• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 6
  • 3
  • Tagged with
  • 32
  • 16
  • 16
  • 14
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Etude des réactions mettant en jeu l'oxygène dans un système électrochimique lithium-air aqueux rechargeable électriquement / Study of oxygen reactions in an aqueous lithium-air battery

Moureaux, Florian 16 November 2011 (has links)
Les systèmes électrochimiques lithium-air sont des concepts naissants mais exhibent des performances théoriques intéressantes qui laissent espérer une rupture technologique dans le domaine des batteries pour véhicule électrique. La possibilité d'atteindre une densité d'énergie supérieure à 500 Wh kg-1 est effectivement en ligne de mire. A contrario de la technologie lithium-air anhydre, les systèmes lithium-air aqueux n'ont, jusqu'à présent, fait l'objet d'aucune étude approfondie. Ce travail concerne donc le développement d'un système lithium-air aqueux, à trois électrodes, et vise également à améliorer nos connaissances fondamentales dans le domaine. La présente étude se focalise sur le compartiment positif de la cellule, dans lequel les réactions de l'oxygène sont mises en jeu. Dans un premier temps, une électrode spécifiquement dédiée à la réaction de dégagement d'oxygène a été élaborée à partir d'un acier 316L. L'étude de son comportement a révélé une bonne propension à catalyser la réaction de dégagement d'oxygène ainsi qu'une bonne stabilité sur 3 000 heures de fonctionnement. Néanmoins, d'importants problèmes de catalyse ont pu être observés et attribués à la présence des ions lithium dans l'électrolyte de la batterie. Les ions Li+ bloquent les transitions électrochimiques des sites actifs à l'origine des propriétés d'électrocatalyse. Le comportement d'une électrode à air, composée de carbone et d'oxydes de manganèse, a par la suite été caractérisé dans ce milieu. L'étude révèle deux phénomènes importants réduisant la performance de l'électrode et dont l'origine a également été attribuée aux ions lithium : un blocage des transitions (MnIII/MnIV), et une stabilisation des groupements oxygénés à la surface du carbone. Pour finir, il a été proposé d'optimiser le système électrolytique en limitant l'activité des ions Li+ en solution et ainsi d'améliorer le rendement en potentiel de charge/décharge de la batterie. / The electrochemical lithium-air devices are emerging concepts and their very high theoretical performances have attracted a lot of attention, especially for an application in the electrical vehicle. A target of at least 500 Wh kg-1 is aimed for. The aqueous lithium-air devices have not yet been studied in detail which is not the case for the anhydrous lithium-air technology. This thesis firstly deals with the development of an aqueous lithium-air cell based on a three electrodes setup, and secondly attempts to improve our theoretical knowledge of these systems. This study particularly focuses on the positive compartment of the cell in which oxygen reactions occur. The first section is dedicated to the development of an oxygen evolution electrode made of 316L stainless steel. The study shows its ability to catalyze the oxygen evolution reaction as well its good stability over 3 000 hours of operation. Nevertheless, major problems of catalysis were observed and assigned to the presence of lithium ions in the electrolyte. Li+ ions inhibit the electrochemical oxidation of the active sites, which are needed for the electrocatalytic properties. The behavior of an air cathode was characterized in the same medium. The results show two important phenomena which reduces the electrode performance and which are also attributed to lithium ions : a deactivation of the (MnIII/MnIV) transition and a stabilization of the oxygenated groups at the carbon surface. Finally, an optimization of the electrolytic system was proposed by limiting the Li+ ions activity in solution, which improves the charge/discharge potential efficiency of the battery.
22

Prévision de la disponibilité énergétique des accumulateurs électrochimiques par estimation d'Etats d'Energie (SoE)

Mamadou, Kelli 02 December 2010 (has links) (PDF)
Dans un contexte d'accroissement du recours à des sources d'énergies renouvelables intermittentes, la palette des dispositifs de stockage électrochimique s'étend et se diversifie pour assurer l'adéquation entre ces sources intermittentes et leurs applications. La conception et le contrôle en temps réel de ces dispositifs nécessitent un modèle de l'énergie disponible au cours du fonctionnement. Or, la non-linéarité du comportement énergétique des dispositifs de stockage électrochimique en fonction des conditions d'utilisation rend cette modélisation très complexe. Aujourd'hui, l'énergie disponible est modélisée grâce à un estimateur de l'état de charge (SoC), couplé à un modèle de la tension de la batterie. L'interfaçage de ces modèles avec ceux des autres composants d'un système est souvent difficile du fait de la nature des variables de contrôle. Par ailleurs, en temps réel, ces modèles permettent difficilement de réaliser des prévisions de l'énergie disponible dans diverses conditions d'utilisation. L'approche énergétique retenue ici a permis de définir un nouvel estimateur, l'état d'énergie (SoE) et de concevoir directement un modèle de l'énergie disponible pour différentes conditions d'utilisation, sans avoir recours à une double modélisation SoC/tension. Le SoE a été utilisé pour caractériser les performances énergétiques d'accumulateurs plomb-acide et Lithium Ion. Pour ces derniers, la précision sur la prévision de l'énergie disponible a été estimée sur plusieurs profiles types.
23

Synthèse et propriétés électrochimiques de nouveaux nitrures mixtes de lithium et métaux de transition pour électrodes négatives performantes d'accumulateurs lithium-ion

Panabiere, Eddie 11 December 2013 (has links) (PDF)
Dans ce travail nous avons réalisé la synthèse de nitrures structure 2D Li3-2xCoxN et de structure 3D Li7MnN4 par méthode céramique, sous atmosphère contrôlée. Après avoir acquis la maîtrise des paramètres de synthèse, nous réalisons la caractérisation structurale et l'étude des propriétés électrochimiques de chaque matériau (capacité spécifique, rechargeabilité...). Dans le cas des matériaux 2D, des affinements par la méthode de Rietveld nous ont permis de déterminer précisément les formules de ces composés. Une étude par spectroscopie diélectrique met en évidence la présence d'une faible proportion de Co+ parmi les Co2+ à l'origine de propriétés de conduction électronique. Nous montrons pour une étude DRX in-operando que le volume de maille ne varie que de 1,5% lors de d'un cycle expliquant la stabilité des capacités de 180mAh g-1 à 300 mAh g-1 selon les conditions. Dans le cas des matériaux 3D, Li7MnN4 a montré les meilleures performances avec des capacités réversibles jusqu' 300mAh g-1. Une étude DRX in-operando a montré que le mécanisme de désinsertion du lithium se déroulé en deux biphasage et une étape de solution solide. Une optimisation des performances est possible en réduisant la taille des particules par mécanobroyage : des capacités de 250 et 120 mAh g-1 sont obtenus à régime C et 5c. L'ensemble de ces nitrures présentent une forte réactivité avec l'humidité mais leur structure a pu être préservée sous air sec
24

Modélisation électrique et énergétique des accumulateurs Li-Ion. Estimation en ligne de la SOC et de la SOH / Energetical and electrical modelling of lithium-ion batteries.Online estimation of SOC and SOH

Urbain, Matthieu 04 June 2009 (has links)
Ce mémoire traite de la modélisation électrique des accumulateurs lithium-ion, de l’estimation de leur état de charge (SOC) et de leur état de santé (SOH). Le premier chapitre revient sur les généralités concernant la technologie lithium-ion : caractéristiques, performances, constitution de l’élément de stockage, choix et nature des électrodes, conséquences qui en découlent d’un point de vue énergétique. Le principe de fonctionnement et les équations générales des phénomènes électrochimiques sont aussi développés. Des exemples d’application dans différents secteurs industriels sont ensuite proposés pour plusieurs gammes de puissance et d’énergie. Le second volet aborde la modélisation électrique des accumulateurs lithium-ion. Pour une meilleure compréhension des phénomènes complexes mis en jeu au sein des batteries, des éléments de modélisation physique sont exposés. Puis nous envisageons une synthèse des différents modèles de nature électrique rencontrés dans la littérature. Sur la base de campagnes de mesures menées sur un élément lithium-ion de 6,8 Ah, nous proposons, dans un troisième chapitre, notre propre modèle électrique équivalent valable pour les phases de décharge et de relaxation. En particulier nous déclinons plusieurs solutions pour distribuer l’énergie et rendre compte des différents effets de ligne. Les outils de caractérisation et les procédures d’extractions des paramètres sont traités en détail. Dans un dernier chapitre nous étudions les possibilités d’estimer en ligne l’état de charge (SOC) et l’état de santé (SOH) d’un élément lithium-ion en cours d’exploitation. Après un bref rappel des méthodes académiques et industrielles actuelles, nous nous orientons vers l’emploi d’un filtre de Kalman. Afin d’estimer ses performances par rapport au coulombmètre, nous proposons un modèle et un algorithme que nous évaluons par simulation et testons sur élément réel / This dissertation of thesis deals with the electrical modelling of lithium-ion accumulators and the determination of both state-of-charge (SOC) and state-of-health (SOH). The first chapter is focused on generalities about lithium-ion technology: characteristics, qualities, constitution of the storage device, choice and nature of the electrodes and their consequences on energetical features. The principle and the general equations of the electrochemical phenomena are developed as well. Application examples from different industrial areas are displayed for several power and energy ranges. The second section is about the electrical modelling of lithium-ion accumulators. With a view to better understand the complex electrochemical phenomena, elements of physical modelling are proposed. Then, the synthesis of different electrical models released in the press is considered. On the basis of experimental campaigns lead on a 6.8 Ah lithium-element, we proposed, in a third chapter, our own equivalent electrical model suitable for both discharge phases and relaxation period. In particular, we depict several alternatives to distribute the energy and describe the different line effects. Both characterization tools and parameters extraction procedure are clearly detailed. In the last section, we tackle both SOC and SOH on-line determination. After a short review of academicals and industrial solutions, we rapidly head towards the use of a Kalman filter. In order to compare its features versus the coulombmeter, we propose a model and an algorithm, numerical simulations and experimental tests are performed
25

Impact de la formulation d'électrolytes sur les performances d'une électrode négative nanocomposite silicium-étain pour batteries Li-ion / Impact of the electrolyte formulation on the performance of a silicon-tin nanocomposite negative electrode for lithium-ion batteries

Sayah, Simon 14 December 2017 (has links)
Ce projet de thèse porte sur la recherche de nouveaux électrolytes et additifs dans le but d’améliorer la cyclabilité d’une électrode négative composite de formule Si0.32Ni0.14Sn0.17Al0.04C0.35 et d’obtenir une interface électrode|électrolyte stable. En effet, comme la plupart des matériaux à base de silicium, ce composite de grande capacité (plus de 600 mA.h.g-1) souffre actuellement d’une faible durée de vie provenant essentiellement des expansions volumiques qu’il subit lors de sa lithiation et de sa SEI défaillante. Deux types d'électrolytes ont été évalués : (i) un mélange de carbonates d’alkyles EC/PC/3DMC auquel a été ajouté un sel de lithium (LiPF6, LiTFSI, LiFSI ou LiDFOB) ainsi que des additifs aidant à la formation de la SEI tels que le carbonate de vinylène (VC) ou le carbonate de fluoroéthylène (FEC), (ii) des liquides ioniques (LI) contenant un cation ammonium quaternaire (N1114+), imidazolium (EMI+) ou pyrrolidinium (PYR+), associé à un anion à charge délocalisée comme le bis(trifluorométhanesulfonyl)amidure (TFSI-) ou le bis(fluorosulfonyl)amidure (FSI-). L’analyse du diagramme d’ionicité de Walden a permis de mettre en évidence la bonne dissociation de LiFSI et LiPF6 dans EC/PC/3DMC assurant ainsi des conductivités ioniques supérieures à 12 mS.cm-1. Bien que possédant des propriétés de transport a priori moins intéressantes dans ce mélange ternaire que les autres sels, LiDFOB forme en réduction une SEI permettant au composite de fournir les meilleures performances en cyclage sans additif avec 560 mA.h.g-1 pour un rendement coulombique de 98,4%. L’ajout d’additif est cependant nécessaire pour atteindre les objectifs fixés par le projet en termes de rendement coulombique (>99,5%). Dans ce cas, l’ajout de 2%VC+10%FEC au mélange ternaire est le plus intéressant avec LiPF6. Le matériau fourni ainsi des capacités de 550 mA.h.g-1 durant une centaine de cycles à un régime de C/5 avec un rendement coulombique de 99,8%. En milieu LI, les performances optimales sont atteintes avec le [EMI][FSI] et 1 mol.L-1 de LiFSI. Le composite atteint alors une capacité de 635 mA.h.g-1 durant 100 cycles à un régime de C/5 avec un rendement coulombique très proche de 100%, tout en s’affranchissant de l’ajout d’additifs. Malgré une viscosité bien plus élevée que celles des mélanges de carbonates d’alkyles, cette formulation permet de générer une SEI plus stable dont la nature, principalement minérale, est issue majoritairement des produits de réduction de FSI-. / This study focuses on new electrolytes and additives in order to improve the cyclability of a Si0.32Ni0.14Sn0.17Al0.04C0.35 negative composite electrode (Si-Sn) and to obtain a stable electrolyte|electrolyte interface. Indeed, like most silicon-based materials, this high-capacity Si-Sn composite (over 600 mA.hg-1) currently suffers from a short cycle life due to volume expansion during charge-discharge processes leading to the degradation of the SEI. To improve the quality of the interface, two kinds of electrolytes were evaluated: (i) mixtures of alkyl carbonates EC/PC/3DMC in which a lithium salt (LiPF6, LiTFSI, LiFSI or LiDFOB) and additives like SEI builder (vinylene carbonate (VC) or fluoroethylene carbonate (FEC)) were added, (ii) ionic liquids (IL) based on quaternary ammonium (N1114+), imidazolium (EMI+) or pyrrolidinium (PYR+) cation, associated with delocalized charge anions such as bis(trifluoromethanesulfonyl)imide (TFSI-) or bis(fluorosulfonyl)imide (FSI-). The Walden diagram confirms the efficient dissociation of LiFSI and LiPF6 in EC/PC/3DM ensuring ionic conductivities as high as 12 mS.cm-1. Although possessing limited transport properties in such a ternary mixture compared to other salts, LiDFOB forms, without additional additives, an high quality SEI allowing the composite to provide the best performances in half cells (560 mA.hg-1 and 98.4% coulombic efficiency). The use of additive is however necessary to reach the objectives fixed by the ANR research project in terms of coulombic efficiency (>99.5%). In this case, the addition of 2%VC+10%FEC to the ternary mixture is the most interesting composition with LiPF6 as lithium salt. So, the Si-Sn nanocomposite material reaches 550 mA.h.g-1 during 100 cycles at C/5 with 99.8% efficiency. In IL, the best performances are achieved in [EMI][FSI]/LiFSI (1 mol.L-1). The performances of the Si-Sn composite reaches 635 mA.h.g-1 for 100 cycles at C/5 with coulombic efficiency close to 100%, without additives. This electrolyte formulation generates a stable SEI which the mainly mineral composition, is predominantly derived from the reduction products of FSI-.
26

Caractérisation de nouveaux modes de maintien en charge pour batteries stationnaires de secours

Dillenseger, Guillaume 14 December 2004 (has links) (PDF)
Les accumulateurs au plomb de secours sont traditionnellement maintenus à l'état chargé par floating, i.e. tension de charge constante.<br />Nous avons mené différentes études sur les batteries de démarrage, les moins chères du marché : cinétiques d'autodécharge des électrodes, influence des surtensions sur les états de charge et la corrosion, aptitude à la recharge.<br />Il en résulte des considérations sur les notions mêmes de fem d'un accumulateur au plomb, de charge complète, et un modèle de perte de capacité des matériaux actifs dans le temps. Une nouvelle technique de maintien en charge est proposée, réduisant au moins d'un facteur deux les quantités d'électricité fournies. Cette technique associe de longues périodes sous faibles courants de maintien, inférieurs d'un ordre de grandeur aux courants de floating habituels, et des phases courtes à régime plus élevé. Elle vise à réduire les coûts de service en conjuguant : batteries bon marché, peu ou pas d'entretien et durée de vie élevée.
27

Relation entre la structure et le comportement electrochimique des phases LixNi1-yMyO2 (M = Al, Fe, Co). Materiaux d' electrodes positives pour batteries au lithium

Rougier, Aline 11 July 1995 (has links) (PDF)
Le nickelate de lithium "LiNiO2" est actuellement l'un des matériaux d'électrode positive pour batteries au lithium les plus etudies. Cependant, "LiNiO2" stoechiométrique n'existe pas, la formule réelle est Li1-zNi1+zO2. La présence de ces (z) ions nickel excédentaires entraine une diminution significative des performances électrochimiques. Une étude structurale fine (méthode de Rietveld), couplée à une étude magnétique, a permis de quantifier de façon précise l'écart a la stoechiométrie (z). L'influence de divers substituants sur les propriétés structurales, physiques et électrochimiques a également été étudiée.
28

Les phases omega-LixV2O5, nouveaux matériaux d'électrode pour batteries au lithium. Caractérisation structurale et électrochimique

Cognac-Auradou, Hélène 22 December 1993 (has links) (PDF)
Lorsque trois atomes de lithium sont intercales chimiquement ou électrochimiquement dans V2O5, un nouveau matériau omega-Li3V2O5 se forme irréversiblement. Il présente une structure dérivée de NaC1. La désintercalation du lithium de ce matériau est complètement réversible dans le domaine d'intercalation 0,1<=x<=3,0. Les batteries au lithium ayant la phase omega-Li3V2O5 (forme in situ) comme électrode positive présentent des performances exceptionnelles, que ce soit du point de vue de l'energie massique ou de la tenue en cyclage. Cette étude a été transposée a des matériaux dérivant de V2O5 contenant du molybdène. La formation de la phase omega a été également observée. L'ensemble de ces matériaux a été étudie du point de vue électrochimique et structural. (Diffraction X et absorption X,MET).
29

Recherches d'optimums d'énergie pour charge/décharge d'une batterie à technologie avancée dédiée à des applications photovoltaïques

Reynaud, Jean-François 04 January 2011 (has links) (PDF)
La présence d'une fonction de stockage avec des sources d'énergie intermittentes permet d'obtenir une meilleure adéquation entre la consommation et la production d'énergie. Aujourd'hui, le stockage d'énergie est le plus souvent réalisé avec des batteries conventionnelles, principalement au plomb-acide, pour des raisons de coût, de fiabilité et de disponibilité industrielle. Cependant, la durée de vie des éléments de stockage actuels, l'impact sur l'environnement et le rendement trop faible entrainent la recherche d'autres moyens de stockage ayant des durées de vie compatibles avec les applications et présentant des fonctions plus flexibles. La technologie lithium parait être aujourd'hui un bon compromis si elle est associée à une électronique de précision assurant diverses fonctions. Cette thèse porte sur l'optimisation de moyens de stockages lithium-ion utilisés dans les énergies renouvelables et le développement de l'électronique associée. La validation de ces travaux a été faite à travers des systèmes de conversion photovoltaïques. Le rendement de conversion de l'ensemble a particulièrement été étudié en tenant compte de différents profils de charge et de décharge, du vieillissement et des sécurités des batteries ainsi que des derniers développements technologiques de batterie. Pour valider les algorithmes de gestion et qualifier les chaînes de conversion, un banc de mesure spécifique a été développé.
30

Modélisation multiphysique de cellules sodium chlorure de nickel / Multiphysics modeling of sodium nickel chloride cells

Christin, Rémy 09 December 2015 (has links)
La montée en puissance des systèmes de production de l'énergie électrique, à partir de centrales éoliennes ou photovoltaïques, a fait apparaître un besoin aigu en moyens de stockage de cette énergie. Les technologies d'accumulateurs électrochimiques sont à même de répondre à cette problématique, en particulier les batteries sodium chlorure de nickel, une technologie d'accumulateur à haute température. Mais afin de gérer au mieux les performances de ces batteries, il est nécessaire d'avoir une connaissance approfondie du comportement électrothermique des cellules unitaires les composant. Ce travail de thèse présente en détail le développement d'un modèle multiphysique 2D d'une cellule Na-MCl2 commerciale, à même de simuler son fonctionnement en décharge à courant constant. Ce modèle a été construit sur une étude approfondie des mécanismes électrochimiques à l'œuvre dans ce type de technologie, et des effets thermiques associés. Il repose également sur la synthèse et la critique des modèles proposés précédemment dans la littérature. Le modèle inédit proposé dans ce manuscrit permet de prendre en compte deux réactions électrochimiques simultanées, ainsi que le comportement thermique de la cellule. Le modèle a été validé en confrontant les résultats de simulations aux performances électriques réelles d'une cellule commerciale Na-MCl2 (incluant une caractérisation des phénomènes électrochimiques par voltammetrie cyclique). Ce modèle permet de simuler avec succès des décharges à courant constant à différents régimes, et à partir de différentes températures. Il est également capable de prévoir les effets électrothermiques qui seraient consécutifs à un changement de design de la cellule (design structurel et de constitution). / The growing production capacity of wind turbines or photo-voltaic plants has revealed an acute need for electric energy storage systems. Electrochemical accumulator technologies are able to address this issue, in particular sodium nickel chloride batteries, a high temperature battery system. But to enhance the energy management of these batteries, it is necessary to have a deep knowledge of the electro-thermal behavior of its unit cell component. This thesis presents the development of a comprehensive multiphysics 2D model of a commercial Na-MCl2 cell, able to simulate its operation in constant current discharge. This model was built on a thorough study of electrochemical mechanisms at work with this type of technology, and its associated thermal effects. It is also based on the synthesis of existing models, and their critique. The new model proposed in this manuscript can take into account two simultaneous electrochemical reactions, as well as the thermal behavior of the cell. The model was validated by comparison between simulation results and the actual electrical performances of a commercial Na-MCl2 cell (including the characterization of electrochemical phenomena by cyclic voltammetry). This model successfully simulates constant current discharges at different rates, and from different temperatures. It is also capable of predicting the electro-thermal effects consecutive to design changes of the cell (structural and relevant to the active material).

Page generated in 0.0467 seconds