1 |
Small eye movements during fixation : the case of postsaccadic fixation and preparatory influencesOhl, Sven January 2013 (has links)
Describing human eye movement behavior as an alternating sequence of saccades and fixations turns out to be an oversimplification because the eyes continue to move during fixation. Small-amplitude saccades (e.g., microsaccades) are typically observed 1-2 times per second during fixation.
Research on microsaccades came in two waves. Early studies on microsaccades were dominated by the question whether microsaccades affect visual perception, and by studies on the role of microsaccades in the process of fixation control. The lack of evidence for a unique role of microsaccades led to a very critical view on the importance of microsaccades.
Over the last years, microsaccades moved into focus again, revealing many interactions with perception, oculomotor control and cognition, as well as intriguing new insights into the neurophysiological implementation of microsaccades.
In contrast to early studies on microsaccades, recent findings on microsaccades were accompanied by the development of models of microsaccade generation. While the exact generating mechanisms vary between the models, they still share the assumption that microsaccades are generated in a topographically organized saccade motor map that includes a representation for small-amplitude saccades in the center of the map (with its neurophysiological implementation in the rostral pole of the superior colliculus).
In the present thesis I criticize that models of microsaccade generation are exclusively based on results obtained during prolonged presaccadic fixation. I argue that microsaccades should also be studied in a more natural situation, namely the fixation following large saccadic eye movements. Studying postsaccadic fixation offers a new window to falsify models that aim to account for the generation of small eye movements. I demonstrate that error signals (visual and extra-retinal), as well as non-error signals like target eccentricity influence the characteristics of small-amplitude eye movements.
These findings require a modification of a model introduced by Rolfs, Kliegl and Engbert (2008) in order to account for the generation of small-amplitude saccades during postsaccadic fixation. Moreover, I present a promising type of survival analysis that allowed me to examine time-dependent influences on postsaccadic eye movements. In addition, I examined the interplay of postsaccadic eye movements and postsaccadic location judgments, highlighting the need to include postsaccadic eye movements as covariate in the analyses of location judgments in the presented paradigm.
In a second goal, I tested model predictions concerning preparatory influences on microsaccade generation during presaccadic fixation. The observation, that the preparatory set significantly influenced microsaccade rate, supports the critical model assumption that increased fixation-related activity results in a larger number of microsaccades.
In the present thesis I present important influences on the generation of small-amplitude saccades during fixation. These eye movements constitute a rich oculomotor behavior which still poses many research questions. Certainly, small-amplitude saccades represent an interesting source of information and will continue to influence future studies on perception and cognition. / Die Beschreibung des Blickbewegungsverhaltens als eine sich abwechselnde Folge von Sakkaden und Fixationen stellt eine starke Vereinfachung dar, denn auch während einer Fixation bewegen sich die Augen. Typischerweise treten Bewegungen von kleiner Amplitude (z.B. Mikrosakkaden), 1-2 mal pro Sekunde während einer Fixation auf.
Frühe Studien zu Mikrosakkaden wurden von Fragen bezüglich des Einflusses von Mikrosakkaden auf die visuelle Wahrnehmung, und Studien zu der Rolle von Mikrosakkaden bei der Fixationskontrolle dominiert. Fehlende Evidenz für eine Rolle, die ausschließlich Mikrosakkaden zufällt, führten zu einer sehr kritischen Betrachtung von Mikrosakkaden. In den letzten Jahren rückten Mikrosakkaden wieder mehr in den Fokus. Vielerlei Zusammenhänge mit Wahrnehmung, okulomotorischer Kontrolle und Kognition, sowie neue Erkenntnisse bezüglich der neurophysiologischen Implementierung von Mikrosakkaden konnten aufgedeckt werden.
In den letzten Jahren wurden verschiedene Modelle der Mikrosakkadengenerierung vorgestellt. Auch wenn sich diese in ihren exakten Mechanismen unterscheiden, so teilen sie doch die Annahme, dass Mikrosakkaden in einer topographisch organisierten motorischen Karte für Sakkaden ausgelöst werden. Diese Karten beinhalten eine Repräsentation für klein-amplitudige Sakkaden im Zentrum der Karte (mit dem rostralen Pol der colliculi superiores als neurophysiologische Implementierung).
In der vorliegenden Arbeit kritisiere ich, dass Modelle der Mikrosakkadengenerierung ausschließlich auf Resultaten langanhaltender präsakkadischer Fixation beruhen. Ich führe an, dass Mikrosakkaden in einer natürlicheren Situation untersucht werden sollten, nämlich während der Fixation nach einer großen Sakkade. Die Untersuchung postsakkadischer Fixation bietet eine neue Möglichkeit Modelle der Mikrosakkadengenerierung zu falsifizieren. In den Studien zeige ich, dass Signale über den Fehler in der Sakkadenlandeposition (visuelle und extra-retinale), sowie fehler-unabhängige Signale, wie die Zielreiz-Exzentrizität, einen entscheidenden Einfluss auf kleine Sakkaden haben.
Diese Resultate erfordern Modifikationen an dem kürzlich eingeführten Modell von Rolfs, Kliegl und Engbert (2008), um die Generierung von kleinen Sakkaden auch während der postsakkadischen Fixation erklären zu können. Darüber hinaus präsentiere ich eine viel versprechende Ereigniszeitanalyse, die uns erlaubt zeitabhängige Einflüsse auf das postsakkadische Blickbewegungsverhalten zu untersuchen. Außerdem untersuche ich das Zusammenspiel von postsakkadischen Augenbewegungen und postsakkadischen Positionsurteilen. Dabei wird die Bedeutung von postsakkadischen Augenbewegungen als Kovariate in den statistischen Analysen betont.
Ein zweites Ziel dieser Arbeit besteht darin Modellvorhersagen bezüglich vorbereitender Einflüsse auf die Mikrosakkadengenerierung zu untersuchen. Die Ergebnisse, hinsichtlich eines signifikanten Einflusses des preparatory set auf die Mikrosakkadenrate unterstützt die wesentliche Modellannahme, dass erhöhte fixationsbezogene Aktivität zu einer größeren Anzahl an Mikrosakkaden führt.
In der vorliegenden Arbeit präsentiere ich wichtige Einflüsse auf die Generierung von kleinen Sakkaden während der Fixation. Diese Augenbewegungen stellen ein vielseitiges okulomorisches Verhalten dar, welche weiterhin zahlreiche Fragen mit sich bringen und sicherlich zukünftige Studien zu Wahrnehmung und Kognition beeinflussen werden.
|
2 |
Computational and neural models of oculomotor control.Wilming, Niklas 09 March 2015 (has links)
Seeing is more than sight: it is the entire action-perception loop involved in taking in the world around us. Unlike a camera, our eyes can only resolve a small part of the environment sharply. Therefore, we must constantly move our eyes to scrutinise the parts of our environment that seem most worthy of our highest visual acuity. Eye movements are thus the observable consequences of a complex and crucial decision-making process that is fundamental to how we interact with the world.
This thesis investigates properties and the neural basis of eye-movement behavior in humans and monkeys. In the interdisciplinary tradition of cognitive science, the thesis spans fields and utilizes computational models as explanatory vehicles. A central theme is the so-called saliency map model of attention, the de facto computational model of viewing behavior.
The saliency map model assumes that attention is directed at the peaks of a map that encodes the saliency of locations in the visual field. Saliency can roughly be thought of as how worthy a location is of attention. It forms a common currency that allows different processes to influence the distribution of attention.
The four different studies in this thesis provide four different perspectives on viewing behavior and the saliency map model. The first study establishes a methodology to evaluate the predictive power of models of viewing behavior, and determines which properties of viewing behavior are important for this evaluation. Applying this methodological foundation to the saliency map model reveals that state-of-the-art models do not provide satisfactory explanations of viewing behavior. The second study investigates spatio-temporal properties of eye-movements, finding that observers often re-fixate locations in pictures and that their eye movements possess a rich spatio-temporal structure. These results speak directly against a causal role of "inhibition of return", which is a popular component of many saliency map models. The third study shifts focus to the neural basis of the oculomotor behaviour. fMRI is used to probe the relationship between the computation of saliency and actual processing in the brain. Our results, in contrast to those of other studies, suggest that early visual areas do not compute saliency, but instead compute visual features upon which the saliency map operates. Much of what we know about the neural basis of oculomotor control comes from invasive studies in animals, but it is unclear to what extent saliency computations are comparable between species. Thus, the fourth study compares the viewing behavior of monkeys and humans, to look for evidence of the same underlying processes. We find a strong similarity between the species in saliency-driven viewing behavior. The many saliency-processing areas that have been identified in monkeys therefore likely have a role in saliency processing in the human brain as well.
This thesis contributes to our understanding of oculomotor control on multiple levels. The results in this thesis suggest that models of viewing behavior should treat saccade-target selection as a dynamic process where past decisions influence future decisions and where saliency varies over time. This selection process likely takes place in a distributed network in the brain which receives bottom-up input from early visual areas. Encouraged by these results, we speculate that normative and embodied models of cognition offer an explanation of oculomotor control that takes these results into account. In turn, explaining oculomotor control is an important part of the much deeper question of how our mind interacts with the world.
|
3 |
The control of fixational eye movementsMergenthaler, Konstantin K. January 2009 (has links)
In normal everyday viewing, we perform large eye movements (saccades) and miniature or fixational eye movements. Most of our visual perception occurs while we are fixating. However, our eyes are perpetually in motion. Properties of these fixational eye movements, which are partly controlled by the brainstem, change depending on the task and the visual conditions. Currently, fixational eye movements are poorly understood because they serve the two contradictory functions of gaze stabilization and counteraction of retinal fatigue.
In this dissertation, we investigate the spatial and temporal properties of
time series of eye position acquired from participants staring at a tiny
fixation dot or at a completely dark screen (with the instruction to fixate a
remembered stimulus); these time series were acquired with high spatial and temporal resolution.
First, we suggest an advanced algorithm to separate the slow phases (named drift) and fast phases (named microsaccades) of these movements, which are considered to play different roles in perception. On the basis of this identification, we investigate and compare the temporal scaling properties of the complete time series and those time series where the microsaccades are removed. For the time series obtained during fixations on a stimulus, we were able to show that they deviate from Brownian motion. On short time scales, eye movements are governed by persistent behavior and on a longer time scales, by anti-persistent behavior. The crossover point between these two regimes remains unchanged by the removal of microsaccades but is different in the horizontal and the vertical components of the eyes. Other analyses target the properties of the microsaccades, e.g., the rate and amplitude distributions, and we investigate, whether microsaccades are triggered dynamically, as a result of earlier events in the drift, or completely randomly. The results obtained from using a simple box-count measure contradict the hypothesis of a purely random generation of microsaccades (Poisson process).
Second, we set up a model for the slow part of the fixational eye
movements. The model is based on a delayed random walk approach within the
velocity related equation, which allows us to use the data to determine control loop durations; these durations appear to be different for the vertical and horizontal components of the eye movements. The model is also motivated by the known physiological representation of saccade generation; the difference between horizontal and vertical components concurs with the spatially separated representation of saccade generating regions. Furthermore, the control loop durations in the model suggest an external feedback loop for the horizontal but not for the vertical component, which is consistent with the fact that an internal feedback loop in the neurophysiology has only been identified for the vertical component. Finally, we confirmed the scaling properties of the model by semi-analytical calculations.
In conclusion, we were able to identify several properties of the different parts of fixational eye movements and propose a model approach that is in accordance with the described neurophysiology and described limitations
of fixational eye movement control. / Während des alltäglichen Sehens führen wir große (Sakkaden) und Miniatur-
oder fixationale Augenbewegungen durch. Die visuelle Wahrnehmung unserer Umwelt geschieht jedoch maßgeblich während des sogenannten Fixierens, obwohl das Auge auch in dieser Zeit ständig in Bewegung ist. Es ist bekannt, dass die fixationalen Augenbewegungen durch die gestellten Aufgaben und die Sichtbedingungen verändert werden. Trotzdem sind die Fixationsbewegungen noch sehr schlecht verstanden, besonders auch wegen ihrer zwei konträren Hauptfunktionen: Das stabilisieren des Bildes und das Vermeiden der Ermüdung retinaler Rezeptoren.
In der vorliegenden Dissertation untersuchen wir die zeitlichen und räumlichen
Eigenschaften der Fixationsbewegungen, die mit hoher zeitlicher und räumlicher
Präzision aufgezeichnet wurden, während die Versuchspersonen entweder einen
sichtbaren Punkt oder aber den Ort eines verschwundenen Punktes in völliger
Dunkelheit fixieren sollten.
Zunächst führen wir einen verbesserten Algorithmus ein, der die Aufspaltung in
schnelle (Mikrosakkaden) und langsame (Drift) Fixationsbewegungen ermöglicht. Den beiden Typen von Fixationsbewegungen werden unterschiedliche Beiträge zur Wahrnehmung zugeschrieben. Anschließend wird für die Zeitreihen mit und ohne
Mikrosakkaden das zeitliche Skalenverhalten untersucht. Für die Fixationsbewegung während des Fixierens auf den Punkt konnten wir feststellen, dass diese sich nicht durch Brownsche Molekularbewegung beschreiben lässt. Stattdessen fanden wir persistentes Verhalten auf den kurzen und antipersistentes Verhalten auf den längeren Zeitskalen. Während die Position des Übergangspunktes für Zeitreihen mit oder ohne Mikrosakkaden gleich ist, unterscheidet sie sich generell zwischen horizontaler und vertikaler Komponente der Augen. Weitere Analysen zielen auf Eigenschaften der Mikrosakkadenrate und -amplitude, sowie Auslösemechanismen von Mikrosakkaden durch bestimmte Eigenschaften der vorhergehenden Drift ab. Mittels eines Kästchenzählalgorithmus konnten wir die zufällige Generierung (Poisson
Prozess) ausschließen.
Des weiteren setzten wir ein Modell auf der Grundlage einer Zufallsbewegung
mit zeitverzögerter Rückkopplung für den langsamen Teil der Augenbewegung
auf. Dies erlaubt uns durch den Vergleich mit den erhobenen Daten die Dauer
des Kontrollkreislaufes zu bestimmen. Interessanterweise unterscheiden sich die
Dauern für vertikale und horizontale Augenbewegungen, was sich jedoch dadurch
erklären lässt, dass das Modell auch durch die bekannte Neurophysiologie der Sakkadengenerierung, die sich räumlich wie auch strukturell zwischen vertikaler und horizontaler Komponente unterscheiden, motiviert ist. Die erhaltenen Dauern legen für die horizontale Komponente einen externen und für die vertikale Komponente einen internen Kontrollkreislauf dar. Ein interner Kontrollkreislauf ist nur für die vertikale Kompoente bekannt. Schließlich wird das Skalenverhalten des Modells noch semianalytisch bestätigt.
Zusammenfassend waren wir in der Lage, unterschiedliche Eigenschaften von
Teilen der Fixationsbewegung zu identifizieren und ein Modell zu entwerfen,
welches auf der bekannten Neurophysiologie aufbaut und bekannte Einschränkungen
der Kontrolle der Fixationsbewegung beinhaltet.
|
4 |
sLORETA-basierte Untersuchung niederamplitudiger Aktivität im Ruhe-EEG in Abhängigkeit vom Vorhandensein langsamer Augenbewegungen (SEM)Jödicke, Johannes 30 July 2014 (has links) (PDF)
Im unter Ruhebedingungen abgeleiteten Elektroenzephalogramm (Ruhe-EEG) können Episoden niedergespannter EEG-Aktivität sowohl mit Schläfrigkeit, als auch mit geistiger Aktivität assoziiert sein. Aus diesem Grunde stellt niedergespannte EEG-Aktivität eine potentielle Fehlerquelle bei der Interpretation des Ruhe-EEGs dar. Wird niedergespannte EEG-Aktivität jedoch von für das Einschlafen charakteristischen, langsamen Augenbewegungen (Slow horizontal eye movements, SEM) begleitet, ist eine Assoziation mit geistiger Aktivität ausgeschlossen. Ziel dieser Dissertation ist die Untersuchung der Frage, ob niedergespannte EEG-Aktivität im Ruhe-EEG, welche von SEM begleitet wird (B1+), sich von solcher ohne begleitende SEM (B1-) hinsichtlich ihrer spektralen und räumlichen Zusammensetzung unterscheidet. Hierzu wurden 35 Ruhe-EEGs gesunder Probanden analysiert, welche jeweils mindestens 10s B1-, B1+ sowie 10s niedergespannter EEG-Aktivität während der Bearbeitung einer Kopfrechenaufgabe (calc) präsentierten. Unter Verwendung der Methode der standardized low resolution brain electromagnetic tomography (sLORETA) wurden für calc, B1- und B1+ die kortikalen Stromdichteverteilungen in vier verschiedenen, individuell angepassten Frequenzbändern berechnet. Die statistische Auswertung ergab signifikante Unterschiede zwischen B1- und B1+: Es zeigte bei B1- sowohl im Delta- als auch im Theta-Band eine geringere Aktivität im Bereich des Cingulums sowie benachbarten Teilen der Frontal-, Parietal- und Okzipiallappen. Zusätzlich zeigte sich eine erhöhte Aktivität im Frequenzbereich des Beta-Bandes in den Temporallappen für B1- verglichen mit B1+. Der Vergleich von calc mit B1+ erbrachte ähnliche Resultate. Die Befunde lassen eine Zugehörigkeit von B1- zu einem, verglichen mit B1+ höheren Vigilanzniveau vermuten und liefern Evidenz für die Einteilung niedergespannter Episoden im Ruhe-EEG in solche mit und ohne begleitende SEM.
|
5 |
Okulomotorische Studien zum räumlichen Arbeitsgedächtnis des MenschenPloner, Christoph Johannes 06 November 2001 (has links)
In der vorliegenden Habilitationsschrift wurde eine Serie von Studien zusammengefasst, die menschliches räumliches Arbeitsgedächtnis, den "Visuospatialen Skizzenblock", untersucht haben. Dieses Kurzzeitgedächtnissystem ist häufig im Rahmen von Erkrankungen des frontalen Kortex und seiner mit ihm verbundenen Hirnareale, z.B. dem Morbus Parkinson, dem Morbus Alzheimer oder der Schizophrenie, beeinträchtigt und für einen relevanten Teil der kognitiven Defizite dieser Patienten verantwortlich. Wir untersuchten sowohl Gesunde als auch Patienten mit fokalen Läsionen des Gehirns mit Varianten des "Gedächtnissakkaden"-Paradigmas, einem etablierten okulomotorischen Verfahren zur Untersuchung von Raumgedächtnis. Es wurden sowohl behaviorale Aspekte von Arbeitsgedächtnis als auch mögliche anatomische Substrate dieses Gedächtnissystems sowie zeitstabilerer "Langzeit"-Gedächtnissysteme untersucht. Ziel war es, klarere Korrelationen zwischen messbarem Verhalten einerseits und Anatomie/Physiologie von Raumgedächtnis andererseits zu etablieren. Wir konnten erstmals zeigen, dass menschliches räumliches Arbeitsgedächtnis selektiv für aktuelles Verhalten relevante Wahrnehmungsinhalte repräsentiert. Der Zugang verhaltensirrelevanter Rauminformationen zu räumlichem Arbeitsgedächtnis wird offenbar durch effiziente (Aufmerksamkeits-) Filtermechanismen verhindert. Für die Existenz solcher Filtermechanismen gab es bislang nur elektrophysiologische Belege im Tiermodell. Da die Speicherkapazität von Arbeitsgedächtnis gering ist, erlauben diese Filtermechanismen möglicherweise einen effizienteren Umgang mit der Fülle und Komplexität unserer Umwelt. Umgekehrt lässt die in unserem Experiment sichtbar gewordene enge Verzahnung von Arbeitsgedächtnis und Aufmerksamkeit die Hypothese zu, dass eine gestörte Arbeitsgedächtniskapazität sowohl durch eine primäre Beeinträchtigung der Speichermechanismen selbst als auch durch Störungen der attentionalen Kontrolle derselben zustande kommen kann. Des weiteren konnten wir erstmals zeigen, dass menschliches räumliches Arbeitsgedächtnis eine klare Zeitgrenze hat, die für einzelne räumliche items bei ungefähr 20 Sekunden liegt. Jenseits dieser Zeitgrenze scheint eine vom Arbeitsgedächtnis unabhängige Raumrepräsentation für menschliches Verhalten bedeutsam zu werden. Der Begriff "Arbeitsgedächtnis" sollte also für Gedächtnisaufgaben reserviert bleiben, deren Gedächtnisphase 20 Sekunden nicht überschreitet. Unsere Befunde zeigen weiterhin, dass bei ansonsten konstantem Design einer Gedächtnisaufgabe, die Dauer der Gedächtnisphase bereits wesentlich darüber entscheidet, welches Gedächtnissystem untersucht wird. Die von uns durchgeführten Läsionsstudien an Patienten und neurophysiologischen Studien an Gesunden bestätigen, dass räumliches Arbeitsgedächtnis durch ein Netzwerk kortikaler Areale kontrolliert wird, das unter anderem den Dorsolateralen Präfrontalen Kortex, den Posterioren Parietalen Kortex und das Frontale Augenfeld umfasst. Innerhalb dieses Netzwerks nehmen diese Areale jedoch klar verschiedene kognitive Partialfunktionen wahr. Der Dorsolaterale Präfrontale Kortex und der Posteriore Parietale Kortex scheinen in erster Linie der Repräsentation von Raum in perzeptuellen Koordinaten, d.h. einem räumlichen "Wahrnehmungsbild" zu dienen, mit einer nur kurzfristigen Rolle des Posterioren Parietalen Kortex und einer dominierenden Rolle des Dorsolateralen Präfrontalen Kortex während der Gedächtnisphase einer Arbeitsgedächtnisaufgabe. Das Frontale Augenfeld scheint der Repräsentation von Raum in okulomotorischen Koordinaten zu dienen, d.h. der kurzzeitigen Speicherung einer geplanten okulomotorischen Antwort auf einen räumlichen Wahrnehmungsinhalt. Schließlich sprechen unsere Ergebnisse dafür, dass es mit dem Wechsel von Arbeitsgedächtnis zu einer zeitstabileren Raumrepräsentation bei Gedächtnisphasen von mehr als 20 Sekunden Länge auch zu einem Wechsel der anatomischen Substrate von Raumgedächtnis kommt. Die von uns durchgeführten Läsionsstudien zeigen, dass jenseits der Zeitgrenzen von räumlichem Arbeitsgedächtnis neokortikale Areale des Medialen Temporallappens eine aktive Rolle für Raumgedächtnis spielen. Hier konnten wir erstmals zeigen, dass der menschliche Parahippokampale Kortex eigenständige und vom Hippokampus unabhängige Raumgedächtnisfunktionen wahrnimmt. Möglicherweise ist diese Region das Substrat eines intermediären Gedächtnissystems zwischen räumlichem Arbeitsgedächtnis und Hippokampus-abhängigem Langzeitgedächtnis. Es wird ferner deutlich, dass in einer Gedächtnisaufgabe allein durch die Wahl verschiedener Dauern der Gedächtnisphase verschiedene anatomische Substrate von Gedächtnis untersucht werden können. Die in dieser Habilitationsschrift zusammengefassten Studien zeigen am Beispiel des räumlichen Arbeitsgedächtnisses, dass es möglich ist, mit einfachen physiologischen Paradigmen Gedächtnissysteme am Menschen zu untersuchen. Bestimmte mnestische Subfunktionen lassen sich mit den hier verwandten Paradigmen präzise quantifizieren und bestimmten Hirnregionen zuordnen. Wir glauben, dass dieser methodische Ansatz sowohl eine präzisere Diagnostik von kognitiven Defiziten bei Hirnerkrankungen erlaubt, als auch die Möglichkeit eröffnet, die Therapie von Gedächtnisstörungen effektiv zu kontrollieren. / This publication summarizes a series of experimental studies examining spatial working memory, the "visuospatial scratch pad", in humans. This short-term memory system is frequently affected in disorders involving the frontal cortex and connected subcortical structures, e.g. in Parkinson's disease, Alzheimer's disease or schizophrenia. Healthy human subjects and patients with focal cerebral lesions were tested with a series of "memory-guided saccade" paradigms, i.e. oculomotor spatial memory tasks. We examined both behavioural aspects and possible anatomical substrates of spatial working memory and more stable "long-term" memory systems. Our aim was to clarify the relationship between behavioural measures of spatial memory and its neuronal substrates. In a first experiment, we were able to show that visuospatial working memory selectively represents behaviourally relevant information. Access of irrelevant visuospatial information to working memory appears to be prevented by efficient attentional filters. Facing the limited storage capacity of spatial working memory, these filters may allow for successful behaviour in perceptually complex environments. Furthermore, the tight coupling of spatial attention and spatial working memory allows for the conclusion, that spatial working memory deficits in patients may likewise result from deficient storage systems and deficient attentional control. In a second experiment, we were able to demonstrate a clear temporal limit of about 20 seconds for spatial working memory. Beyond this temporal limit, an independent and more stable spatial memory system, less susceptible to the passage of time, becomes behaviourally relevant. Thus, the term "working memory" should be confined to spatial memory tasks where the memory delay does not exceed 20 seconds. In addition, these results show that selection of a certain memory delay in a given spatial memory task is a decisive factor when examining spatial memory systems. A third series of lesion studies in patients and neurophysiological experiments in healthy subjects confirmed that cortical control of spatial working memory involves dorsolateral prefrontal cortex, posterior parietal cortex and frontal eye field. Within this network, the dorsolateral prefrontal cortex and posterior parietal cortex appear to store spatial information in perceptual coordinates, with a transient role of the posterior parietal cortex at the very beginning of the memory delay and a dominating role of the dorsolateral prefrontal cortex for most of the delay. By contrast, the frontal eye field appears to store spatial information in oculomotor coordinates, i.e. to maintain a prepared eye movement to a remembered target location across a delay. A fourth series of lesion studies in patients showed that spatial memory for delays longer than 20 seconds is controlled by anatomical substrates distinct from those controlling spatial working memory. Beyond the temporal limits of spatial working memory, neocortical regions of the medial temporal lobe appear to contribute significantly to spatial memory. Within these neocortical regions, the parahippocampal cortex may carry spatial memory functions independent of the hippocampal formation and distinct from spatial working memory. We propose that this region is the neuronal substrate of an intermediate memory system, linking spatial working memory and spatial long-term memory both functionally and anatomically. Moreover, these results show that selection of a certain memory delay in a given spatial memory task is a decisive factor when examining neuronal substrates of spatial memory. Taken together, our experiments show that human memory can effectively be investigated with simple physiological paradigms. Spatial memory functions can precisely be quantified with oculomotor paradigms and related to defined anatomical substrates. This approach may allow for precise diagnosis of cognitive deficits and efficient monitoring of treatment of memory disorders.
|
6 |
Bayesian estimation of self-similarity exponentMakarava, Natallia January 2012 (has links)
Estimation of the self-similarity exponent has attracted growing interest in recent decades and became a research subject in various fields and disciplines.
Real-world data exhibiting self-similar behavior and/or parametrized by self-similarity exponent (in particular Hurst exponent) have been collected
in different fields ranging from finance and human sciencies to hydrologic and traffic networks. Such rich classes of possible applications obligates researchers to investigate
qualitatively new methods for estimation of the self-similarity exponent as well as identification of long-range dependencies (or long memory).
In this thesis I present the Bayesian estimation of the Hurst exponent.
In contrast to previous methods, the Bayesian approach allows the possibility to calculate the point estimator and confidence intervals at the same time, bringing significant advantages in data-analysis as discussed in this thesis.
Moreover, it is also applicable to short data and unevenly sampled data, thus broadening the range of systems where the estimation of the Hurst exponent is possible.
Taking into account that one of the substantial classes of great interest in modeling is the class of Gaussian self-similar processes, this thesis
considers the realizations of the processes of fractional Brownian motion and fractional Gaussian noise. Additionally, applications to real-world data, such as the data of water level of the Nile River and
fixational eye movements are also discussed. / Die Abschätzung des Selbstähnlichkeitsexponenten hat in den letzten Jahr-zehnten an Aufmerksamkeit
gewonnen und ist in vielen wissenschaftlichen Gebieten und Disziplinen zu einem intensiven Forschungsthema geworden. Reelle Daten, die selbsähnliches Verhalten zeigen und/oder durch den Selbstähnlichkeitsexponenten (insbesondere durch den Hurst-Exponenten) parametrisiert werden, wurden in verschiedenen Gebieten gesammelt, die von Finanzwissenschaften über Humanwissenschaften bis zu Netzwerken in der Hydrologie und dem Verkehr reichen. Diese reiche Anzahl an möglichen Anwendungen verlangt von Forschern, neue Methoden zu entwickeln, um den Selbstähnlichkeitsexponenten abzuschätzen, sowie großskalige Abhängigkeiten zu erkennen.
In dieser Arbeit stelle ich die Bayessche Schätzung des Hurst-Exponenten vor. Im Unterschied zu früheren Methoden, erlaubt die Bayessche Herangehensweise die Berechnung von Punktschätzungen zusammen mit Konfidenzintervallen, was von bedeutendem Vorteil in der Datenanalyse ist, wie in der Arbeit diskutiert wird. Zudem ist diese Methode anwendbar auf kurze und unregelmäßig verteilte Datensätze, wodurch die Auswahl der möglichen Anwendung, wo der Hurst-Exponent geschätzt werden soll, stark erweitert wird. Unter Berücksichtigung der Tatsache, dass der Gauß'sche selbstähnliche Prozess von bedeutender Interesse in der Modellierung ist, werden in dieser Arbeit Realisierungen der Prozesse der fraktionalen Brown'schen Bewegung und des fraktionalen Gauß'schen Rauschens untersucht. Zusätzlich werden Anwendungen auf reelle Daten, wie Wasserstände des Nil und fixierte Augenbewegungen, diskutiert.
|
7 |
Veränderungsblindheit / Drei explorative Untersuchungen in statischer und dynamischer verkehrsbezogener UmgebungDornhöfer, Sascha M. 03 April 2005 (has links) (PDF)
Veränderungsblindheit tritt auf, wenn das Bewegungssignal einer Veränderung verdeckt wird oder der Betrachter von der Veränderung abgelenkt wird. In beiden Fällen kann die visuelle Aufmerksamkeit, mangels Hinweisreiz, nicht zum Ort der Veränderung gelenkt werden. Nach einer Erörterung von Augenbewegungen und ihrem Zusammenhang mit Veränderungsblindheit werden drei explorative Untersuchungen zur Veränderungsblindheit im Kontext des Straßenverkehrs vorgestellt. Untersuchung 1 befasst sich mit einem direkten Vergleich dreier unterschiedlicher Verdeckungsarten (Lidschläge, Blicksprünge, Blanks) bei statischem Stimulusmaterial (Fotos). Insgesamt führen die Ergebnisse zu dem Schluss, dass Veränderungsblindheit, unabhängig von der Verdeckungsart, ein Grund für zu spät oder nicht erkannte Gefahren im Straßenverkehr sein könnte, wenngleich sie für die gefährlichsten Situationen (relevante Additionen) am geringsten ausfällt und künstliche Blanks sich, zumindest in einer statischen Bedingung, gut zur Simulation von Lidschlägen und Sakkaden eignen. Darüber hinaus zeigen sich deutliche Hinweise zur impliziten Veränderungsentdeckung. Untersuchung 2 überprüft Teile von Untersuchung 1 in dynamischer Umgebung (Fahrsimulator) und findet überraschenderweise einen umgekehrten Effekt von Veränderungsblindheit. Die Echtheit des Effektes wird angezweifelt und auf die Nutzung von Abzählstrategien zurückgeführt. Unabhängig davon zeigen sich erneut Hinweise zur impliziten Entdeckung. Untersuchung 3 stellt schließlich einen direkten Vergleich zwischen statischer (Fotos) und dynamischer Umgebung (Filme) vor und zeigt, dass das Ausmaß an Veränderungsblindheit, unabhängig von Verdeckungsdauer und Veränderungsart, in dynamischer Umgebung größer ist als in statischer (85% vs. 64%) und daher eine Gefahr im Straßenverkehr darstellt. Wieder zeigen sich Hinweise auf eine implizite Entdeckung. Die Arbeit schließt mit einem grundlagen- und anwendungsorientierten Ausblick.
|
8 |
sLORETA-basierte Untersuchung niederamplitudiger Aktivität im Ruhe-EEG in Abhängigkeit vom Vorhandensein langsamer Augenbewegungen (SEM)Jödicke, Johannes 07 July 2014 (has links)
Im unter Ruhebedingungen abgeleiteten Elektroenzephalogramm (Ruhe-EEG) können Episoden niedergespannter EEG-Aktivität sowohl mit Schläfrigkeit, als auch mit geistiger Aktivität assoziiert sein. Aus diesem Grunde stellt niedergespannte EEG-Aktivität eine potentielle Fehlerquelle bei der Interpretation des Ruhe-EEGs dar. Wird niedergespannte EEG-Aktivität jedoch von für das Einschlafen charakteristischen, langsamen Augenbewegungen (Slow horizontal eye movements, SEM) begleitet, ist eine Assoziation mit geistiger Aktivität ausgeschlossen. Ziel dieser Dissertation ist die Untersuchung der Frage, ob niedergespannte EEG-Aktivität im Ruhe-EEG, welche von SEM begleitet wird (B1+), sich von solcher ohne begleitende SEM (B1-) hinsichtlich ihrer spektralen und räumlichen Zusammensetzung unterscheidet. Hierzu wurden 35 Ruhe-EEGs gesunder Probanden analysiert, welche jeweils mindestens 10s B1-, B1+ sowie 10s niedergespannter EEG-Aktivität während der Bearbeitung einer Kopfrechenaufgabe (calc) präsentierten. Unter Verwendung der Methode der standardized low resolution brain electromagnetic tomography (sLORETA) wurden für calc, B1- und B1+ die kortikalen Stromdichteverteilungen in vier verschiedenen, individuell angepassten Frequenzbändern berechnet. Die statistische Auswertung ergab signifikante Unterschiede zwischen B1- und B1+: Es zeigte bei B1- sowohl im Delta- als auch im Theta-Band eine geringere Aktivität im Bereich des Cingulums sowie benachbarten Teilen der Frontal-, Parietal- und Okzipiallappen. Zusätzlich zeigte sich eine erhöhte Aktivität im Frequenzbereich des Beta-Bandes in den Temporallappen für B1- verglichen mit B1+. Der Vergleich von calc mit B1+ erbrachte ähnliche Resultate. Die Befunde lassen eine Zugehörigkeit von B1- zu einem, verglichen mit B1+ höheren Vigilanzniveau vermuten und liefern Evidenz für die Einteilung niedergespannter Episoden im Ruhe-EEG in solche mit und ohne begleitende SEM.
|
9 |
Veränderungsblindheit: Drei explorative Untersuchungen in statischer und dynamischer verkehrsbezogener UmgebungDornhöfer, Sascha M. 19 April 2005 (has links)
Veränderungsblindheit tritt auf, wenn das Bewegungssignal einer Veränderung verdeckt wird oder der Betrachter von der Veränderung abgelenkt wird. In beiden Fällen kann die visuelle Aufmerksamkeit, mangels Hinweisreiz, nicht zum Ort der Veränderung gelenkt werden. Nach einer Erörterung von Augenbewegungen und ihrem Zusammenhang mit Veränderungsblindheit werden drei explorative Untersuchungen zur Veränderungsblindheit im Kontext des Straßenverkehrs vorgestellt. Untersuchung 1 befasst sich mit einem direkten Vergleich dreier unterschiedlicher Verdeckungsarten (Lidschläge, Blicksprünge, Blanks) bei statischem Stimulusmaterial (Fotos). Insgesamt führen die Ergebnisse zu dem Schluss, dass Veränderungsblindheit, unabhängig von der Verdeckungsart, ein Grund für zu spät oder nicht erkannte Gefahren im Straßenverkehr sein könnte, wenngleich sie für die gefährlichsten Situationen (relevante Additionen) am geringsten ausfällt und künstliche Blanks sich, zumindest in einer statischen Bedingung, gut zur Simulation von Lidschlägen und Sakkaden eignen. Darüber hinaus zeigen sich deutliche Hinweise zur impliziten Veränderungsentdeckung. Untersuchung 2 überprüft Teile von Untersuchung 1 in dynamischer Umgebung (Fahrsimulator) und findet überraschenderweise einen umgekehrten Effekt von Veränderungsblindheit. Die Echtheit des Effektes wird angezweifelt und auf die Nutzung von Abzählstrategien zurückgeführt. Unabhängig davon zeigen sich erneut Hinweise zur impliziten Entdeckung. Untersuchung 3 stellt schließlich einen direkten Vergleich zwischen statischer (Fotos) und dynamischer Umgebung (Filme) vor und zeigt, dass das Ausmaß an Veränderungsblindheit, unabhängig von Verdeckungsdauer und Veränderungsart, in dynamischer Umgebung größer ist als in statischer (85% vs. 64%) und daher eine Gefahr im Straßenverkehr darstellt. Wieder zeigen sich Hinweise auf eine implizite Entdeckung. Die Arbeit schließt mit einem grundlagen- und anwendungsorientierten Ausblick.
|
10 |
Co-registration of eye movements and EEG during active visionDimigen, Olaf 19 December 2014 (has links)
Obwohl Blickbewegungen einen elementaren Bestandteil des natürlichen Sehens darstellen, werden hirnelektrische Korrelate der visuellen Verarbeitung im Elektroenzephalogramm (EEG) zumeist während passiver Stimulation des ruhenden Auges erfasst. Ein alternativer methodischer Zugang ist die Kopplung des EEG an Beginn oder Ende natürlich auftretender Augenbewegungen mit Hilfe simultanen, hochauflösenden Eye-Trackings (ET). Die resultierenden sakkaden- bzw. fixationskorrelierten Potentiale (SRPs/FRPs) wurden in zwei Forschungskontexten untersucht und angewendet. Der erste Teil der Arbeit (Publikation 1 & 2) befasst sich mit den elektrophysiologischen Korrelaten von Mikrosakkaden, unwillkürlichen Fixationsaugenbewegungen die auch während traditioneller EEG-Messungen auftreten. Es wird gezeigt, dass Mikrosakkaden trotz ihrer geringen Amplitude eine wesentliche, aber mit herkömmlichen Methoden kaum auszuschließende Quelle muskulärer und kortikaler Aktivität im EEG darstellen (mikrosakkadische SRPs), welche in der Mehrzahl experimenteller Durchgängen aktiv ist, und zur Fehlinterpretation reizgekoppelter Potentiale führen kann. Der zweite Teil der Arbeit demonstriert die Machbarkeit und Nützlichkeit von FRP-Analysen zur Untersuchung hirnelektrischer Prozesse beim Lesen. In Publikation 3 werden Einflüsse verschiedener Messartefakte sowie visuell-evozierter, motorischer und kognitiv modulierter Potentiale auf die FRP-Wellenform beschrieben und Methoden zur Signaloptimierung vorgeschlagen. Wir zeigen, dass sich im natürlichen Satzlesen der klassische N400 Wortvorhersagbarkeitseffekt reproduzieren und in Bezug zu Maßen der Fixationsdauer setzen lässt. In Publikation 4 wurde mittels FRPs das Ausmaß der parafovealen Wortverarbeitung bestimmt. Simultanes ET ist eine sinnvolle Ergänzung zur bestehenden EEG-Methodik, sowohl zur Kontrolle von Mikroaugenbewegungen, als auch zur Erforschung natürlichen Blickbewegungsverhaltens und Integration von Befunden der ET- und EEG-Forschung. / Although natural vision involves an active sampling of the environment with several saccadic eye movements per second, electroencephalographic (EEG) correlates of visual cognition are predominantly recorded under artificial conditions of prolonged fixation. An alternative approach to EEG analysis, explored in the present thesis, is to time-lock the signal not to passive stimulations, but to the on- or offsets of naturally occurring eye movements, yielding saccade- and fixation-related potentials (SRPs/FRPs). Using simultaneous high-resolution eye-tracking (ET), this technique was applied in two contexts. The first part of the thesis (publications 1 & 2) investigated brain-electric correlates of microsaccades, small involuntary eye movements, which occur despite attempted fixation during traditional EEG paradigms. In a series of experiments, we show that SRPs from microsaccades present a significant, but normally hidden source of visuocortical potentials that is active in most trials and can confound the interpretation of stimulus-locked data under specific conditions. The second part of the thesis assessed the feasibility and utility of using FRPs in the study of natural reading. Publication 3 provides a review of artifact sources, low-level factors, and high-level influences determining the FRP waveform in free viewing and proposes methods to optimize signal quality. We then replicate the N400 word predictability effect, a cornerstone of neurolinguistic research, in left-to-right sentence reading and relate N400 amplitude to measures of fixation time. In publication 4, the FRP technique was combined with gaze-contingent display manipulations to investigate the depth of parafoveal preprocessing in fluent reading. Our results show that simultaneous recordings improve the understanding of electrophysiological data recorded during fixation, extend the EEG’s methodological scope to naturalistic viewing scenarios, and help to integrate findings from EEG and ET research.
|
Page generated in 0.0913 seconds