• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 221
  • 123
  • 38
  • 17
  • 11
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • Tagged with
  • 510
  • 216
  • 103
  • 92
  • 71
  • 64
  • 62
  • 50
  • 48
  • 48
  • 45
  • 43
  • 37
  • 34
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
481

Sobolev-Type Spaces : Properties of Newtonian Functions Based on Quasi-Banach Function Lattices in Metric Spaces

Malý, Lukáš January 2014 (has links)
This thesis consists of four papers and focuses on function spaces related to first-order analysis in abstract metric measure spaces. The classical (i.e., Sobolev) theory in Euclidean spaces makes use of summability of distributional gradients, whose definition depends on the linear structure of Rn. In metric spaces, we can replace the distributional gradients by (weak) upper gradients that control the functions’ behavior along (almost) all rectifiable curves, which gives rise to the so-called Newtonian spaces. The summability condition, considered in the thesis, is expressed using a general Banach function lattice quasi-norm and so an extensive framework is built. Sobolev-type spaces (mainly based on the Lp norm) on metric spaces, and Newtonian spaces in particular, have been under intensive study since the mid-1990s. In Paper I, the elementary theory of Newtonian spaces based on quasi-Banach function lattices is built up. Standard tools such as moduli of curve families and the Sobolev capacity are developed and applied to study the basic properties of Newtonian functions. Summability of a (weak) upper gradient of a function is shown to guarantee the function’s absolute continuity on almost all curves. Moreover, Newtonian spaces are proven complete in this general setting. Paper II investigates the set of all weak upper gradients of a Newtonian function. In particular, existence of minimal weak upper gradients is established. Validity of Lebesgue’s differentiation theorem for the underlying metric measure space ensures that a family of representation formulae for minimal weak upper gradients can be found. Furthermore, the connection between pointwise and norm convergence of a sequence of Newtonian functions is studied. Smooth functions are frequently used as an approximation of Sobolev functions in analysis of partial differential equations. In fact, Lipschitz continuity, which is (unlike <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?%5Cmathcal%7BC%7D%5E1" />-smoothness) well-defined even for functions on metric spaces, often suffices as a regularity condition. Thus, Paper III concentrates on the question when Lipschitz functions provide good approximations of Newtonian functions. As shown in the paper, it suffices that the function lattice quasi-norm is absolutely continuous and a fractional sharp maximal operator satisfies a weak norm estimate, which it does, e.g., in doubling Poincaré spaces if a non-centered maximal operator of Hardy–Littlewood type is locally weakly bounded. Therefore, such a local weak boundedness on rearrangement-invariant spaces is explored as well. Finer qualitative properties of Newtonian functions and the Sobolev capacity get into focus in Paper IV. Under certain hypotheses, Newtonian functions are proven to be quasi-continuous, which yields that the capacity is an outer capacity. Various sufficient conditions for local boundedness and continuity of Newtonian functions are established. Finally, quasi-continuity is applied to discuss density of locally Lipschitz functions in Newtonian spaces on open subsets of doubling Poincaré spaces.
482

Méthodes d'ondelettes pour l'analyse d'opérateurs

Ezzine, Abdelhak 23 May 1997 (has links) (PDF)
L'idée d'utiliser des bases d'ondelettes dans l'analyse numérique (résolution des équations elliptiques, aux dérivées partielles, intégrales) s'est imposée depuis que ces bases ont fait preuve de leur efficacité dans le traitement du signal. Deux problèmes se posent quant au calcul de la solution dans une base d'ondelettes : - problème 1 : l'étude de la structure de la matrice associée à un noyau K d'un opérateur intégral T dans une base d'ondelettes ; - problème 2 : l'adaptation des techniques de discrétisation de Galerkin aux bases d'ondelettes. Cette thèse contribue à l'étude de ces problèmes par l'introduction d'une nouvelle classe d'opérateurs définis par leur matrice représentative dans une base d'ondelettes et caractérisés par les dérivées fractionnaires de leurs noyaux.
483

Jamesova věta a problém hranice / The James theorem and the boundary problem

Lechner, Jindřich January 2013 (has links)
Let G be a subset of the dual of a real Banach space X and F ⊂ G. Then F is a James boundary of G if each w∗ -continuous linear functional on X attains its supremum over G on an element of the set F. We ask whether a norm bounded subset of X which is countably compact for the topology generated by F is ne- cessary sequentially compact for the topology generated by G. The main content of our work is a positive solution to this problem. As a corollary we obtain James characterization of weakly compact subsets of a real Banach space. Due to the Eberlein-Šmuljan theorem a positive solution to the so called boundary problem is shown as a special case of the affirmative answer to the question raised above. The question is further discussed for a case of Banach spaces defined over the complex field. In this case we cannot use the old definition of the James boun- dary but by a "natural" way it is possible to redefine the term James boundary and then we are able to answer our question positively again. 1
484

Propagation of singularities for pseudo-differential operators and generalized Schrödinger propagators

Johansson, Karoline January 2010 (has links)
<p>In this thesis we discuss different types of regularity for distributions which appear in the theory of pseudo-differential operators and partial differential equations. Partial differential equations often appear in science and technology. For example the Schrödinger equation can be used to describe the change in time of quantum states of physical systems. Pseudo-differential operators can be used to solve partial differential equations.  They are also appropriate to use when modeling different types of problems within physics and engineering. For example, there is a natural connection between pseudo-differential operators and stationary and non-stationary filters in signal processing. Furthermore, the correspondence between symbols and operators when passing from classical mechanics to quantum mechanics essentially agrees with symbols and operators in the Weyl calculus of pseudo-differential operators.</p><p>In this thesis we concentrate on investigating how regularity properties for solutions of partial differential equations are affected under the mapping of pseudo-differential operators, and in particular of the free time-dependent Schrödinger operators.</p><p>The solution of the free time-dependent Schrödinger equation can be expressed as a pseudo-differential operator, with non-smooth symbol, acting on the initial condition. We generalize a result about non-tangential convergence, which was obtained by Sjögren and Sjölin (1989) for the free time-dependent Schrödinger equation.</p><p>Another way to describe regularity for a distribution is to use wave-front sets. They do not only describe where the singularities are, but also the directions in which these singularities appear. The first types of wave-front sets (analytical wave-front sets) were introduced by Sato (1969, 1970). Later on Hörmander introduced ``classical'' wave-front sets (with respect to smoothness) and showed results in the context of pseudo-differential operators with smooth symbols, cf. Hörmander (1985).</p><p>In this thesis we consider wave-front sets with respect to Fourier Banach function spaces. Roughly speaking, we take <em>B</em> as a Banach space, which is invariant under translations and embedded between the space of Schwartz functions and the space of temperated distributions. Then we say that the wave-front set of a distribution contains all points (x<sub>0</sub>, ξ<sub>0</sub>) such that no localization of the distribution at x<sub>0</sub>, belongs to <em>FB</em> in the direction ξ<sub>0</sub>. We prove that pseudo-differential operators with smooth symbols shrink the wave-front set and we obtain opposite embeddings by using sets of characteristic points of the operator symbols.</p> / <p>I denna avhandling diskuterar vi olika typer av regularitet för distributioner som uppkommer i teorin för pseudodifferentialoperatorer och partiella differentialekvationer. Partiella differentialekvationer förekommer inom naturvetenskap och teknik. Exempelvis kan Schrödingerekvationen användas för att beskriva förändringen med tiden av kvanttillstånd i fysikaliska system. Pseudodifferentialoperatorer kan användas för att lösa partiella differential\-ekvationer. De användas också för att modellera olika typer av problem inom fysik och teknik. Det finns till exempel en naturlig koppling mellan pseudodifferentialoperatorer och stationära och icke-stationära filter i signalbehandling. Vidare gäller att relationen mellan symboler och operatorer vid övergången från klassisk mekanik till kvantmekanik i huvudsak överensstämmer med symboler och operatorer inom Weylkalkylen för pseudodifferentialoperatorer.</p><p>I den här avhandlingen koncentrerar vi oss på att undersöka hur regularitetsegenskaper för lösningar till partiella differentialekvationer påverkas under verkan av pseudodifferentialoperatorer, och speciellt för de fria tidsberoende Schrödingeroperatorerna.</p><p>Lösningen av den fria tidsberoende Schrödingerekvationen kan uttryckas som en pseudodifferentialoperator, med icke-slät symbol, verkande på begynnelsevillkoret. Vi generaliserar ett resultat om icke-tangentiell konvergens av Sjögren och Sjölin (1989) för den fria tidsberoende Schrödingerekvationen.</p><p>Ett annat sätt att beskriva regularitet hos en distribution är med hjälp av vågfrontsmängder. De beskriver inte bara var singulariteterna finns, utan också i vilka riktningar dessa singulariteter förekommer. De första typerna av vågfrontsmängder (analytiska vågfrontsmängder) introducerades av Sato (1969, 1970). Senare introducerade Hörmander ''klassiska'' vågfrontsmängder (med avseende på släthet) och visade resultat för verkan av pseudodifferentialoperatorer med släta symboler, se  Hörmander (1985).</p><p>I denna avhandling betraktar vi vågfrontsmängder med avseende på Fourier Banach funktionsrum. Detta kan ses som att vi låter <em>B</em> vara ett Banachrum, som är invariant under translationer och är inbäddat mellan rummet av Schwartzfunktioner och rummet av tempererade distributioner. Vågfrontsmängden av en distribution innehåller alla punkter (x<sub>0</sub>, ξ<sub>0</sub>) så att ingen lokalisering av distributionen kring x<sub>0</sub>, tillhör <em>FB</em> i riktningen ξ<sub>0</sub>. Vi visar att pseudodifferentialoperatorer med släta symboler krymper vågfrontsmängden och vi får motsatta inbäddningar med hjälp mängder av karakteristiska punkter till operatorernas symboler.</p>
485

Propagation of singularities for pseudo-differential operators and generalized Schrödinger propagators

Johansson, Karoline January 2010 (has links)
In this thesis we discuss different types of regularity for distributions which appear in the theory of pseudo-differential operators and partial differential equations. Partial differential equations often appear in science and technology. For example the Schrödinger equation can be used to describe the change in time of quantum states of physical systems. Pseudo-differential operators can be used to solve partial differential equations.  They are also appropriate to use when modeling different types of problems within physics and engineering. For example, there is a natural connection between pseudo-differential operators and stationary and non-stationary filters in signal processing. Furthermore, the correspondence between symbols and operators when passing from classical mechanics to quantum mechanics essentially agrees with symbols and operators in the Weyl calculus of pseudo-differential operators. In this thesis we concentrate on investigating how regularity properties for solutions of partial differential equations are affected under the mapping of pseudo-differential operators, and in particular of the free time-dependent Schrödinger operators. The solution of the free time-dependent Schrödinger equation can be expressed as a pseudo-differential operator, with non-smooth symbol, acting on the initial condition. We generalize a result about non-tangential convergence, which was obtained by Sjögren and Sjölin (1989) for the free time-dependent Schrödinger equation. Another way to describe regularity for a distribution is to use wave-front sets. They do not only describe where the singularities are, but also the directions in which these singularities appear. The first types of wave-front sets (analytical wave-front sets) were introduced by Sato (1969, 1970). Later on Hörmander introduced ``classical'' wave-front sets (with respect to smoothness) and showed results in the context of pseudo-differential operators with smooth symbols, cf. Hörmander (1985). In this thesis we consider wave-front sets with respect to Fourier Banach function spaces. Roughly speaking, we take B as a Banach space, which is invariant under translations and embedded between the space of Schwartz functions and the space of temperated distributions. Then we say that the wave-front set of a distribution contains all points (x0, ξ0) such that no localization of the distribution at x0, belongs to FB in the direction ξ0. We prove that pseudo-differential operators with smooth symbols shrink the wave-front set and we obtain opposite embeddings by using sets of characteristic points of the operator symbols. / I denna avhandling diskuterar vi olika typer av regularitet för distributioner som uppkommer i teorin för pseudodifferentialoperatorer och partiella differentialekvationer. Partiella differentialekvationer förekommer inom naturvetenskap och teknik. Exempelvis kan Schrödingerekvationen användas för att beskriva förändringen med tiden av kvanttillstånd i fysikaliska system. Pseudodifferentialoperatorer kan användas för att lösa partiella differential\-ekvationer. De användas också för att modellera olika typer av problem inom fysik och teknik. Det finns till exempel en naturlig koppling mellan pseudodifferentialoperatorer och stationära och icke-stationära filter i signalbehandling. Vidare gäller att relationen mellan symboler och operatorer vid övergången från klassisk mekanik till kvantmekanik i huvudsak överensstämmer med symboler och operatorer inom Weylkalkylen för pseudodifferentialoperatorer. I den här avhandlingen koncentrerar vi oss på att undersöka hur regularitetsegenskaper för lösningar till partiella differentialekvationer påverkas under verkan av pseudodifferentialoperatorer, och speciellt för de fria tidsberoende Schrödingeroperatorerna. Lösningen av den fria tidsberoende Schrödingerekvationen kan uttryckas som en pseudodifferentialoperator, med icke-slät symbol, verkande på begynnelsevillkoret. Vi generaliserar ett resultat om icke-tangentiell konvergens av Sjögren och Sjölin (1989) för den fria tidsberoende Schrödingerekvationen. Ett annat sätt att beskriva regularitet hos en distribution är med hjälp av vågfrontsmängder. De beskriver inte bara var singulariteterna finns, utan också i vilka riktningar dessa singulariteter förekommer. De första typerna av vågfrontsmängder (analytiska vågfrontsmängder) introducerades av Sato (1969, 1970). Senare introducerade Hörmander ''klassiska'' vågfrontsmängder (med avseende på släthet) och visade resultat för verkan av pseudodifferentialoperatorer med släta symboler, se  Hörmander (1985). I denna avhandling betraktar vi vågfrontsmängder med avseende på Fourier Banach funktionsrum. Detta kan ses som att vi låter B vara ett Banachrum, som är invariant under translationer och är inbäddat mellan rummet av Schwartzfunktioner och rummet av tempererade distributioner. Vågfrontsmängden av en distribution innehåller alla punkter (x0, ξ0) så att ingen lokalisering av distributionen kring x0, tillhör FB i riktningen ξ0. Vi visar att pseudodifferentialoperatorer med släta symboler krymper vågfrontsmängden och vi får motsatta inbäddningar med hjälp mängder av karakteristiska punkter till operatorernas symboler.
486

Optimierung in normierten Räumen

Mehlitz, Patrick 10 August 2013 (has links) (PDF)
Die Arbeit abstrahiert bekannte Konzepte der endlichdimensionalen Optimierung im Hinblick auf deren Anwendung in Banachräumen. Hierfür werden zunächst grundlegende Elemente der Funktionalanalysis wie schwache Konvergenz, Dualräume und Reflexivität vorgestellt. Anschließend erfolgt eine kurze Einführung in die Thematik der Fréchet-Differenzierbarkeit und eine Abstraktion des Begriffs der partiellen Ordnungsrelation in normierten Räumen. Nach der Formulierung eines allgemeinen Existenzsatzes für globale Optimallösungen von abstrakten Optimierungsaufgaben werden notwendige Optimalitätsbedingungen vom Karush-Kuhn-Tucker-Typ hergeleitet. Abschließend wird eine hinreichende Optimalitätsbedingung vom Karush-Kuhn-Tucker-Typ unter verallgemeinerten Konvexitätsvoraussetzungen verifiziert.
487

Contributions to Lattice-like Properties on Ordered Normed Spaces

Tzschichholtz, Ingo 23 July 2006 (has links) (PDF)
Banachverbände spielen sowohl in der Theorie als auch in der Anwendung von geordneten normierten Räume eine bedeutende Rolle. Einerseits erweisen sich viele in der Praxis relevanten Räume als Banachverbände, andererseits ermöglichen die Vektorverbandsstruktur und die enge Beziehung zwischen Ordnung und Norm ein tiefes Verständnis solcher normierter Räume. An dieser Stelle setzen folgende Überlegungen an: - Die genaue Untersuchung einiger Resultate der reichhaltigen Banachverbandstheorie ließ (zu Recht) vermuten, dass in manchen Fällen die Verbandsnormeigenschaft keine notwendige Voraussetzung ist. In der Literatur gibt es bereits einige interessante Untersuchungen allgemeiner geordneter normierter Räume mit qualifizierten positiven Kegeln und in dem Zusammenhang eine Reihe wertvoller Dualitätsaussagen. An dieser Stelle sind die Eigenschaften der Normalität, der Nichtabgeflachtheit und der Regularität eines Kegels erwähnt, welche selbst im Falle eines mit einer Norm versehenen Vektorverbandes eine schwächere Relation zwischen Ordnung und Norm ergeben als die Verbandsnormeigenschaft. - In einer neueren Arbeit wurde der aus der Theorie der Vektorverbände gut bekannte Begriff der Disjunktheit bereits auf beliebige geordnete Räume verallgemeinert, wobei viele Eigenschaften disjunkter Vektoren, des disjunkten Komplements einer Menge usw., welche aus der Verbandstheorie bekannt sind, erhalten bleiben. Auf entsprechende Weise, d.h. durch das Ersetzen exakter Infima und Suprema durch Mengen unterer bzw. oberer Schranken, können der Modul eines Vektors sowie der Begriff der Solidität einer Menge für geordnete (normierte) Räume eingeführt werden. An solchen Überlegungen knüpft die vorliegende Arbeit an. Im Kapitel m-Normen ======== werden verallgemeinerte Formen der M-Norm Eigenschaft eingeführt und untersucht. AM-Räume und (approximative) Ordnungseinheit-Räume sind Beispiele für geordnete normierte Räume mit m-Norm. Die Schwerpunkte dieses Kapitels sind zum Einen Kegel- und Normeigenschaften dieser Räume und deren Charakterisierung mit Hilfe solcher Eigenschaften und zum Anderen Dualitätsaussagen, wie sie zum Teil bereits aus der Theorie der AM- und AL-Räume bekannt sind. Minimal totale Mengen ===================== Ziel dieses Kapitels ist es, den oben erwähnten verallgemeinerten Disjunktheitsbegiff für geordnete normierte Räume zu untersuchen. Eine zentrale Rolle spielen dabei totale Mengen im Dualraum und insbesondere minimal totale Mengen sowie deren Zusammenhang mit der Disjunktheit von Elementen des Ausgangsraumes. Normierte pre-Riesz Räume ========================= Wie bereits bekannt, lässt sich jeder pre-Riesz Raum ordnungsdicht in einen (bis auf Isomorphie) eindeutigen minimalen Vektorverband einbetten, die so genannte Riesz Vervollständigung. Ist der pre-Riesz Raum normiert und sein positiver Kegel abgeschlossen, dann kann eine Verbandsnorm auf der Riesz Vervollständigung eingeführt werden, welche sich in vielen Fällen als äquivalent zur Ausgangsnorm auf dem pre-Riesz Raum erweist. Es ist allgemein bekannt, dass sich dann auch stetige lineare Funktionale fortsetzen lassen. In diesem Kapitel wird nun untersucht, inwiefern sich Ordnungsrelationen auf einer Menge stetiger linearer Funktionale beim Übergang zur Menge der Fortsetzungen erhalten lassen. Die gewonnenen Erkenntnisse kommen anschließend bei Untersuchungen zur schwachen bzw. schwach*-Topologie auf geordneten normierten Räumen zur Anwendung. Hierbei werden zwei Fragestellungen behandelt. Zum Einen gilt das Augenmerk disjunkten Folgen in geordneten normierten Räumen. Als Beispiel seien ordnungsbeschränkte disjunkte Folgen in geordneten normierten Räumen mit halbmonotoner mNorm genannt, welche stets schwach gegen Null konvergieren. Zum Anderen werden monoton fallende Folgen und Netze bzw. disjunkte Folgen von stetigen linearen Funktionalen auf einem geordneten normierten Raum betrachtet. / Banach lattices play an important role in the theory of ordered normed spaces. One reason is, that many ordered normed vector spaces, that are important in practice, turn out to be Banach lattices, on the other hand, the lattice structure and strong relations between order and norm allow a deep understanding of such ordered normed spaces. At this point the following is to be considered. - The analysis of some results in the rich Banach lattice theory leads to the conjecture, that sometimes the lattice norm property is no necessary supposition. General ordered normed spaces with a convenient positive cone were already examined, where some valuable duality properties could be achieved. We point out the properties of normality, non-flatness and regularity of a cone, which are a weaker relation between order and norm than the lattice norm property in normed vector lattices. - The notion of disjointness in vector lattices has already been generalized to arbitrary ordered vector spaces. Many properties of disjoint elements, the disjoint complement of a set etc., well known from the vector lattice theory, are preserved. The modulus of a vector as well as the concept of the solidness of a set can be introduced in a similar way, namely by replacing suprema and infima by sets of upper and lower bounds, respectively. We take such ideas up in the present thesis. A generalized version of the M-norm property is introduced and examined in section m-norms. ======= AM-spaces and approximate order unit spaces are examples of ordered normed spaces with m-norm. The main points of this section are the special properties of the positive cone and the norm of such spaces and the duality properties of spaces with m-norm. Minimal total sets ================== In this section we examine the mentioned generalized disjointness in ordered normed spaces. Total sets as well as minimal total sets and their relation to disjoint elements play an inportant at this. Normed pre-Riesz spaces ======================= As already known, every pre-Riesz space can be order densely embedded into an (up to isomorphism) unique vector lattice, the so called Riesz completion. If, in addition, the pre-Riesz space is normed and its positive cone is closed, then a lattice norm can be introduced on the Riesz completion, that turns out to be equivalent to the primary norm on the pre-Riesz space in many cases. Positive linear continuous functionals on the pre-Riesz space are extendable to positive linear continuous functionals in this setting. Here we investigate, how some order relations on a set of continuous functionals can be preserved to the set of the extension. In the last paragraph of this section the obtained results are applied for investigations of some questions concerning the weak and the weak* topology on ordered normed vector spaces. On the one hand, we focus on disjoint sequences in ordered normed spaces. On the other hand, we deal with decreasing sequences and nets and disjoint sequences of linear continuous functionals on ordered normed spaces.
488

Izometrické a izomorfní klasifikace prostorů spojitých a baireovských afinních funkcí / Isomorphic and isometric classification of spaces of continuous and Baire affine functions

Ludvík, Pavel January 2014 (has links)
This thesis consists of five research papers. The first paper: We prove that under certain conditions, the existence of an isomorphism between spaces of continuous affine functions on the compact convex sets imposes home- omorphism between the sets of its extreme points. The second: We investigate a transfer of descriptive properties of elements of biduals of Banach spaces con- strued as functions on dual unit balls. We also prove results on the relation of Baire classes and intrinsic Baire classes of L1-preduals. The third: We identify intrinsic Baire classes of X with the spaces of odd or homogeneous Baire functions on ext BX∗ , provided X is a separable real or complex L1-predual with the set of extreme points of its dual unit ball of type Fσ. We also provide an example of a separable C∗ -algebra such that the second and second intrinsic Baire class of its bidual differ. The fourth: We generalize some of the above mentioned results for real non-separable L1-preduals. The fifth: We compute the distance of a general mapping to the family of mappings of the first resolvable class via the quantity frag and we introduce and investigate a class of mappings of countable oscillation rank.
489

A Teoria de Semigrupo aplicada às equações diferenciais parciais. / The Semigroup Theory applied to partial differential equations.

MELO, Romero Alves de. 10 July 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-07-10T18:13:32Z No. of bitstreams: 1 ROMERO ALVES DE MELO - DISSERTAÇÃO PPGMAT 2006..pdf: 1038740 bytes, checksum: d9fd10d289c6cf822fe688e743b58356 (MD5) / Made available in DSpace on 2018-07-10T18:13:32Z (GMT). No. of bitstreams: 1 ROMERO ALVES DE MELO - DISSERTAÇÃO PPGMAT 2006..pdf: 1038740 bytes, checksum: d9fd10d289c6cf822fe688e743b58356 (MD5) Previous issue date: 2006-12 / Capes / Neste trabalho usaremos a Teoria de Semigrupos para demonstrar resultados de existência e unicidade de solução para Equações Diferenciais Ordinárias, em espaços de Banach. Usando esta teoria resolvemos problemas de valor inicial, com relação a equação do calor e a equação da onda. (Para visualizar a equação ou fórmula deste resumo recomendamos o download do arquivo). / In this work we use semigroup theory to prove some results of existence and unicity for a class Ordinary Differential Equation, on Banach spaces. Using this tool, we show the existence of solutions for wave and heat equations. (To visualize the equation or formula of this summary we recommend downloading the file).
490

Soluções de sistemas de equações diferenciais elípticas via Teoria de ponto fixo em cones. / Systems solutions of differential elliptic equations via fixed point theory in cones.

SANTOS, Joselma Soares dos. 16 July 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-07-16T19:36:43Z No. of bitstreams: 1 JOSELMA SOARES DOS SANTOS - DISSERTAÇÃO PPGMAT 2007..pdf: 482798 bytes, checksum: c569721d7def4ccf67efe94c085198f8 (MD5) / Made available in DSpace on 2018-07-16T19:36:43Z (GMT). No. of bitstreams: 1 JOSELMA SOARES DOS SANTOS - DISSERTAÇÃO PPGMAT 2007..pdf: 482798 bytes, checksum: c569721d7def4ccf67efe94c085198f8 (MD5) Previous issue date: 2007-04 / Neste trabalho usaremos a Teoria do Ponto fixo em Cones para provar a existência e multiplicidade de solução positiva radial para sistemas de equações diferenciais parciais elípticas de segunda ordem onde 0 < r1 < r2 e a,b são parâmetros não-negativos. * (O resumo original da dissertação aprenta um sistema de equação que não foi possível adiciona-lo aqui. Recomendamos o download do arquivo para acessoao resumo completo) / In this work we will use the Theory of the Fixed Point in Cones to prove the existence and multiplicity of positive solutions for systems of second-ordem elliptic differential equations where 0 < r1 < r2 and a,b are non-negative parameters. * (The original abstract of the dissertation presents an equation system that could not be added here. We recommend downloading the file for access to the full summary)

Page generated in 0.1749 seconds