Spelling suggestions: "subject:"anisotropic mest""
21 |
Anisotropic mesh refinement in stabilized Galerkin methodsApel, Thomas, Lube, Gert 30 October 1998 (has links)
The numerical solution of the convection-diffusion-reaction problem is considered in two and three dimensions. A stabilized finite element method of Galerkin/Least squares type accomodates diffusion-dominated as well as convection- and/or reaction- dominated situations. The resolution of boundary layers occuring in the singularly perturbed case is accomplished using anisotropic mesh refinement in boundary layer regions. In this paper, the standard analysis of the stabilized Galerkin method on isotropic meshes is extended to more general meshes with boundary layer refinement. Simplicial Lagrangian elements of arbitrary order are used.
|
22 |
Anisotropic mesh refinement for singularly perturbed reaction diffusion problemsApel, Th., Lube, G. 30 October 1998 (has links)
The paper is concerned with the finite element resolution of layers appearing
in singularly perturbed problems. A special anisotropic grid of Shishkin type
is constructed for reaction diffusion problems. Estimates of the finite element
error in the energy norm are derived for two methods, namely the standard
Galerkin method and a stabilized Galerkin method. The estimates are uniformly
valid with respect to the (small) diffusion parameter. One ingredient is a
pointwise description of derivatives of the continuous solution. A numerical
example supports the result.
Another key ingredient for the error analysis is a refined estimate for
(higher) derivatives of the interpolation error. The assumptions on admissible
anisotropic finite elements are formulated in terms of geometrical conditions
for triangles and tetrahedra. The application of these estimates is not
restricted to the special problem considered in this paper.
|
23 |
Zienkiewicz-Zhu error estimators on anisotropic tetrahedral and triangular finite element meshesKunert, Gerd, Nicaise, Serge 10 July 2001 (has links)
We consider a posteriori error estimators that can be applied to anisotropic tetrahedral finite element meshes, i.e. meshes where the aspect ratio of the elements can be arbitrarily large.
Two kinds of Zienkiewicz-Zhu (ZZ) type error estimators are derived which are both based on some recovered gradient. Two different, rigorous analytical approaches yield the equivalence of both ZZ error estimators to a known residual error estimator. Thus reliability and efficiency of the ZZ error estimation is obtained. Particular attention is paid to the requirements on the anisotropic mesh.
The analysis is complemented and confirmed by several numerical examples.
|
24 |
Nouvelle formulation monolithique en élément finis stabilisés pour l'interaction fluide-structure / Novel monolithic stabilized finite element method for fluid-structure interactionEl Feghali, Stéphanie 28 September 2012 (has links)
L'Interaction Fluide-Structure (IFS) décrit une classe très générale de problème physique, ce qui explique la nécessité de développer une méthode numérique capable de simuler le problème FSI. Pour cette raison, un solveur IFS est développé qui peut traiter un écoulement de fluide incompressible en interaction avec des structures différente: élastique ou rigide. Dans cet aspect, le solveur peut couvrir une large gamme d'applications.La méthode proposée est développée dans le cadre d'une formulation monolithique dans un contexte Eulérien. Cette méthode consiste à considérer un seul maillage et résoudre un seul système d'équations avec des propriétés matérielles différentes. La fonction distance permet de définir la position et l'interface de tous les objets à l'intérieur du domaine et de fournir les propriétés physiques pour chaque sous-domaine. L'adaptation de maillage anisotrope basé sur la variation de la fonction distance est ensuite appliquée pour assurer une capture précise des discontinuités à l'interface fluide-solide.La formulation monolithique est assurée par l'ajout d'un tenseur supplémentaire dans les équations de Navier-Stokes. Ce tenseur provient de la présence de la structure dans le fluide. Le système est résolu en utilisant une méthode élément fini et stabilisé suivant la formulation variationnelle multiéchelle. Cette formulation consiste à décomposer les champs de vitesse et pression en grande et petite échelles. La particularité de l'approche proposée réside dans l'enrichissement du tenseur de l'extra contraint.La première application est la simulation IFS avec un corps rigide. Le corps rigide est décrit en imposant une valeur nul du tenseur des déformations, et le mouvement est obtenu par la résolution du mouvement de corps rigide. Nous évaluons le comportement et la précision de la formulation proposée dans la simulation des exemples 2D et 3D. Les résultats sont comparés avec la littérature et montrent que la méthode développée est stable et précise.La seconde application est la simulation IFS avec un corps élastique. Dans ce cas, une équation supplémentaire est ajoutée au système précédent qui permet de résoudre le champ de déplacement. Et la contrainte de rigidité est remplacée par la loi de comportement du corps élastique. La déformation et le mouvement du corps élastique sont réalisés en résolvant l'équation de convection de la Level-Set. Nous illustrons la flexibilité de la formulation proposée par des exemples 2D. / Numerical simulations of fluid-structure interaction (FSI) are of first interest in numerous industrial problems: aeronautics, heat treatments, aerodynamic, bioengineering... Because of the high complexity of such problems, analytical study is in general not sufficient to understand and solve them. FSI simulations are then nowadays the focus of numerous investigations, and various approaches are proposed to treat them. We propose in this thesis a novel monolithic approach to deal with the interaction between an incompressible fluid flow and rigid/ elastic material. This method consists in considering a single grid and solving one set of equations with different material properties. A distance function enables to define the position and the interface of any objects with complex shapes inside the volume and to provide heterogeneous physical properties for each subdomain. Different anisotropic mesh adaptation algorithms based on the variations of the distance function or on using error estimators are used to ensure an accurate capture of the discontinuities at the fluid-solid interface. The monolithic formulation is insured by adding an extra-stress tensor in the Navier-Stokes equations coming from the presence of the structure in the fluid. The system is then solved using a finite element Variational MultiScale (VMS) method, which consists of decomposition, for both the velocity and the pressure fields, into coarse/resolved scales and fine/unresolved scales. The distinctive feature of the proposed approach resides in the efficient enrichment of the extra constraint. In the first part of the thesis, we use the proposed approach to assess its accuracy and ability to deal with fluid-rigid interaction. The rigid body is prescribed under the constraint of imposing the nullity of the strain tensor, and its movement is achieved by solving the rigid body motion. Several test case, in 2D and 3D with simple and complex geometries are presented. Results are compared with existing ones in the literature showing good stability and accuracy on unstructured and adapted meshes. In the second, we present different routes and an extension of the approach to deal with elastic body. In this case, an additional equation is added to the previous system to solve the displacement field. And the rigidity constraint is replaced with a corresponding behaviour law of the material. The elastic deformation and motion are captured using a convected level-set method. We present several 2D numerical tests, which is considered as classical benchmarks in the literature, and discuss their results.
|
25 |
Adaptivity in anisotropic finite element calculationsGrosman, Sergey 09 May 2006 (has links) (PDF)
When the finite element method is used to solve boundary value problems, the
corresponding finite element mesh is appropriate if it is reflects the behavior of the true solution. A posteriori error estimators are suited to construct adequate meshes. They are useful to measure the quality of an approximate solution and to design adaptive solution algorithms. Singularly perturbed problems yield in general solutions with anisotropic features, e.g. strong boundary or interior layers. For such problems it is useful to use anisotropic meshes in order to reach maximal order of convergence. Moreover, the quality of the numerical solution rests on the robustness of the a posteriori error estimation with respect to both the anisotropy of the mesh and the perturbation parameters.
There exist different possibilities to measure the a posteriori error in the energy norm for the singularly perturbed reaction-diffusion equation. One of them is the equilibrated residual method which is known to be robust as long as one solves auxiliary local Neumann problems exactly on each element. We provide a basis for an approximate solution of the aforementioned auxiliary problem and show that this approximation does not affect the quality of the error estimation.
Another approach that we develope for the a posteriori error estimation is the hierarchical error estimator. The robustness proof for this estimator involves some stages including the strengthened Cauchy-Schwarz inequality and the error reduction property for the chosen space enrichment.
In the rest of the work we deal with adaptive algorithms. We provide an overview of the existing methods for the isotropic meshes and then generalize the ideas for the anisotropic case. For the resulting algorithm the error reduction estimates are proven for the Poisson equation and for the singularly perturbed reaction-difussion equation. The convergence for the Poisson equation is also shown.
Numerical experiments for the equilibrated residual method, for the hierarchical
error estimator and for the adaptive algorithm confirm the theory. The adaptive
algorithm shows its potential by creating the anisotropic mesh for the problem
with the boundary layer starting with a very coarse isotropic mesh.
|
26 |
Adaptation anisotrope précise en espace et temps et méthodes d’éléments finis stabilisées pour la résolution de problèmes de mécanique des fluides instationnaires / Space-Time accurate anisotropic adaptation and stabilized finite element methods for the resolution of unsteady CFD problemsEl Jannoun, Ghina 22 September 2014 (has links)
Aujourd'hui, avec l'amélioration des puissances de calcul informatique, la simulation numérique est devenue un outil essentiel pour la prédiction des phénomènes physiques et l'optimisation des procédés industriels. La modélisation de ces phénomènes pose des difficultés scientifiques car leur résolution implique des temps de calcul très longs malgré l'utilisation d'importantes ressources informatiques.Dans cette thèse, on s'intéresse à la résolution de problèmes complexes couplant écoulements et transferts thermiques. Les problèmes physiques étant fortement anisotropes, il est nécessaire d'avoir un maillage avec une résolution très élevée pour obtenir un bon niveau de précision. Cela implique de longs temps de calcul. Ainsi il faut trouver un compromis entre précision et efficacité. Le développement de méthodes d'adaptation en temps et en espace est motivé par la volonté de faire des applications réelles et de limiter les inconvénients inhérents aux méthodes de résolution non adaptatives en terme de précision et d'efficacité. La résolution de problèmes multi-échelles instationnaires sur un maillage uniforme avec un nombre de degrés de liberté limité est souvent incapable de capturer les petites échelles, nécessite des temps de calcul longs et peut aboutir à des résultats incorrects. Ces difficultés ont motivé le développement de méthodes de raffinement local avec une meilleure précision aux endroits adéquats. L'adaptation en temps et en espace peut donc être considérée comme une composante essentielle de ces méthodes.L'approche choisie dans cette thèse consiste en l'utilisation de méthodes éléments finis stabilisées et le développement d'outils d'adaptation espace-temps pour améliorer la précision et l'efficacité des simulations numériques.Le développement de la méthode adaptative est basé sur un estimateur d'erreur sur les arrêtes du maillage afin de localiser les régions du domaine de calcul présentant de forts gradients ainsi que les couches limites. Ensuite une métrique décrivant la taille de maille en chaque noeud dans les différentes directions est calculée. Afin d'améliorer l'efficacité des calculs la construction de cette métrique prend en compte un nombre fixe de noeuds et aboutit à une répartition et une orientation optimale des éléments du maillage. Cette approche est étendue à une formulation espace-temps où les maillages et les pas de temps optimaux sont prédits sur des intervalles de temps en vue de contrôler l'erreur d'interpolation sur la domaine de calcul. / Nowadays, with the increase in computational power, numerical modeling has become an intrinsic tool for predicting physical phenomena and developing engineering designs. The modeling of these phenomena poses scientific complexities the resolution of which requires considerable computational resources and long lasting calculations.In this thesis, we are interested in the resolution of complex long time and large scale heat transfer and fluid flow problems. When the physical phenomena exhibit sharp anisotropic features, a good level of accuracy requires a high mesh resolution, hence hindering the efficiency of the simulation. Therefore a compromise between accuracy and efficiency shall be adopted. The development of space and time adaptive adaptation techniques was motivated by the desire to devise realistic configurations and to limit the shortcomings of the traditional non-adaptive resolutions in terms of lack of solution's accuracy and computational efficiency. Indeed, the resolution of unsteady problems with multi-scale features on a prescribed uniform mesh with a limited number of degrees of freedom often fails to capture the fine scale physical features, have excessive computational cost and might produce incorrect results. These difficulties brought forth investigations towards generating meshes with local refinements where higher resolution was needed. Space and time adaptations can thus be regarded as essential ingredients in this recipe.The approach followed in this work consists in applying stabilized finite element methods and the development of space and time adaptive tools to enhance the accuracy and efficiency of the numerical simulations.The derivation process starts with an edge-based error estimation for locating the regions, in the computational domain, presenting sharp gradients, inner and boundary layers. This is followed by the construction of nodal metric tensors that prescribe, at each node in the spatial mesh, mesh sizes and the directions along which these sizes are to be imposed. In order to improve the efficiency of computations, this construction takes into account a fixed number of nodes and generates an optimal distribution and orientation of the mesh elements. The approach is extended to a space-time adaptation framework, whereby optimal meshes and time-step sizes for slabs of time are constructed in the view of controlling the global interpolation error over the computation domain.
|
27 |
Formulation éléments finis variationnelle adaptative et calcul massivement parallèle pour l’aérothermique industrielle / Variational adaptive finite element formulation and massively parallel computing for aerothermal industry applicationsBazile, Alban 25 April 2019 (has links)
Considérant les récents progrès dans le domaine du Calcul Haute Performance, le but ultime des constructeurs aéronautiques tels que Safran Aircraft Engines (SAE) sera de simuler un moteur d'avion complet, à l'échelle 1, utilisant la mécanique des fluides numérique d'ici 2030. Le but de cette thèse de doctorat est donc de donner une contribution scientifique à ce projet. En effet, ce travail est consacré au développement d'une méthode élément finis variationnelle adaptative visant à améliorer la simulation aérothermique du refroidissement des aubes de turbine. Plus précisément, notre objectif est de développer une nouvelle méthode d'adaptation de maillage multi-échelle adaptée à la résolution des transferts thermiques hautement convectifs dans les écoulements turbulents. Pour cela, nous proposons un contrôle hiérarchique des erreurs, basé sur des estimateurs d'erreur sous-échelle de type VMS. La première contribution de ce travail est de proposer une nouvelle méthode d'adaptation de maillage isotrope basée sur ces estimateurs d'erreur sous-échelle. La seconde contribution est de combiner (i) un indicateur d'erreur d'interpolation anisotrope avec (ii) un estimateur d'erreur sous-échelle pour l'adaptation anisotrope de maillage. Les résultats sur des cas analytiques 2D et 3D montrent que la méthode d'adaptation de maillage multi-échelle proposée nous permet d'obtenir des solutions hautement précises utilisant moins d'éléments, en comparaison avec les méthodes d'adaptation de maillage traditionnelles. Enfin, nous proposons dans cette thèse une description des méthodes de calcul parallèle dans Cimlib-CFD. Ensuite, nous présentons les deux systèmes de calcul utilisés pendant le doctorat. L'un d'eux est, en particulier, le super-calculateur GENCI Occigen II qui nous a permit de produire des résultats numériques sur un cas d'aube de turbine complète composé de 39 trous en utilisant des calculs massivement parallèles. / By 2030, considering the progress of HPC, aerospace manufacturers like Safran Aircraft Engines (SAE), hope to be able to simulate a whole aircraft engine, at full scale, using Computational Fluid Dynamic (CFD). The goal of this PhD thesis is to bring a scientific contribution to this research framework. Indeed, the present work is devoted to the development of a variational adaptive finite element method allowing to improve the aerothermal simulations related to the turbine blade cooling. More precisely, our goal is to develop a new multiscale mesh adaptation technique, well suited to the resolution of highly convective heat transfers in turbulent flows. To do so, we propose a hierarchical control of errors based on recently developed subscales VMS error estimators. The first contribution of this work is then to propose a new isotropic mesh adaptation technique based on the previous error estimates. The second contribution is to combine both (i) the coarse scales interpolation error indicator and (ii) the subscales error estimator for anisotropic mesh adaptation. The results on analytic 2D and 3D benchmarks show that the proposed multiscale mesh adaptation technique allows obtaining highly precise solutions with much less elements in comparison with other mesh adaptation techniques. Finally, we propose in this thesis a description of the parallel software capabilities of Cimlib-CFD. Then, we present the two hardware systems used during this PhD thesis. The first one is the lab's cluster allowing the development of numerical methods. The second one however, is the GENCI Occigen II supercomputer which allows producing numerical results using massively parallel computations. In particular, we present a more realistic industrial concerning the cooling of a complete turbine vane composed by 39 holes.
|
28 |
A posteriori error estimation for anisotropic tetrahedral and triangular finite element meshesKunert, Gerd 08 January 1999 (has links)
Many physical problems lead to boundary value problems for partial differential equations, which can be solved with the finite element method. In order to construct adaptive solution algorithms or to measure the error one aims at reliable a posteriori error estimators. Many such estimators are known, as well as their theoretical foundation.
Some boundary value problems yield so-called anisotropic solutions (e.g. with boundary layers). Then anisotropic finite element meshes can be advantageous. However, the common error estimators for isotropic meshes fail when applied to anisotropic meshes, or they were not investigated yet.
For rectangular or cuboidal anisotropic meshes a modified error estimator had already been derived. In this paper error estimators for anisotropic tetrahedral or triangular meshes are considered. Such meshes offer a greater geometrical flexibility.
For the Poisson equation we introduce a residual error estimator, an estimator based on a local problem, several Zienkiewicz-Zhu estimators, and an L_2 error estimator, respectively. A corresponding mathematical theory is given.For a singularly perturbed reaction-diffusion equation a residual error estimator is derived as well. The numerical examples demonstrate that reliable and efficient error estimation is possible on anisotropic meshes.
The analysis basically relies on two important tools, namely anisotropic interpolation error estimates and the so-called bubble functions. Moreover, the correspondence of an anisotropic mesh with an anisotropic solution plays a vital role.
AMS(MOS): 65N30, 65N15, 35B25
|
29 |
Adaptivity in anisotropic finite element calculationsGrosman, Sergey 21 April 2006 (has links)
When the finite element method is used to solve boundary value problems, the
corresponding finite element mesh is appropriate if it is reflects the behavior of the true solution. A posteriori error estimators are suited to construct adequate meshes. They are useful to measure the quality of an approximate solution and to design adaptive solution algorithms. Singularly perturbed problems yield in general solutions with anisotropic features, e.g. strong boundary or interior layers. For such problems it is useful to use anisotropic meshes in order to reach maximal order of convergence. Moreover, the quality of the numerical solution rests on the robustness of the a posteriori error estimation with respect to both the anisotropy of the mesh and the perturbation parameters.
There exist different possibilities to measure the a posteriori error in the energy norm for the singularly perturbed reaction-diffusion equation. One of them is the equilibrated residual method which is known to be robust as long as one solves auxiliary local Neumann problems exactly on each element. We provide a basis for an approximate solution of the aforementioned auxiliary problem and show that this approximation does not affect the quality of the error estimation.
Another approach that we develope for the a posteriori error estimation is the hierarchical error estimator. The robustness proof for this estimator involves some stages including the strengthened Cauchy-Schwarz inequality and the error reduction property for the chosen space enrichment.
In the rest of the work we deal with adaptive algorithms. We provide an overview of the existing methods for the isotropic meshes and then generalize the ideas for the anisotropic case. For the resulting algorithm the error reduction estimates are proven for the Poisson equation and for the singularly perturbed reaction-difussion equation. The convergence for the Poisson equation is also shown.
Numerical experiments for the equilibrated residual method, for the hierarchical
error estimator and for the adaptive algorithm confirm the theory. The adaptive
algorithm shows its potential by creating the anisotropic mesh for the problem
with the boundary layer starting with a very coarse isotropic mesh.
|
30 |
Modélisation numerique et couplage électromagnétique-CFD dans les procédés decoulée. / Computational Modelling and Electromagnetic-CFD Coupling inCasting Processes.Marioni, Luca 17 November 2017 (has links)
Beaucoup de procédés utilisés dans l'industrie sidérurgique (coulée de lingots,coulée continue, …) peuvent générer des défauts : macro-ségrégation, mauvaises propriétés de la microstructure, défauts surfaciques. Ces problèmes peuvent être résolus par un contrôle de la température et de l’écoulement d'acier liquide. Le brassage électromagnétique (EMS) est une technique largement utilisée pour contrôler l’écoulement d'acier liquide par l’imposition d'un champ électromagnétique. Cette technique est complexe car elle couple plusieurs types de problèmes physiques:écoulement multiphasique, solidification,transfert de chaleur et induction électromagnétique à basse fréquence.En outre, l’approche expérimentale est difficile de par la dimension,l'environnement et le coût des procédés considérés. Pour ces raisons, des simulations numériques efficaces sont nécessaires pour comprendre les applications EMS et améliorer les procédés évoqués. L'objectif de cette thèse est de développer une méthodologie numérique robuste,efficace et précise pour la simulation multi-physique de l'EMS, en particulier pour le brassage dans le moule dans le cadre de la coulée continue d'acier. Cette méthodologie a été mise en oeuvre dans le code commercial THERCAST® pour être utilisé dans le cadre d’applications industrielles / Many of the processes used in thesteelmaking industry (e.g. ingot casting,continuous casting, …) can lead todefects: macro-segregation, poormicrostructure properties, surfacedefects. These issues can be solved bycontrolling the temperature and the flowof molten steel. Electromagnetic stirring(EMS) is a widely used technique to steerthe flow of liquid steel by thesuperimposition of an electro-magneticfield. This application is complex becauseit couples several physical problems:multi-phase flow, solidification, heattransfer and low frequency electromagneticinduction. In addition,experimental work is difficult because ofthe size, environment and cost of theconsidered processes. For thesereasons, efficient and effective numericalsimulations are needed to understandEMS applications and improve theaforementioned processes.The objective of this thesis is to developa robust, efficient and accurate numericalprocedure for the multi-physicssimulation of EMS, especially for in-moldstirring in the framework of continuouscasting of steel. This procedure has beenimplemented in the commercial codeTHERCAST® in order to be used forindustrial applications.
|
Page generated in 0.0556 seconds