησης των μορίων του υλικού, ενώ με τη φασματοσκοπία φωτοφωταύγειας η ύπαρξη ατελειών στον κρύσταλλο, όπως έλλειψη οξυγόνου, αντικατάσταση ψευδαργύρου με οξυγόνο, κλπ. / Zinc oxide (ZnO) is one of the most important low dimensional semiconducting oxides owing to the amazing variety of the nanostructures it can form by means of various synthesis routes. The most important methods are the vapor deposition and the chemical bath deposition. ZnO nanostructures have attracted considerable attention in view of several applications they encounter such as optics – optoelectronics, sensors, energy production, biomedical sciences, etc. Despite systematic research concerning the rational growth of ZnO nanostructures for over a decade, the establishment of an experimental methodology capable of providing specific morphologies of ZnO nanostructures in a reproducible way is still an open question. This is also one of the current research challenges because the resulting morphologies are characterized by different physical properties and are quite sensitive to small changes in experimental conditions. The current work is aimed at providing a systematic study of the role of various growth parameters on the morphological features and the optical properties of ZnO nanostructures. Growth was achieved by catalyst-assisted (Au) vapor transport at high temperature (VLS) and by solution chemistry (CBD). It is important to gain understanding about how certain parameters affect the morphology of the nanostructures, the size distributions of the diameters and their orientation relative to the substrate. High temperature evaporation methods, such as the vapor-liquid-solid mechanism, have been exploited for the controlled growth of ZnO nanostructures on various substrates. While Au is the most frequently used catalyst for growing ZnO nanowires, its morphological features on the substrate, which determine the size and shape of the nanostructures grown, are not yet methodically explored. In the current work, we investigated the details of thermal dewetting of Au films into nanoparticles on Si substrates. Au films of various thicknesses, h, ranging from 2 to 15 nm, were annealed under slow and fast rates at various temperatures and the morphological details of the nanoparticles formed were investigated. The vapor-liquid-solid method was employed to investigate the role of the Au nanoparticles on the growth details of ZnO nanowires. Efficient and high throughput growth of ZnO nanowires, for a given growth time, is realized in cases of thin Au films, i.e. when the thickness is lower than 10 nm. In the second case, the influence of a number of parameters such as the thickness of the seed layer, the reactants concentration, the existence of organic compounds, the growth time, etc. on the growth of ZnO nanowires on conducting glass substrates (FTO) was examined. After parameter optimization it was found that ZnO nanowires grown have excellent orientation, perpendicular to the substrate, while their diameter and length were found to be ~30 nm and ~7 μm, respectively. The best growth conditions were achieved using 0.04 Μ ZnAc, 0.02 M HMTA, 0.16 M PEI and 0.04 M NH4OH. The reaction temperature was kept at 95 οC for 1 h to 24 h. The pH value was ~ 7. The alignment of ZnO nanowires deteriorates when their length increases; therefore neighboring nanowires bend forming bundles. This shortcoming has been overcome by employing the renewal of the solution every 2.30 h. The structure of ZnO nanowires was investigated by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). Raman scattering was used to study defects of ZnO nanostructures. New Raman modes, in comparison to the bulk crystal, have been assigned to finite size effects and phonon confinement in the nanostructures. Photoluminescence spectroscopy provides evidence for the type of the defects such as oxygen vacancies, zinc interstitials etc.
18

Modélisations multi-physiques de la génération piezoélectrique à l'aide de nanofils d'oxyde de zinc / Multiphysics modelling of the piezoelectric generation in zinc oxyde nanowires

Graton, Olivier 03 October 2012 (has links)
Les progrès réalisés dans les processus de fabrication ont mené vers un contrôle accru des dimensions et de la composition chimique des nanostructures, permettant l’émergence de nouveaux dispositifs appelés Nanosystèmes ElectroMécaniques ou NEMS. Outre leurs propriétés physiques originales, leurs dimensions réduites leurs confèrent un fonctionnement peu coûteux en énergie Ainsi, l’utilisation de l’environnement de tels dispositifs comme source d’énergie est possible. Afin de préserver les avantages liés aux dimensions des NEMS, le système de récupération d’énergie doit présenter un volume réduit. Dans ce contexte, nous étudions les nanoffis de ZnO comme éléments actifs de micro et nanosystèmes de récupération d’énergie à travers deux modèles physiques de nanofils. L’originalité de ces deux modèles vient de la prise en compte du couplage entre les propriétés piezoélectriques et les propriétés semiconductrices du ZnO et de ses effets dans la conversion électromécanique de l’énergie. / Recent progresses in manufacturing processes allow a better control of dimensions and chemical composition of nanostructures, This leads to the emergence of a new family of devices known as Nano ElectroMechanical Systems or NEMS. These devices show novel physical properties and functional characteristics due to their reduced size. Besides, their operating power consumption are tiny, making the use of their environment as energy source highly attractive. The design of a generator that scavenge the surrounding energy of the NEMS is quite a challenge; indeed, such a microharvester should be small enough to ensure that the dimensions of the whole autonomous device are still acceptable. in that context, we investigate ZnO nanowires as active elements of piezoelectric nano and microgenerator. We have specially developed two models of nanowire that take into account of the piezoelectric-semiconducting coupling to appreciate its effects on the electromechanical conversion of energy.
19

Fabricação de microestruturas dopadas com nanofios de ZnO via fotopolimerização por absorção de dois fótons / Fabrication of microstructures doped with ZnO nanowires by two-photon absorption polymerization

Ruben Dario Fonseca Rodriguez 24 July 2012 (has links)
No presente trabalho produzimos microestruturas, através da técnica de fotopolimerização via absorção de dois fótons, dopadas com nanofios de ZnO, um material que vem sendo amplamente explorado devido as suas interessantes propriedades ópticas e elétricas. Para a fabricação das microestruturas, utilizamos um oscilador laser de Ti:safira que produz pulsos de aproximadamente 100 fs em 800 nm. A intensidade dos pulsos de femtossegundos é alta o suficiente para induzir a absorção¬ de dois fótons em torno do volume focal, localizando a polimerização a esta região. Portanto, através da varredura do feixe na resina polimérica fabrica-se a estrutura desejada. Neste trabalho, desenvolvemos uma metodologia para introduzir nanofios de ZnO às microestruturas fabricadas, a partir da mistura do pó de nanofios de ZnO à resina acrílica. A resina utilizada é uma combinação de duas resinas, o etoxilated(6)trimethylolpropane triacrylate (SR-499) e tris(2-hydroxy ethyl)isocyanurate triacrylate (SR-368). Como fotoiniciador utilizamos o Lucirin TPO-L (2,4,6-trimetilbenzoiletoxifenil phosphine oxide). As microestruturas produzidas foram caracterizadas pelas técnicas de microscopia óptica, microscopia eletrônica de varredura, espectroscopia de energia dispersiva, difração de Raios X e espectroscopia de espalhamento micro-Raman. Através destas técnicas, foi possível observar a presença dos nanofios nas microestruturas, bem como caracterizar suas propriedades morfológicas que se mostram adequadas para o desenvolvimento de microdispositivos. Observamos também a emissão de fluorescência das microestruturas excitadas por um e dois fótons. Sendo assim, a metodologia de fabricação descrita aqui pode ser usada como mais uma opção na concepção de novos dispositivos tecnológicos. / In this study we fabricated microstructures, using the two-photon polymerization technique, containing ZnO nanowires, a material that has been widely exploited due to their interesting optical and electrical properties. For the microstructures fabrication, we used Ti:Sapphire laser oscillator operating at 800 nm with 100 fs pulses. The intensity of the fs-pulses is high enough to induce two-photon absorption, confining the excitation and thus the polymerization to the focal volume. By scanning the beam across the resin the desired microstructure is fabricated. In this work, we developed a method to introduce ZnO nanowires in the fabricated microstructure by mixing the ZnO nanowires powder to the acrylic resin. The used resin is a combination of two compounds, etoxilated(6)trimethylolpropane triacrylate (SR-499) and tris(2-hydroxy ethyl)isocyanurate triacrylate (SR-368). As a photoinitiator we have used Lucirin TPO-L (2,4,6-trimetilbenzoiletoxifenil phosphine oxide).The produced samples were characterized by optical microscopy, scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction spectroscopy and micro-Raman scattering. From these techniques it was possible to observe the presence of nanowires in the microstructures, as well as to characterize the morphological properties, which has been shown to be interesting for developing microdevices. We have also observed fluorescent emission of the microstructures excites by one and two-photons absorption. Therefore, the methodology described here can be used as an alternative in the design of new optical devices.
20

Carrier profiling of ZnO nanowire structures by scanning capacitance microscopy and scanning spreading resistance microscopy / Profilage porteur de structures de nanofils ZnO par microscopie à capacité de balayage et microscopie à dispersion

Wang, Lin 28 April 2016 (has links)
Ce travail de thèse porte sur l'application des techniques Scanning Capacitance Microscopy (SCM) et Scanning Spreading Resistance Microscopy (SSRM) pour la caractérisation électrique de nanofils de ZnO avec l'objectif d'en déterminer le dopage par profilage des porteurs libres suite à des essais de dopage de type p. Afin de pouvoir utiliser un référentiel planaire nécessaire à ces mesures par sonde locale, un procédé de remplissage par dip-coating et de polissage a été spécialement développé sur des champs de nanofils quasi-verticaux. De plus, dans le but de parvenir à un étalonnage des mesures SCM et SSRM, nous avons conçu et fait fabriquer des échantillons étalons de dopage de type n, contenant des niveaux de Ga en escalier de densité variable de 2×10^17 à 3×10^20 cm^-3. Les mesures sur des coupes transversales de ces deux de structures multicouches ont permis, pour la première fois sur ZnO d'établir un étalonnage des mesures SCM et SSRM et de déterminer le dopage intrinsèque électriquement actif de couches 2D nanométriques, résultat difficilement atteignable par d'autres techniques d'analyse. Des résultats inattendus de concentration résiduelle de porteur de l'ordre de 2×10^18 et 3×10^18 cm^-3 ont été trouvés sur les nanofils de ZnO crus par MOCVD et par CBD respectivement. Outre la caractérisation électrique microscopique des nanofils par SCM et SSRM, des techniques macroscopiques classiques ont été utilisées pour caractériser des assemblées importantes de nanofils de ZnO. L'origine de la difference entre les résultats de deux genres de technique a été discutée. Nous avons aussi étudié les effets des dopages ex-situ par diffusion du phosphore (procédé SOD) et des dopages in situ par incorporation d'antimoine (Sb) pendant la croissance MOCVD. Les résultats majeurs sont obtenus pour l'antimoine, en utilisant des couches ZnO: Sb 2D et des nanofils cœur-coquille ZnO/ZnO: Sb, ou l'hypothèse d'une compensation partielle du dopage n résiduel par un centre accepteur créé par le dopage Sb semble pouvoir être établie raisonnablement. / Based on atomic force microscope (AFM), scanning capacitance microscopy (SCM) and scanning spreading resistance microscopy (SSRM) have demonstrated high efficiency for two dimensional (2D) electrical characterizations of Si semiconductors at nanoscale and then have been extensively employed in Si-based structures/devices before being extended to the study of some other semiconductor materials. However, ZnO, a representative of the third generation semiconductor material, being considered a promising candidate for future devices in many areas, especially in opto-electronic area, has rarely been addressed. Recently, extensive research interests have been attracted by ZnO NWs for future devices such as LED, UV laser and sensor. Therefore, a good understanding of electrical properties of the NWs is in need. In this context, this thesis work is dedicated to the 2D electrical characterization of ZnO NWs with the focus of carrier profiling on this kind of nanostructure in the effort of their p-type doping. For this purpose, a planarization process has been developed for the NWs structure in order to obtain an appropriate sample surface and perform SCM/SSRM measurements on the top of the NWs. For quantitative analysis, Ga doped ZnO multilayer staircase structures were developed serving as calibration samples. Finally, residual carrier concentrations inside the CBD and MOCVD grown ZnO NWs are determined to be around 3×10^18 cm^-3 and 2×10^18 cm^-3, respectively. The results from SCM/SSRM characterization have been compared with that from macroscopic C-V measurements on collective ZnO NWs and the differences are discussed. In addition to carrier profiling on NWs structure, applications of SCM/SSRM on some other ZnO-based nanostructures are also investigated including ZnO:Sb films, ZnO/ZnO:Sb core-shell NWs structure, ZnO/ZnMgO core-multishell coaxial heterostructures.

Page generated in 0.0447 seconds