• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 636
  • 51
  • 44
  • 34
  • 28
  • 27
  • 22
  • 5
  • 4
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 1188
  • 1188
  • 498
  • 293
  • 284
  • 280
  • 261
  • 201
  • 141
  • 126
  • 108
  • 105
  • 101
  • 101
  • 101
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
791

HIGH-Q TUNABLE MICROWAVE CAVITY RESONATORS AND FILTERS WITH SCALABLE MANUFACTURING TECHNOLOGIES FOR 5G COMMUNICATIONS

Michael Dimitri Sinanis (12343204) 21 July 2022 (has links)
<p>Wireless communications and interconnected devices have become ubiquitous in our everyday life. As the rollout of the 5th generation (5G), wireless communication technology is well underway, the number of interconnected devices is increasing exponentially. Estimations for 2021 predicted that 1.5 billion smart devices would sell globally, representing a $53.45 billion market size by 2022. With the increase of communication channels and transmitted data within these networks, the challenge of coexistence without interference will become prominent. Simultaneously, 5G networks are introducing more frequency bands while densifying the network of communication towers. Forecasts predict a 100X increase of the network at the edge by introducing small cell towers, with projections estimating 45 million installed by 2031. As a result, rapid exponential growth in hardware costs is expected. Also, these dense networks will require a higher degree of self-configuration to prevent adjacent band interference.</p> <p>Tunable filters and large-scale manufacturing technologies are two solutions to address these challenges. Reconfigurable high-quality evanescent-mode (EVA) filters have been extensively presented in the literature. Different mechanisms have been employed for tuning, such as piezoelectric actuators and motors, and magnetostatic and electrostatic actuators. Furthermore, these implementations have been realized with printed circuit board (PCB) technology, computer numerical control (CNC) machining, 3D printing, and silicon (Si) micro-machining. Specifically, PCB manufacturing of three-dimensional front-end tunable filters has been promising and can deliver excellent performance. In addition, they can be integrated into the existing manufacturing lines and circuitry for the RF front-end.</p> <p>Nonetheless, there are limitations in fabrication tolerances that PCB manufacturing could reach. Consequently, there are restrictions on the frequency bands that these devices can be manufactured as dimensions become smaller in higher bands. Moreover, EVA cavities have been proven to yield higher performance filters when compared to unloaded quality factors and power handling of currently used substrate integrated waveguide (SIW) based technologies. Specifically, EVA filters produced with silicon micro-manufacturing combined with MEMS actuators have been demonstrated with remarkable performance up to 100s of GHz. Also, cost limitations per unit built are significant compared to other technologies like injection molding.</p> <p>The research goal of this work is to investigate scalable, low-cost manufacturing processes and techniques while maintaining a high-performance device. Combining knowledge from silicon RF MEMS tuned EVA filters and the cost-effective mass manufacturing injection molding technology to deliver a high-Q, high power handling, low-cost tunable filter. Demonstrating these characteristics within the same manufactured prototype would be a unique solution within the existing literature on tunable filters.</p> <p>This thesis is organized into three parts. The first part is focused on design for manufacturing (DFM). Si micromachining has been used to produce tunable resonators and filters at lower bands, but higher bands have yet to be demonstrated. The low-cost batch fabrication of already established Si micromachining lines makes this an attractive technology to realize these devices. This section presents network densification’s challenges and the economics of scale-up manufacturing. Furthermore, using Si micromachining, the first high Q tunable W band RF resonator is demonstrated tuned with MEMS technology.</p> <p>In the second part, the focus is on design for performance (DFP). Si micromachining is optimized to demonstrate high-performance RF MEMS tunable filters up to 100s GHz. High Q, wide tuning range, and low actuation voltages for the MEMS tuners have been realized.</p> <p>In the third part, the focus is on design for cost (DFC), where injection molding manufacturing technology is proven to have significant advantages in low cost with respect to other large-scale manufacturing technologies. A high-performance tunable resonator and filter in the sub-6 GHz frequency band are manufactured. They prove that simultaneously high Q, widely tunable, high power capable filters can be produced with low-cost scalable manufacturing technology.</p>
792

Characterization of the Effects of Internal Channel Roughness on Fluid Flow and Heat Transfer in Additively Manufactured Microchannel Heat Sinks

Sara K Lyons (13114335) 22 July 2022 (has links)
<p>  </p> <p>As the power density of computing devices increases, advanced liquid cooling thermal solutions offer an attractive thermal management approach. In particular, the low thermal resistance offered by microchannel heat sinks used in liquid cooling systems may enable increased total heat dissipation within fixed component temperature limits. There has been extensive work on the design of microchannel heat sinks, with many recent efforts to explore novel geometries and emerging manufacturing techniques. Of particular interest is additive manufacturing to allow for designs having complex, non-traditional internal geometries and package structures that cannot be made through conventional means. Despite the potential benefits for design and construction, additive manufacturing introduces new geometric uncertainties that could affect device performance. Direct metal laser sintering methods suitable for printing metal heat sinks typically produce a high internal roughness and other shape deviations in the flow paths of the final part. This extreme relative roughness and potential tortuosity in fluid flow through additively manufactured microchannels could lead to significant deviations in pressure drop and heat transfer predicted with traditional correlations and models. This work seeks to characterize the effects of high relative roughness on the friction factor and Nusselt number in additively manufactured microchannels having a rectangular cross section. Straight microchannel samples of 500 µm, 750 µm, and 1000 µm channel heights, and aspect ratios from 1 to 10 were manufactured to identify the design dimensions that resulted in visibly open channels, albeit with deviations in cross-sectional shape for submillimeter channel sizes and high internal roughness. Heat sink test samples were then printed with an array of these microchannels connected in parallel by inlet and outlet headers. Using water as the working fluid, the pressure drop and heat transfer performance of these sample heat sinks were characterized to explore how their behavior deviated from conventional predictions assuming smooth-walled channels. Flow through these additively manufactured microchannels displayed higher pressure drops than predicted, as well as a flow rate dependence of the hydrodynamic and thermal performance. These observed deviations are explored as effects of the physical conditions inside the channel as a result of additive manufacturing. Severe constriction of the channel would account for the difference in magnitude between the experimental and predicted results, while the introduction of flow redevelopment could lead to a flow rate dependence.  By further understanding the impact of these artifacts and deviations, these factors can be accounted for in the design and modelling of more complex additively manufactured heat sinks. </p>
793

STUDY ON CHARACTERISTICS OF DIRECT ENERGY DEPOSITED NITINOL AND A NOVEL COATING METHOD FOR ORTHOPEDIC IMPLANT APPLICATIONS

Jeongwoo Lee (13169715) 28 July 2022 (has links)
<p>This study is focused on synthesizing Nitinol by additive manufacturing that can provide desirable mechanical properties for orthopedic implants and adding functionally gradient coating that can enhance both safety and biocompatibility for orthopedic implant applications.</p> <p><br></p> <p>The characteristics of additively manufactured Nitinol, by using the direct energy deposition (DED) technique, were experimentally studied. Because of a unique layer-by-layer manufacturing scheme, the microstructure and associated properties (mechanical and thermo-mechanical properties) of the DED Nitinol is different compared to conventionally produced Nitinol. Both the feasibility of manufacturing defect-free microstructure and the precise control of chemical composition were demonstrated. Effects of chemical compositions and post heat-treatment conditions on the phase transformation temperatures of the DED Nitinol were systematically analyzed and compared with those of conventional Nitinol. More precise control of phase transformation temperature from DED Nitinol was possible due to incoherent precipitate formation during aging heat treatment. In a similar way, the mechanical properties of the DED Nitinol were less sensitive to its chemical compositions and post heat-treatment conditions. The feasibility of the precise control of both mechanical and thermo-mechanical properties of the DED Nitinol was demonstrated which can broaden its applications. </p> <p><br></p> <p>The bulk polycrystalline properties of the NiTi phase were studied via molecular dynamics (MD) simulations. Thermo-mechanical properties that are highly sensitive to chemical composition were not precisely predicted from previous reports and studies. In this study, realistic boundary conditions were applied to calculate bulk polycrystalline properties. Thermally driven phase transitions of NiTi between martensite and austenite are simulated with external stresses in both normal and shear directions. It is shown that phase transformation temperatures are affected by applied external stresses, and realistic values compared to experimental data are correctly predicted only when external stresses in both normal and shear directions are similar to the experimentally observed values of 0.05 – 0.1 GPa. The experimentally observed grain orientation and grain boundary thickness were applied to simulation domains for the prediction of the elastic moduli. The elastic moduli of polycrystalline NiTi structure was calculated as 52 GPa which is close to the experimentally reported value of 20-40 GPa while other studies predicted over 85 GPa. </p> <p><br></p> <p>Lastly, pure titanium gradient layers were coated on the Nitinol surface for orthopedic implant applications to eliminate potentially toxic Ni ion release. Using the DED technique, both the core Nitinol and titanium gradient layers were manufactured with high purity and without microstructural defects. An additional biomedical coating of Hydroxyapatite (HA) was deposited on the outer surface using the cold spray technique. The resultant bonding strength was determined to be 26 MPa which exceeded the requirement of the ISO-13779 standard (15 MPa). The <em>in vitro</em> test of the Ni release rate from the entire gradient Nitinol structure was very low, which was comparable to drinking water.</p>
794

Geometrical accuracy of metallic objects produced with Additive or Subtractive Manufacturing: a comparative in-vitro study

Jönsson, David, Kevci, Mir January 2017 (has links)
Syftet: Utvärdera produktionstolerans av objekt som producerats genom additiv framställningsteknik (AF) för användning inom tandvård, samt att jämföra denna teknik med subtraktiv framställningsteknik (SF) genom reverse engineering.Material och metod: Tio exemplar av två olika geometriska objekt framställdes från fem olika AF maskiner och en SF maskin. Objekt A efterliknar ett inlay, medan objekt B återspeglar en modell av en fyrledsbro. Alla objekt delades in i olika mätled; X, Y och Z. Mätningarna utfördes med validerade och kalibrerade instrument. Linjära avstånd mättes med ett digitalt skjutmått och hörnradie samt vinklar mättes med ett digitalt mikroskop.Resultat: Vare sig additiv eller subtraktiv framställning uppvisade en perfekt matchning till CAD-filen med hänsyn till de parametrar som utvärderades i denna studie. Standardavvikelsen gällande linjära mätningar för subtraktiv framställning uppvisade konsekventa resultat i alla led, med undantag för X- och Y-led för objektet A och i Y-led för objekt B. Samtliga additiva tillverkningsgrupper hade en konsekvent standardavvikelse i X- och Y-led, men inte i Z-led. Med avseende på hörnradiemätningar, hade SF gruppen i överlag bättre produktionsnoggrannhet för både objekt A och B medan AM grupperna var mindre noggranna.Konklusion: Med hänsyn till begränsningarna med denna in vitro studie, stödjer resultat hypotesen, med hänsyn till att AF hade en bättre förmåga att återskapa komplexa och små geometrier jämfört med SF. Samtidigt identifierades en bättre reproducerbarhet hos SF gällande enkla geometrier och linjära avstånd. Vidare studier krävs för att bekräfta dessa resultat. / Purpose: To evaluate the production tolerance of objects produced by additive manufacturing systems (AM) for usage in dentistry and to compare with subtractive manufacturing system (SM) through reverse engineering. Materials and methods: Ten specimens of two geometrical objects were produced by five different AM machines and one SM machine. Object A mimics an inlay-shaped object, meanwhile object B reflects a four-unit bridge model. All the objects were divided into different measuring-axis; X, Y and Z. Measurements were performed with validated and calibrated equipment. Linear distances were measured with a digital calliper while corner radius and angle were measured with a digital microscope. Results: None of the additive manufacturing or subtractive manufacturing groups presented a perfect match to the CAD-file regarding all parameters included in present study. Considering linear measurements, the standard deviation for subtractive manufacturing group were consistent in all axis, except for X- and Y-axis in object A and Y-axis for object B. Meanwhile additive manufacturing groups had a consistent standard deviation in X- and Y- axis but not in Z-axis. Regarding corner radius measurements, SM group overall had the best accuracy for both object A and B comparing to AM groups. Conclusion: Within the limitations of this in vitro study, results support the hypothesis, considering AM had preferable capability to re-create complex and small geometry compare to SM. Meanwhile, SM were superior producing simple geometry and linear distances. Further studies are required to confirm these results.
795

Adoption of Additive Manufacturing in Hospitals – Multiple Case Study

Li, Xiang January 2022 (has links)
Additive Manufacturing (AM) is a technology that can revolutionize the healthcare industry in terms of customization. Various studies and ongoing practice have proved the potential of AM in clinical use as enormous. However, to reach a routine level of adoption of AM in patients’ care, there are various things to consider. The purpose of the thesis is to reveal the key factors that will affect the hospital adoption of AM in different Swedish regions. The literature revealed the advantages and disadvantages of different manufacturing systems for hospital AM use and the main benefits and challenges in the different clinical applications of AM. Four exploratory case studies were carried out to identify the key factors in terms of AM hospital adoption, which have a comparative design. The four case studies are four different regions with different levels regarding AM hospital use. Purposive sampling was applied to choose the interested regions, while snowball sampling was used for selecting interview participants. The findings were analyzed via thematic analysis. Results show that key factors will mostly have both pushing and pulling effects regarding AM hospital use. Key factors were divided into the themes of Implementation, Management and Behavior. Aspects falling under Management are mentioned the most frequently in the interviews, suggesting that these factors play an important role in the adoption of AM. Theme Behavior is not previously found in the literature on AM in clinical use. Close communication among different levels and cross disciplines will positively affect the adoption of AM, as it will improve the AM awareness rate and result in more clinical champions. Concluded that a centralized AM adoption faces numerous factors which should be properly evaluated before the initiation. Apart from having an economic model to prove the business possibility, a top-down strategy to build an intensive AM information exchange will lead to a better and smooth adoption in healthcare.
796

Determining the Influence of the Type of Shielding Gas during Additive Manufacturing of an Aluminum Alloy by Monitoring the Process Qualitatively and Analyzing Process Byproducts Quantitatively

Kleemeyer, Stefanie Desiree January 2021 (has links)
This thesis analyzes the influence of process gases on the formation and the characteristics of process byproducts that emerge during additive manufacturing of an aluminum alloy belonging to the 2000 series.  In order to address the influence, four pure gases, argon, nitrogen, helium, and carbon dioxide, were used as a shielding gas on the same parameter sets.  The interaction of the laser beam with the powder bed under each shielding condition was recorded by a camera.  The humidity, particle size distribution, and chemistry of the spatters produced after each job was analyzed.  The chemistry of small cylinders printed, was determined.  The density of the produced cubic samples was determined following the Archimedes principle, as well as through the analysis of the  cross-section.   Lastly,  the  embedded  and  polished  samples  were  etched,  and  the penetration depth of the laser was determined.  Under argon and nitrogen shielding, the process looked the same and the produced spatters show similar results.  Under helium shielding, less incandescent spatters were seen, and the particle size distribution is smaller than under argon or nitrogen. Carbon dioxide resulted in the highest number of incandescent particles and a change of the color of the rays from red to yellow.  The chemical analysis shows that a slight increase of nitrogen in the spatters and the bulk material can be seen under nitrogen shielding.  Oxygen and hydrogen content was sim- ilar under argon, nitrogen, and helium shielding.  Carbon dioxide shielding resulted in the highest oxygen content in the spatter and the bulk material. The density is highest under helium shielding, and lowest under carbon dioxide shielding.  Under argon and nitrogen shielding, the density was similar.  The study concluded that the choice of a process gas is not an arbitrary one but should be selected with care. / Denna avhandling analyserar processgasernas påverkan på bildandet och egenskaperna hos process biprodukter som uppstår vid additiv tillverkning av en aluminiumlegering som tillhör 2000-serien. För att hantera inflytandet användes fyra rena gaser, argon, kväve,  helium  och  koldioxid  som  skyddsgas  på  samma  parameteruppsättningar. Interaktionen mellan  laserstrålen och  pulverbädden under  varje skärmningsförhållande registrerades  av  en  kamera.  Fuktigheten, partikelstorleksfördelningen  och  kemin  hos stänkarna som producerades efter varje jobb analyserades. Kemien hos de små cylindrarna  som  trycktes  bestämdes. Densiteten  hos  de  producerade  kubikproven  bestämdes enligt Archimedes princip, liksom genom analys av tvärsnittet. Slutligen etsades de inbäddade och polerade proverna och laserns penetrationsdjup bestämdes. Under argon- och kväveavskärmning såg processen likadan ut och de producerade stänkarna visar liknande resultat. Under heliumskärmning sågs mindre glödande stänk och partikelstorleksfördelningen är mindre än under argon eller kväve. Koldioxid resulterade i det högsta antalet glödande partiklar och en förändring av strålarnas färg från rött till gult. Den kemiska analysen visar att en liten ökning av kväve i stänkarna och bulkmaterialet kan ses under kväveavskärmning. Syre- och väteinnehållet var liknande under argon-,  kväve-  och  heliumskärmning. Koldioxidavskärmning  resulterade  i  det  högsta syreinnehållet i stänk och bulkmaterial. Densiteten är högst under heliumskärmning och lägst under koldioxidskärmning. Under argon- och kväveavskärmning var densiteten densamma. Studien drog slutsatsen att valet av en processgas inte är godtyckligt utan bör väljas med omsorg.
797

ADDITIVE MANUFACTURING OF PURE COPPER USING ELECTRON BEAM MELTING (EBM)

Chinnappan, Prithiv Kumar, Shanmugam, Vishal January 2022 (has links)
Pure copper (Cu) has the properties of high optical reflectivity and surface tarnishing as well as excellent thermal and electrical conductivity. Accordingly, laser-based additive manufacturing (AM) techniques confront various difficulties to produce thismaterial. In contrast, the electron beam melting (EBM) process is paving to become an excellent method to manufacture AM parts from such materials. This is since theelectron beam is not influenced by the optical reflectivity of the material. Furthermore, EBM works under vacuum that can protect the powder material from oxidization. In addition, the high working temperature and preheating process for each layer canensure a uniform heat input and a much lower cooling rate. Hence, the EBM processcan significantly prevent the parts from delamination failure caused by residual stress. Accordingly, this research work is intended to investigate the EBM processability and geometrical freedom/accuracy of EBM made copper components. The 99.95% pure Cu powder with a particle size range of 45-100μm are used to produce samples. All the samples are built with a certain layer thickness of 50μm with altering parameters, including the processing temperature, line offset, focus offset, beamspeed, and beam current. It is found that the processing temperature of 500°C leadsto low density and severe lateral melting/sintering. Accordingly, the temperature is lowered to 450°C, 400°C, 350°C, and 310°C to control the excessive lateral melting. Since dense parts could only be produced above 400°C, this work focuses on developing 400°C processing temperature with different line offset, focus offset, beamspeed, and beam current. However, it is observed that the processing window of the EBM process is rather narrow, too high or too low energy input could both result in a porous part with severe distortion. After many experimental optimizations runs, the combination of the optimum parameters is reached which can deliver parts with over 99% density and a good geometrical stability. After optimization, the benchmark partsare designed and manufactured according to electrical and thermal applications (using the optimum parameters). Afterwards, the corresponding geometrical freedomand accuracy of the copper components made by EBM is assessed and discussed. / Ren koppar (Cu) har egenskaper som hög optisk reflektivitet och ytans anlöning samt utmärkt termisk och elektrisk ledningsförmåga. Följaktligen möter laserbaserad additiv tillverkning (additive manufacturing, AM) olika svårigheter när det gäller att producera detta material. Däremot är elektronstrålesmältning ("electron beam melting", EBM) på väg att bli en utmärktmetod för att tillverka AM-delar av sådana material. Detta beror på att elektronstrålen inte påverkas av materialets optiska reflektivitet. Dessutom arbetar EBM under vakuum som kan skydda pulvermaterialet från oxidering. Dessutom kan den höga arbetstemperaturen och förvärmningsprocessen för varje lager säkerställa en jämn värmetillförsel och en mycket lägre kylningshastighet. EBM-processen kan därför i hög grad förhindra att delamineringsfel orsakade av restspänningar uppstår. Syftet med detta forskningsarbete är därför att undersöka EBM-processbarheten och den geometriska friheten/precisionen hos EBM tillverkade kopparkomponenter. Det 99,95 % rena Cu-pulvret med ett partikelstorleksområde på 45-100 μm används för att producera prover. Alla prover är byggda med en viss tjocklek på 50 μm med ändrade parametrar, inklusive bearbetningstemperatur, linjeförskjutning, fokusförskjutning, strålhastighet och strålström. Det har visat sig att bearbetningstemperaturen på 500°C leder till låg densitet och allvarlig lateral smältning/sintring. Följaktligen sänks temperaturen till 450°C, 400°C, 350°C och 310°C för att kontrollera den överdrivna laterala smältningen. Eftersom täta delar endast kunde produceras över 400°C, fokuserar detta arbete på att utveckla 400°C bearbetningstemperatur med olika linjeförskjutning, fokusförskjutning, strålhastighet och strålström. Det observeras dock att bearbetningsfönstret för EBMprocessen är ganska smalt, för hög eller för låg energitillförsel kan båda resultera i en porösdel med allvarlig förvrängning. Efter många experimentella optimeringskörningar uppnås kombinationen av de optimala parametrarna som kan leverera delar med över 99% densitet och en god geometrisk stabilitet. Efter optimering designas och tillverkas benchmarkdelarna i enlighet med elektriska och termiska applikationer (med optimala parametrar). Därefter bedöms och diskuteras motsvarande geometriska frihet och noggrannhet hos kopparkomponenterna tillverkade av EBM.
798

Challanges In Constructing Large Frame FDM 3D Printers / Utmaningar Vid Konstruktion Av Stora FDM 3D Skrivare

Emericks, Isak January 2020 (has links)
This project was initiated by Postnord who wanted to develop their own large frame FDM 3D printer, mainly for two reasons. The first reason was to be able to use the collaboration between Postnord and KTH to present how Postnord are promoting domestic production in the same time as portraying themselves as leaders in the field of additive manufacturing in Sweden. The second reason was to get a machine with the ability to print both small- and large-scale prototypes and products to be used in an industrial environment. The targeted goals and desired outcome of the PP3D (PostPaper3D - project name) was to construct a large frame FDM 3D printer, with a build area of 1 square meter and (if possible) a printing volume of 1 cubic meter, capable of printing parts for industrial applications. This would be achieved by using industrial components and state-of-the-art open source 3D printing control systems. Sensors for filament run-out detection and automatic printer bed levelling was also desired. On top of these goals KTH-IIP wanted the project work to focus on the construction of large frame FDM 3D printers, what challenges appear in scaling up the technology, to further the internal vision of developing strategic competencies in the field of additive manufacturing - as requested by the industry. The result of the project was a FDM 3D printer with a build volume of 1000x1000x950 [mm] that comes with dual independent extruders - meaning it may either print two copies of the same part simultaneously or utilize both printer heads to work on a single component. The top tested speed (printing) was 100 [mm/s] and the top tested movement speed was 250 [mm/s]. The theoretical accuracy of the machine is 50 [μm] but this has not been tested in this project. In the scope of the master thesis all prototype-symptoms were not eliminated, where the most considerable issue being the motors occasionally skipping steps (and losing their location) during rapid accelerations and changes in velocity. When this happens, it will most likely result in a failed print. The proposed solution for this is to further adjust the firmware to allow for finer, more regulated accelerations and speeds. Another possible solution is to replace the motors with stronger ones. In delivery the machine operates using state of the art components and software, from prominent Swedish and international producers. An interview of Isak Emericks alongside the printer can be seen in Appendix B, in the form of a newsletter. / Det här projektet initierades av Postnord som ville utveckla en egen storskalig FDM 3D printer, huvudsakligen på grund av två anledningar. Den första för att kunna använda samarbetet med KTH för att visa hur Postnord främjar inhemsk produktion samtidigt som de själva är ledare och initiativtagare inom additiv tillverkning i Sverige. Den andra anledningen var för att få tag på en maskin som har möjligheten att skriva ut stora- och småskaliga prototyper och produkter som kan användas i en industriell miljö. De uppsatta målen och önskvärda resultatet med PP3D (PostPapper3D - projektnamn) var att konstruera en storskalig FDM 3D skrivare, men en byggarea på 1 kvadratmeter och (om möjligt) en byggvolym på 1 kubikmeter, kapabel att skriva ut delar för industriella tillämpningar. Det här skulle uppnås genom att använda industriella komponenter och toppmoderna kontrollsystem för 3D skrivare. Sensorer för att upptäcka när utskriftsmaterialet var på väg att ta slut och automatisk utjämning av byggytan var också önskvärt. Förutom dessa målsättningar så ville KTH-IIP att arbetet skulle fokusera på konstruktionen av en storskalig FDM 3D skrivare, vilka utmaningar och problem som uppstår när tekniken skalas upp, för att fortsätta den interna visionen om att utveckla strategiska kompetenser inom additiva tillverkningsmetoder - vilket industrin efterfrågade. Resultatet av projektet var en 3D skrivare med en byggvolym på 1000x1000x950 [mm] som kommer utrustad med två (individuellt styrda) utskriftshuvuden - som antingen kan skriva ut två identiska kopior av samma objekt eller som kan arbeta tillsammans för att bygga upp en komponent mer effektivt. Den högsta testade utskriftshastigheten var 100 [mm/s] och den högsta testade hastigheten för rörelse var 250 [mm/s]. Den teoretiska upplösningen hos maskinen är 50 [μm] men det här har inte kontrollerats i det här projektet. Inom omfattningen av ett examensarbete (civilingenjör) så hann inte alla prototyp-symptom elimineras, där det mest betydande problemet var att motorerna bitvis missar steg (och förlorar sin positionering) under hastiga accelerationer och förändringar i rörelseriktning. När detta händer så resulterar det oftast i misslyckade utskrifter. Den presenterade lösningen för det här är att fortsätta justera mjukvaruinställningarna tills finare och mer kontrollerade rörelsemönster uppnås. En annan tänkbar lösning är att byta ut motorerna mot starkare varianter. Vid leverans så nyttjar maskinen toppmoderna komponenter och mjukvara, från framstående svenska och internationella producenter. En intervju med Isak Emericks tillsammans med 3D skrivaren hittas i Bilaga B, i formen av ett nyhetsbrev.
799

Ferrous alloy manufacturing for the Martian surface through in-situ resource utilization with ionic liquids harvested iron and Bosch process carbon

Stewart, Blake C 09 August 2022 (has links)
As research continues for the habitation of the Lunar and Martian surfaces, the need for materials for construction of structural parts, mechanical components, and tools remains as a major milestone. The use of in-situ resource utilization (ISRU) techniques is critical due to the financial, physical, and logistical burdens of sending supplies beyond low-Earth orbit. The Bosch process is currently in development as a life support system at the National Aeronautics and Space Administration’s (NASA) Marshall Space Flight Center (MSFC) to regenerate oxygen (O2) from metabolic carbon dioxide (CO2) with the byproduct of elemental carbon (C). The Bosch process presents a possible way of regenerating O2 without the disposal of hydrogen (H2) like the Sabatier. Ionic liquids (ILs) are also studied at MSFC as a means to harvest metallic elements from regolith oxides and meteorites. IL technology provides an energy efficient method of extracting critical manufacturing materials, such as iron (Fe) that could be used for ferrous alloy production. This dissertation seeks to explore the use of Bosch C and IL-Fe for ferrous alloy production through a series of studies. These studies included individually using Bosch C with commercial elements to cast low carbon steel and gray cast iron, investigating as-produced IL-Fe in a laser-based powder bed fusion (PBF-LB) printer to determine IL-Fe metallurgical characteristics, using the IL-Fe composition to design a ductile iron (DI) alloy of similar performance to a commercially available DI alloy, and lastly, refining this DI alloy to produce a DI alloy more representative of an alloy producible from IL-Fe and Bosch byproduct C in a Martian environment. The results presented here suggest that with advances in production rate and control of IL-Fe oxidation, and by providing a sufficient energy grid to operate equipment, a range of high quality DI materials could be manufactured with IL and Bosch process ISRU feedstocks.
800

Process-Structure-Property Relationships in Selective Laser Melting of Aerospace Alloys

Yakout, Mostafa January 2019 (has links)
Metal additive manufacturing can be used for producing complex and functional components in the aerospace industry. This thesis deals with the process-structure-property relationships in selective laser melting of three aerospace alloys: Invar 36, stainless steel 316L, and Ti-6Al-4V. These alloys are weldable but hard to machine, which make them good candidates for the selective laser melting process. Invar 36 has a very low coefficient of thermal expansion because of its nickel concentration of 36% and stainless steel 316L contains 16-18% chromium that gives the alloy a corrosion resistance property. Ti-6Al-4V offers high strength-to-weight ratio, high biocompatibility, and outstanding corrosion resistance. Any changes in the chemical composition of these materials could affect their performance during application. In this thesis, a full factorial design of experiments is formulated to study a wide range of laser process parameters. The bulk density, tensile mechanical properties, fractography, microstructure, material composition, material phases, coefficient of thermal expansion, magnetic dipole moments, and residual stresses of the parts produced are experimentally investigated. An optimum process window has been suggested for each material based on experimental work. The thermal cycle, residual stresses, and part distortions are examined using a thermo-mechanical finite element model. The model predicts the residual stress and part distortion after build plate removal. The thesis introduces two laser energy densities for each material: brittle-ductile transition energy density, ET, and critical laser energy density, EC. Below the brittle-ductile transition energy density, the parts exhibited void formation, low density, and brittle fracture. Above the critical energy density, the parts showed vaporization of some alloying elements that have low boiling temperatures. Additionally, real-time measurements were taken using a pyrometer and a high-speed camera during the selective laser melting process. The trends found in the numerical results agree with those found experimentally. / Thesis / Doctor of Philosophy (PhD)

Page generated in 0.1204 seconds