• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 12
  • 2
  • Tagged with
  • 36
  • 20
  • 16
  • 11
  • 11
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • 7
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

The automorphism group of accessible groups and the rank of Coxeter groups / Groupe d'automorphismes des groupes accessibles et le rang des groupes de Coxeter

Carette, Mathieu 30 September 2009 (has links)
Cette thèse est consacrée à l'étude du groupe d'automorphismes de groupes agissant sur des arbres d'une part, et du rang des groupes de Coxeter d'autre part.<p><p>Via la théorie de Bass-Serre, un groupe agissant sur un arbre est doté d'une structure algébrique particulière, généralisant produits amalgamés et extensions HNN. Le groupe est en fait déterminé par certaines données combinatoires découlant de cette action, appelées graphes de groupes. <p><p>Un cas particulier de cette situation est celle d'un produit libre. Une présentation du groupe d'automorphisme d'un produit libre d'un nombre fini de groupes librement indécomposables en termes de présentation des facteurs et de leurs groupes d'automorphismes a été donnée par Fouxe-Rabinovich. Il découle de son travail que si les facteurs et leurs groupes d'automorphismes sont de présentation finie, alors le groupe d'automorphisme du produit libre est de présentation finie. Une première partie de cette thèse donne une nouvelle preuve de ce résultat, se basant sur le langage des actions de groupes sur les arbres.<p><p>Un groupe accessible est un groupe de type fini déterminé par un graphe de groupe fini dont les groupes d'arêtes sont finis et les groupes de sommets ont au plus un bout, c'est-à-dire qu'ils ne se décomposent pas en produit amalgamé ni en extension HNN sur un groupe fini. L'étude du groupe d'automorphisme d'un groupe accessible est ramenée à l'étude de groupes d'automorphismes de produits libres, de groupes de twists de Dehn et de groupes d'automorphismes relatifs des groupes de sommets. En particulier, on déduit un critère naturel pour que le groupe d'automorphismes d'un groupe accessible soit de présentation finie, et on donne une caractérisation des groupes accessibles dont le groupe d'automorphisme externe est fini. Appliqués aux groupes hyperboliques de Gromov, ces résultats permettent d'affirmer que le groupe d'automorphismes d'un groupe hyperbolique est de présentation finie, et donnent une caractérisation précise des groupes hyperboliques dont le groupe d'automorphisme externe est fini.<p><p>Enfin, on étudie le rang des groupes de Coxeter, c'est-à-dire le cardinal minimal d'un ensemble générateur pour un groupe de Coxeter donné. Plus précisément, on montre que si les composantes de la matrice de Coxeter déterminant un groupe de Coxeter sont suffisamment grandes, alors l'ensemble générateur standard est de cardinal minimal parmi tous les ensembles générateurs. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
32

Codes et tableaux de permutations, construction, énumération et automorphismes / Permutation codes and permutations arrays: construction, enumeration and automorphisms

Bogaerts, Mathieu 22 June 2009 (has links)
<p>Un code de permutations G(n,d) un sous-ensemble C de Sym(n) tel que la distance de Hamming D entre deux éléments de C est supérieure ou égale à d. Dans cette thèse, le groupe des isométries de (Sym(n),D) est déterminé et il est prouvé que ces isométries sont des automorphismes du schéma d'association induit sur Sym(n) par ses classes de conjugaison. Ceci mène, par programmation linéaire, à de nouveaux majorants de la taille maximale des G(n,d) pour n et d fixés et n compris entre 11 et 13. Des algorithmes de génération avec rejet d'objets isomorphes sont développés. Pour classer les G(n,d) non isométriques, des invariants ont été construits et leur efficacité étudiée. Tous les G(4,3) et les G(5,4) ont été engendrés à une isométrie près, il y en a respectivement 61 et 9445 (dont 139 sont maximaux et décrits explicitement). D’autres classes de G(n,d) sont étudiées.<p><p><p><p> <p><p><p><p>A permutation code G(n,d) is a subset C of Sym(n) such that the Hamming distance D between two elements of C is larger than or equal to d. In this thesis, we characterize the isometry group of the metric space (Sym(n),D) and we prove that these isometries are automorphisms of the association scheme induced on Sym(n) by the conjugacy classes. This leads, by linear programming, to new upper bounds for the maximal size of G(n,d) codes for n and d fixed and n between 11 and 13. We develop generating algorithms with rejection of isomorphic objects. In order to classify the G(n,d) codes up to isometry, we construct invariants and study their efficiency. We generate all G(4,3) and G(4,5)codes up to isometry; there are respectively 61 and 9445 of them. Precisely 139 out of the latter codes are maximal and explicitly described. We also study other classes of G(n,d)codes.<p><p><p><p> / Doctorat en sciences, Spécialisation mathématiques / info:eu-repo/semantics/nonPublished
33

Automorphismes géométriques des groupes libres : croissance polynomiale et algorithmes / Geometric outer automorphisms of free groups : polynomial growth and algorithm

Ye, Kaidi 13 July 2016 (has links)
Un automorphisme (extérieur) $phi $ d'un groupe libre $F_n$ de rang fini $ngeq 2$ est dit géométrique s'il est induit par un homéomorphisme d'une surface. La question à laquelle nous intéressons est la suivante: Quels sont les automorphismes de $F_n$ qui sont géométriques?Nous donnons une réponse algorithmique pour la classe des automorphismes à croissance polynomiale (en s'autorisant à remplacer un automorphisme par une puissance).Pour cela, nous sommes amenés à étudier les automorphismes de graphes de groupes. En particulier, nous introduisons deux transformations élémentaires d'automorphismes de graphes de groupes: les quotients et les éclatements.Pour le cas particulier où l'automorphisme est un twist de Dehn partiel, on obtient un critère pour décider quand un tel twist de Dehn partiel est un véritable twist de Dehn.En appliquant le critère à plusieurs reprises sur un twist de Dehn cumulé, nous montrons que soit on peut "déplier" ce twist de Dehn cumulé jusqu'à obtenir un twist de Dehn ordinaire, soit que $phi$ est à croissance au moins quadratique (et par conséquent, n'est pas géométrique).Cela montre, au passage, que tout automorphisme du groupe libre à croissance linéaire admet une puissance qui est un twist de Dehn. Ce fait est connu des experts, et souvent utilisé, bien qu'il n'en existait pas de preuve formelle dans la littérature (à la connaissance de l'auteur).Pour conclure, on applique l'algorithme de Cohen-Lustig pour le transformer en twist de Dehn efficace, puis on applique l'algorithme Whitehead et des théorèmes classiques de Nielsen-Baer et Zieschang pour construire un modèle géométrique ou pour montrer qu'il n'est pas géométrique. / An automorphism $phi$ of a free group $F_n$ of finite rank $n geq 2$ is said to be geometric it is induced by a homeomorphism on a surface.In this thesis we concern ourselves with answering the question:Which precisely are the outer automorphisms of $F_n$ that are geometric?to which we give an algorithmical decision for the case of polynomially growing outer automorphisms, up to raising to certain positive power.In order to realize this algorithm, we establish the technique of quotient and blow-up automorphisms of graph-of-groups, which when apply for the special case of partial Dehn twist enables us to develop a criterion to decide whether the induced outer automorphism is an actual Dehn twist.Applying the criterion repeatedly on the special topological representative deriving from relative train track map, we are now able to either “unfold” this iterated relative Dehn twist representative level by level until eventually obtain an ordinary Dehn twist representative or show that $hat{phi}$ has at least quadratic growth hence is not geometric.As a side result, we also proved that every linearly growing automorphism of free group has a positive power which is a Dehn twist automorphism. This is a fact that has been taken for granted by many experts, although has no formal proof to be found in the literature.In the case of Dehn twist automorphisms, we then use the known algorithm to make the given Dehn twist representative efficient and apply the Whitehead algorithm as well as the classical theorems by Nielsen, Baers, Zieschangs and others to construct its geometric model or to show that it is not geometric.
34

Croissance des degrés d'applications rationnelles en dimension 3 / Degree growth of rational maps in dimension three

Dang, Nguyen-Bac 19 July 2018 (has links)
Cette thèse comporte trois chapitres indépendants portant sur l’itération des applicationsrationnelles sur des variétés projectives et plus spécifiquement sur l’étude du comportement dela suite des degrés des itérés de telles applications.Dans le premier chapitre, nous donnons une construction des invariants fondamentaux quesont les degrés dynamiques dans un cadre très général, et ce sans hypothèse ni sur la caractéristique ni sur les singularités de l’espace ambiant. Cette construction repose sur des propriétésde positivité des cycles algébriques, et propose une alternative aux approches analytiques deDinh et Sibony ou algébriques de Truong.Le second chapitre est issu d’un article écrit en commun avec Jian Xiao. Notre contributionporte sur des objets centraux en géométrie convexe appelés valuations. Nous transférons à l’espace des valuations des notions de positivité des cycles algébriques récemment introduites parLehmann et Xiao, ce qui nous permet d’étendre l’opération de convolution originellement définie par Bernig et Fu à une sous-classe de valuations suffisamment positives.Le troisième chapitre constitue le coeur de la thèse, et porte sur des estimations des degrésdynamiques des automorphismes dit modérés de la quadrique affine de dimension 3. Nos arguments sont de nature variée, et s’appuient sur l’action du groupe modéré sur un complexe carréCAT(0) et Gromov hyperbolique récemment introduite par Bisi, Furter et Lamy.Nous avons finalement collecté dans un dernier et court chapitre quelques pistes de recherchedirectement inspirées des travaux présentés ici. / This thesis is divided into three independent chapters on the iterates of rational maps on projective varieties and more specifically on the study of the growth of the degree sequences of the iterates of such maps. In the first chapter, we give a construction of the fundamental invariants called dynamical degrees. Our method holds in a very general setting, without any conditions on the characteristic of the field or on the singularities of the ambient space.This construction is based on the study of positivity properties of algebraic cycles and gives an alternative approach to the analytical technics of Dinh and Sibony or to the algebraic arguments of Truong.The second chapter is taken from an article written in joint work with Jian Xiao. Our paper focuses on central objects in convex geometry called valuations. We transfer some positivity notions of algebraic cycles recently introduced by Lehmann and Xiao, this allows us to extend the convolution operation defined by Bernig and Fu to a subspace of sufficiently positive valuations.The third chapter is the core of this thesis and focuses on the dynamical degrees of the so-called tame automorphisms of an affine quadric threefold. Our arguments are of various nature and rely on the action of the tame group on a CAT(0), Gromov hyperbolic square complex recently introduced by Bisi, Furter and Lamy. Finally, we have collected in the last chapter a few perpectives directly inspired by this work.
35

Non-symplectic automorphisms of irreducible holomorphic symplectic manifolds / Automorphismes non-symplectiques des variétés symplectiques holomorphes

Cattaneo, Alberto 18 December 2018 (has links)
Nous allons étudier les automorphismes des variétés symplectiques holomorphes irréductibles de type K3^[n], c'est-à-dire des variétés équivalentes par déformation au schéma de Hilbert de n points sur une surface K3, pour n > 1.Dans la première partie de la thèse, nous classifions les automorphismes du schéma de Hilbert de n points sur une surface K3 projective générique, dont le réseau de Picard est engendré par un fibré ample. Nous montrons que le groupe des automorphismes est soit trivial soit engendré par une involution non-symplectique et nous déterminons des conditions numériques et géométriques pour l’existence de l’involution.Dans la deuxième partie, nous étudions les automorphismes non-symplectiques d’ordre premier des variétés de type K3^[n]. Nous déterminons les propriétés du réseau invariant de l'automorphisme et de son complément orthogonal dans le deuxième réseau de cohomologie de la variété et nous classifions leurs classes d’isométrie. Dans le cas des involutions, e des automorphismes d’ordre premier impair pour n = 3, 4, nous montrons que toutes les actions en cohomologie dans notre classification sont réalisées par un automorphism non-symplectique sur une variété de type K3^[n]. Nous construisons explicitement l’immense majorité de ces automorphismes et, en particulier, nous présentons la construction d’un nouvel automorphisme d’ordre trois sur une famille de dimension dix de variétés de Lehn-Lehn-Sorger-van Straten de type K3^[4]. Pour n < 6, nous étudions aussi les espaces de modules de dimension maximal des variétés de type K3^[n] munies d’une involution non-symplectique. / We study automorphisms of irreducible holomorphic symplectic manifolds of type K3^[n], i.e. manifolds which are deformation equivalent to the Hilbert scheme of n points on a K3 surface, for some n > 1. In the first part of the thesis we describe the automorphism group of the Hilbert scheme of n points on a generic projective K3 surface, i.e. a K3 surface whose Picard lattice is generated by a single ample line bundle. We show that, if it is not trivial, the automorphism group is generated by a non-symplectic involution, whose existence depends on some arithmetic conditions involving the number of points n and the polarization of the surface. We also determine necessary and sufficient conditions on the Picard lattice of the Hilbert scheme for the existence of the involution.In the second part of the thesis we study non-symplectic automorphisms of prime order on manifolds of type K3^[n]. We investigate the properties of the invariant lattice and its orthogonal complement inside the second cohomology lattice of the manifold, providing a classification of their isometry classes. We then approach the problem of constructing examples (or at least proving the existence) of manifolds of type K3^[n] with a non-symplectic automorphism inducing on cohomology each specific action in our classification. In the case of involutions, and of automorphisms of odd prime order for n=3,4, we are able to realize all possible cases. In order to do so, we present a new non-symplectic automorphism of order three on a ten-dimensional family of Lehn-Lehn-Sorger-van Straten eightfolds of type K3^[4]. Finally, for n < 6 we describe deformation families of large dimension of manifolds of type K3^[n] equipped with a non-symplectic involution.
36

Sous-structures de Hodge, anneaux de Chow et action de certains automorphismes

Fu, Lie 03 October 2013 (has links) (PDF)
Cette thèse se compose de trois chapitres. Dans Chapitre 1, en supposant la conjecture standard de Lefschetz, on démontre la conjecture de Hodge généralisée pour une sous-structure de Hodge de convieau 1 qui est le noyau du cup-produit avec une classe de cohomologie grosse. Dans Chapitre 2, nous établissons une décomposition de la petite diagonale de X × X × X pour une intersection complète de type Calabi-Yau X dans un espace projectif. Comme une conséquence, on déduit une propriété de dégénérescence pour le produit d'intersection dans son anneau de Chow des deux cycles algébriques de dimensions complémentaires et strictement positives. Dans Chapitre 3, on démontre qu'un automorphisme symplectique polarisé de la variété des droites d'une hypersurface cubique de dimension 4 agit trivialement sur son groupe de Chow des 0-cycles, comme prédit par la conjecture de Bloch généralisée.

Page generated in 0.0566 seconds