Spelling suggestions: "subject:"biochimique"" "subject:"biochimiques""
301 |
Theoretical approach of complex DNA lesions : from formation to repair / Étude théorique de lésions complexes de l'ADN : de la formation à la réparationBignon, Emmanuelle 08 June 2017 (has links)
Ce travail de thèse vise à étudier l'endommagement de l'ADN, de la formation de lésions à leur réparation par des méthodes de modélisation moléculaire. Plusieurs projets ont pris forme dans ce contexte, lesquels peuvent être classés en trois grandes catégories. D'un côté, nous nous sommes intéressés la formation de lésions induites par des agents mutagènes. Nous avons étudié les mécanismes de formation de la 8-oxo-7,8-dihydroguanine (8oxoG), mais aussi le caractère de photosensibilisateur endogène de la pyrimidine 6-4 pyrimidone (6-4PP), et la photosensibilisation de l'ADN par deux anti-inflammatoires : le kétoprofène et l'ibuprofène. D'un autre côté, les propriétés mécaniques de l'ADN endommagé ont été simulées. La structure de lésions complexes est d'une importance capitale pour comprendre la manière dont elles sont réparées. Malheureusement, seulement peu de structures RMN et cristallographiques sont disponibles à ce jour. Pour pallier à ce manque et obtenir des informations sur leur dynamique, nous avons étudié un panel de lésions complexes : les clusters de sites abasiques, les pontages inter-brins, et la photolésion 6-4PP. De même, nous nous sommes penchés sur les modes d'interaction de certaines polyamines avec l'ADN, ces molécules étant connues pour interagir avec la double hélice. Enfin, latroisième partie de cette thèse concerne les interactions ADN-enzyme de réparation. En perspective avec l'étude de clusters d'abasiques, nous avons étudié le comportement dynamique du même système, cette fois-ci en interaction avec l'endonucléase APE1. Nous nous sommes également penchés sur les interactions entre la glycosylase Fpg avec un oligonucléotide contenant un tandem de lésions 8-oxoG d'un côté, etun cluster de lésions 8-oxoG - site abasique de l'autre. Ces multiples projets ont permis l'accumulation de nouvelles connaissances à propos des lésions complexes de l'ADN, et ont également apporté un appuicomputationnel aux expérimentations, qui peuvent se révéler très délicates dans ce domaine. Nos résultats ouvrent de larges perspectives dans le domaine de la pharmacologie, la cosmétique et plus généralementla compréhension du vivant / This thesis work is focused on the theoretical modelling of DNA damages, from formation to repair. Several projects have been led in this framework, which can be sorted into three different parts. One on hand, we studied complex DNA reactivity. It included a study about 8-oxo-7,8-dihydroguanine (8oxoG) mechanisms of formation, a project concerning the UV-induced pyrimidine 6-4 pyrimidone (6-4PP) endogenous photosensitizer features, and an other one about DNA photosensitizationby nonsteroidal anti-inflammatory drugs (ie ketoprofen and ibuprofen). On the other hand, we investigated mechanical properties of damaged DNA. The structural signature of a DNA lesion is of major importance for their repair, unfortunately only few NMR and X-ray structures of such systems are available. In order to gain insights into their dynamical structure, we investigated a series of complex damages : clustered abasic sites, interstrand cross-links, and the 6-4PP photolesion. Likewise, we studied the interaction modes DNA with several polyamines, which are well known to interact with the double helix, but also with the perspective to model DNA-protein cross-linking. The third part concerned the study of DNA interactions with repair enzymes. In line with the structural study about clustered abasic sites, we investigated the dynamics of the same system, but this time interacting with the APE1 endonuclease. We also studied interactions between the Fpg glycosylase with an oligonucleotides containing tandem 8-oxoG on one hand and 8-oxoG - abasic site as multiply damaged sites. Thus, we shed new lights on damaged DNA reactivity, structure and repair, which provides perspectives for biomedicine and life's mechanisms understanding as we begin to describe nucleosomal DNA
|
302 |
Etude biochimique des récepteurs aux goûts sucré et umami : Rôle des domaines N-terminaux et caractérisation d'un inhibiteur spécifique, la gurmarine / Biochemical study of the sweet and umami taste receptors : role of the N-terminal domains and characterization of gurmarin, a specific inhibitorSigoillot, Maud 15 December 2011 (has links)
Le récepteur au goût sucré est un hétérodimère composé des sous-unités T1R2 et T1R3, alors que les sous-unités T1R1 et T1R3 s’assemblent pour composer le récepteur au goût umami. Chacune de ces sous-unités appartient à la classe C des récepteurs couplés aux protéines G (RCPG). Les membres de cette famille partagent une architecture commune, constituée d’un domaine N-terminal (DNT) qui est relié à un domaine transmembranaire par une région riche en cystéines. Le DNT est constitué de deux lobes qui forment le site orthostérique, qui est le site de liaison des principaux agonistes. Il a été montré que les DNT de T1R1 (DNT-T1R1) est capable de lier le L-glutamate alors que le DNT de T1R2 (DNT-T1R2) est capable de lier les sucres naturels et certains édulcorants (Zhang et al., 2008 ; Nie et al., 2005). Cependant les mécanismes moléculaires de détections des molécules sapides au niveau de ces domaines restent encore largement méconnus. Lors de cette étude, nous avons exprimé les DNT-T1R1, DNT-T1R2 humains et le DNT-T1R1 de souris à l’aide de la bactérie Escherichia coli, sous forme de protéines insolubles, appelés corps d’inclusion (CI). Les CI ont été purifiés puis solubilisés en utilisant un agent chaotrope. Ensuite, les protéines ont été repliées in vitro puis caractérisées par différentes approches parmi lesquelles l’électrophorèse, la filtration sur gel, la fluorescence et le dichroïsme circulaire. Leur fonctionnalité a ensuite été vérifiée par microcalorimétrie de titration isotherme. Nous avons montré que les protéines sont fonctionnelles et présentent des affinités en accord avec les données sensorielles. Les grandes quantités de protéines produites permettront de futures études structurales par cristallographie. Parallèlement à ce travail, nous avons étudié un polypeptide végétal, inhibiteur des goûts sucré et umami chez les rongeurs, appelé gurmarine. Afin de pouvoir étudier son interaction avec les DNT des récepteurs gustatifs de souris, nous avons mis au point l’expression et la purification de gurmarine recombinante produite en levure Pichia pastoris. Ce système d’expression a permis la production de quantités importantes de gurmarine dont les caractéristiques structurales ont été vérifiées par dichroïsme circulaire et résonnance magnétique nucléaire. Nous avons aussi, par mutagénèse dirigée, modifié différents acides aminés décrits comme étant potentiellement impliqués dans l’interaction avec les récepteurs aux goûts sucré et umami. En collaboration, l’activité de la gurmarine a été confirmée à l’aide d’un test cellulaire basé sur l’expression fonctionnelle du récepteur de rat T1R2/T1R3. A l’aide de différentes combinaisons des sous-unités humaines et de rongeurs, nous avons montré que l’inhibition par la gurmarine nécessitait la présence de la sous-unité T1R3 de rat. / The sweet taste receptor is a heterodimer composed of two subunits called T1R2 and T1R3 whereas the T1R1 and the T1R3 subunits form a heterodimeric receptor for umami taste (the savory taste of monosodium glutamate). Each subunit belongs to the class C of G protein-coupled receptors (GPCRs) and is constituted by a large extracellular N-terminal domain (NTD) linked to the transmembrane domain by a cysteine-rich region. The NTD is composed of two lobes separated by a cleft in which ligands bind. T1R1- and T1R2-NTDs are able to bind sweeteners and umami compounds respectively and undergo ligand-dependent conformational changes (Zhang et al., 2008; Nie et al., 2005). However, the relative contribution of the two subunits to the heterodimeric receptor function remains largely unknown. To study the binding specificity of each subunit, a large amount of purified NTDs is suitable for biochemical and structural studies. To accomplish this goal, we expressed T1R1- and T1R2-NTD in high level in Escherichia coli as insoluble aggregated proteins (inclusion bodies). The proteins were solubilized and in vitro refolded using suitable buffer and additives. The soluble proteins were then purified and characterized using electrophoresis, gel filtration, fluorescence spectroscopy and circular dichroism. The functionality of T1R1- and T1R2-NTD was measured the using isothermal microcalorimetry. Our data showed that the proteins are properly refolded and able to bind sweet or umami compounds with physiological relevant affinities. In summary, our expression system will allow large-scale production of active T1R1- and T1R2-NTD suitable for structural and functional studies. In addition to this work, we have studied a 35 residue polypeptide named gurmarin, well known to selectively inhibit responses to sweet substances without affecting responses to other basic taste stimuli, such as NaCl, HCl, and quinine in rodents. To further understand the structural basis of gurmarin recognition by T1R2-T1R3 receptor, we developed for the first time the heterologous expression of gurmarin using the methylotrophic yeast Pichia pastoris. This system allowed the expression of large quantities of recombinant gurmarin. The structural properties of gurmarin were checked by circular dichroism and nuclear magnetic resonance. We generated six mutants with single amino acids substitutions in the putative site of interaction between gurmarin and the rodent sweet taste receptor, using site-directed mutagenesis. In collaboration, the biological activity of was confirmed using a cell-based assay based on expression of rat T1R2-T1R3. Thanks to various combinations of human and rat T1R2-T1R3 chimeras, we showed that NTD of rat T1R3 is the major determinant of gurmarin’s inhibition.
|
303 |
Caractérisation biochimique et biophysique des deux cytidylyltransférases de Plasmodium falciparum, enzymes clés du métabolisme des phospholipides / Biochemical and biophysical characterization of the two Plasmodium falciparum cytidylyltransferases, key enzymes of the malaria phospholipid metabolismContet, Alicia 06 May 2015 (has links)
Le paludisme est causé par l'infection et la destruction des érythrocytes par les parasites protozoaires appartenant au genre Plasmodium. Au cours de son développement dans l'érythrocyte,Plasmodium falciparum requiert la biosynthèse massive de membranes dont les principaux constituants lipidiques sont des phospholipides. La phosphatidylcholine (PC) et la phosphatidyléthanolamine (PE) représentent à elles deux environ 80 % des lipides membranaires et l'inhibition de leur biosynthèse est létale pour le parasite. La PC et la PE sont synthétisées par le parasite, principalement via les voies de novo dépendantes de la CDP-choline et de la CDP-éthanolamine (ou voies de Kennedy) en utilisant respectivement la choline et l'éthanolamine comme précurseurs. Ces travaux de thèse se focalisent sur les deux enzymes CTP:phosphocholine etCTP:phosphoéthanolamine cytidylyltransférase (PfCCT et PfECT, respectivement), catalysant les étapes limitantes des voies de Kennedy. Chez Plasmodium, les CCT et ECT possèdent deux domaines cytidylyltransférases (CT) portant l'activité catalytique, séparés par une longue région de liaison. Pour la CCT, cette duplication est retrouvée seulement chez trois organismes, tous faisant partie du phylumdes Apicomplexes : Babesia, Theileria et Plasmodium, alors que la présence de deux domaines CT estune caractéristique retrouvée chez toutes les ECT étudiées à ce jour. La première partie de ce travail de thèse concerne la caractérisation biochimique et l'inhibition la PfCCT Nous avons montré que les deux domaines CT de la PfCCT sont actifs à l'inverse de la PfECT pour laquelle seul le domaine CTN-terminal est catalytiquement actif. A la suite d'un criblage virtuel basé sur la structure de l'enzyme,nous avons identifié un composé princeps capable d'inhiber l'activité de la PfCCT in vitro, la synthèse de PC et la croissance parasitaire. Ce premier composé actif (haut µM) représente une base pour l'optimisation future de nouveaux composés plus efficaces. Dans la deuxième partie de cette thèse,nous avons déterminé le mécanisme catalytique, la spécificité de liaison des ligands et l'organisation structurale de la PfECT grâce à la combinaison d'approches biochimiques et biophysiques. L'ensemble des résultats présentés dans ce manuscrit apportent un éclairage important concernant le fonctionnement de ces deux cibles potentielles et constituent des étapes essentielles à l'élaboration d'une approche thérapeutique. / Malaria is caused by the infection and destruction of red blood cells by protozoan parasitesbelonging to the genus Plasmodium. During its intra-erythrocytic development, Plasmodiumfalciparum requires massive biosynthesis of membranes which are mainly composed of phospholipids.Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) together represent about 80% of thetotal membrane lipids and inhibition of their biosynthesis leads to parasite death. PC and PE aresynthesized by the parasite's machinery mainly through the de novo CDP-choline and CDPethanolamine(Kennedy) pathways using respectively choline and ethanolamine as precursors. Thisstudy focuses on the rate limiting steps of these pathways catalyzed by CTP:phosphocholine andCTP:phosphoethanolamine cytidylytransferases (PfCCT and PfECT, respectively). In Plasmodiumspecies, both CCT and ECT contain two catalytic cores (CT domains) separated by a long linker.Interestingly, for CCT this feature is found only in three organisms, all from the phylum ofApicomplexa: Babesia, Theileria and Plasmodium, whereas the presence of two CT domains is ageneral feature in all ECTs known so far. The first part of this work consists in the biochemicalcharacterization of PfCCT and the investigation of its druggability. We showed that both PfCCT CTdomains are active and display similar kinetic parameters while only the N-terminal CT domain wasactive in PfECT. Subsequent to an in silico structure-based screening of compounds libraries, weidentified a PfCCT inhibitor able to inhibit PC synthesis as well as P. falciparum growth in vitro in thehigh µM range. This compound represents a first step toward the optimization of future more potentcompounds. In the second part of this study, we investigated the catalytic mechanism of PfECT anddeciphered its interactions with its ligands using biochemical, biophysical and structural approaches.Collectively, these results bring new insights into the biochemical and structural properties of thesetwo keys enzymes of the phospholipid metabolism in P. falciparum and pave the way for their futuredevelopment as potential drug target.
|
304 |
Structure, function and regulation of ammonium transport proteins of the Mep-Amt-Rh superfamily in the yeast Saccharomyces cerevisiaeSoto Diaz, Silvia 28 October 2020 (has links) (PDF)
While ammonium is an excellent nitrogen source for microorganisms and plants, it is known as acytotoxic metabolite and for its critical role in acid/base homeostasis in animals. Ammonium transportinside the cells is ensured by proteins of the Mep-Amt-Rh superfamily, which are conserved frombacteria to humans.The main objective of the thesis is to refine the understanding of the regulation of the three ammoniumtransport proteins Mep1, Mep2 and Mep3 from Saccharomyces cerevisiae. The three Mep proteins areregulated by the Npr1 kinase and the conserved TORC1 signaling pathway. While the activity of Mep2is regulated by phosphorylation of the C-terminal 457 serine, the activity of Mep1 and Mep3 is inhibitedby the factor Amu1 / Par32. In the presence of a poor nitrogen source, Npr1 induces phosphorylation ofAmu1 which appears mainly cytosolic and, Mep1 and Mep3 are active. On the other hand, in thepresence of a good nitrogen source, the activity of TORC1 induces the inhibition of Npr1 and thereforethe dephosphorylation of Amu1 which accumulates at the cell surface and inactivates Mep1 and Mep3.In order to further study the regulation of Mep1 / 3, a genetic screen was performed to isolate suppressorsrecovering Mep1-dependent ammonium transport in the absence of Npr1. Several mutations, insertionsand deletions have been identified in the MEP1 and AMU1 genes allowing Mep1 to be activeindependently of Npr1. This work shows that all the point mutations in Mep1 delimit an area at theinterface between the hydrophobic body of Mep1 and the cytosol, and that part of the C-terminus (CTR)is required for optimal activity of Mep1 but appears dispensable for regulation by Amu1 and Npr1. Thegenetic screen also shows that the last 15 amino acids of Amu1 are required to inactivate Mep1. Finally,the isolation of suppressors showing no mutation in MEP1 and AMU1 could reveal new factors involvedin the control of Mep1.The results indicate that Mep1 is inactivated in the presence of glutamine, a good source of nitrogen,and that this inactivation requires Amu1. The glutamine-dependent inactivation of Mep2 was alsostudied in this manuscript. Mass spectrometry analysis revealed putative phosphorylation sites in CTRspecific to the presence or absence of glutamine.This work also addressed the role of Amu1 in the reactivation function of TORC1 after treatment withrapamycin, in particular by confirming that it requires the function of Mep1/3. The study leads to thehypothesis that the transport mechanism specific to Mep1 and Mep3 and different from Mep2 isinvolved in this function.Finally, in order to better understand the mechanisms of regulation and transport of Mep-Amt-Rhproteins, the experimental determination of the three-dimensional structure of different variants ofMep2, in open or closed conformation, and of Mep1 was undertaken. Throughout this work, thecharacterized Mep1 or Mep2 variants were analyzed in silico by using the available three-dimensionalstructures. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
305 |
Régulation des la voie mTOR par la phospholipase D dans le muscle squelettique : implication dans le contrôle de la différenciation myogénique et de la taille des myocytes / Regulation of mammalian target of rapamycin (mTOR) by phospholipase D : role in the control of myogenic differentiation and myocytes sizeJaafar, Rami 03 February 2011 (has links)
La phospholipase D (PLD) hydrolyse la phosphatidylcholine des membranes cellulaires, libérant le messager acide phosphatidique. La capacité de la PLD à influer sur la voie de signalisation de mTOR, acteur central dans le contrôle du tissu musculaire, nous a incités à étudier son rôle dans ce tissu. Mes travaux de thèse ont pour but d'étudier les mécanismes par lesquels la PLD intervient dans la différenciation myogénique et dans la régulation de la masse musculaire. Dans un premier temps, nous avons montré que le contrôle de la différenciation des myoblastes L6 par la PLD met en jeu l'activation des deux complexes de mTOR (mTORC1 et mTORC2). mTORC2 active la différenciation, probablement via son effecteur PKCalpha, alors que mTORC1 la réprime via son effecteur S6K1, en induisant la phosphorylation de rictor, un composant de mTORC2, et l'inhibition de ce complexe. Nous avons par ailleurs montré que l'extinction de PLD par interférence de I'ARN induit l'atrophie de myotubes L6 en culture, ainsi qu'une baisse de la phosphorylation de S6K1 et 4E-BP1, effecteurs de mTORC1. Inversement, la surexpression de PLD à l'aide de vecteurs adénoviraux induit une hypertrophie des myotubes, associée à une activation de la voie mTORC1, et de Akt, effecteur de mTORC2. De plus, la surexpression de PLD atténue l'atrophie induite par la dexaméthasone. Ces résultats mettent en évidence un rôle hypertrophique et anti-atrophique de la PLD, qui pourrait s'exercer par stimulation de la voie mTOR. Nos résultats suggèrent que la PLD est susceptible de jouer un rôle clé dans le muscle squelettique, en agissant tant au niveau de la régénération du tissu qu'au niveau de la régulation de sa masse. / Phospholipase D (PLD) hydrolyzes phosphatidylcholine of cell membranes, releasing the lipid messenger phosphatidic acid. The ability of PLD to affect mTOR signaling pathway, a central actor in the control of muscle tissue, prompted us to study its role in this tissue. My thesis aims at investigating how PLD is involved in myogenic differentiation, and how it regulates muscle mass. We first showed that the mechanism by which PLD controls differentiation of L6 myoblasts involves the activation of the two mTOR complexes (mTORC1 and mTORC2). mTORC2 activates differentiation, probably via its effector PKCalpha, whereas mTORC1 represses differentiation via its effector S6K1, by inducing the phosphorylation of Rictor, a component of mTORC2, and the inhibition of this complex. Besides, we showed that extinction of PLD by RNA interference induces the atrophy of L6 myotubes, and decreases the phosphorylation of the mTORC1 effectors S6K1 and 4E-BP1. Conversely, overexpression of PLD using adenoviral vectors induces the hypertrophy of myotubes and the activation of both mTORC1 pathway and the mTORC2 effector Akt. Furthermore, PLD overexpression attenuates atrophy induced by dexamethasone. These results highlight a hypertrophic and anti-atrophic role of PLD, which could be achieved through stimulation of the mTOR pathway. Our results suggest that PLD is likely to play a key role in skeletal muscle homeostasis, by acting at both the tissue regeneration and mass regulation levels.
|
306 |
Exchange between ordered and disordered segments in CFTR modulates function at the expense of stability: A molecular pathway for misfolding of CFTRScholl, Daniel 16 October 2020 (has links) (PDF)
The genetic disease cystic fibrosis is the most common lethal genetic disease in Western countries. People born with cystic fibrosis suffer from many health issues including severe respiratory problems, inflammation and recurrent lung infections that can become fatal. The disease is caused by the loss of function of a protein called the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR is an chloride ion channel and, in healthy people, its activity assures correct water and salt transport across the cell membrane. Most cases of cystic fibrosis are caused by a genetic defect that leads to the deletion of phenylalanine 508 (F508del) in the amino acid sequence of the protein. The molecular mechanism by which F508del leads to loss of function of the CFTR channel is still poorly understood. The mutation is found in the first nucleotide binding domain (NBD1) and studies have shown that it causes misfolding of CFTR and subsequent degradation of the protein by the cellular quality control system. It is established that the mutation affects stability and dynamics of NBD1 but does not alter its structure significantly. This destabilizing effect of F508del can be compensated by specific mutations distributed over different regions of NBD1, leading to recovery of membrane expression of a functional channel. A surprising example involves the regulatory insertion (RI), a 32-residue long segment found in all CFTR orthologs but not in related channels or transporters. The RI is not resolved in crystal structures of NBD1 nor cryo-EM structures of CFTR and has been described as intrinsically disordered. Its functional role in CFTR is unknown. Removal of the RI increases the stability of the NBD1 domain and, in the context of F508del-CFTR, this deletion restores maturation, cell surface expression and activity of the mutant channel. We probed the effect of the RI on NBD1 structure, dynamics and allostery using X-ray crystallography, single molecule FRET and hydrogen-deuterium exchange. We discovered that the RI enables an alternative NBD1 fold which departs markedly from the canonical fold previously observed for this domain and the NBDs of other ABC transporters. The conformational equilibrium between these states is regulated by ATP binding and affected by disease-associated conditions. Aside from clear alterations to structure and dynamics of NBD1, the RI also affects allostery, i.e. how NBD1 structure and dynamics respond to perturbations such as ligand binding. Finally, we show that the RI-enabled conformation is adopted in full-length CFTR and associated with increased channel activity in electrophysiological assays. We then identify an allosteric network that links the structural hotspots of the conformational changes to F508 and its surroundings. Lastly, we argue that these conformational changes lead to unfolding of NBD1 in the context of F508del, providing a new model for the molecular mechanism leading to pathogenesis. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
307 |
Study of trm112, a unique methyltransferase activator at the interface between ribosome synthesis and function / Etude de trm112, un activateur unique de methyltransferases a l'interface entre la synthese du ribosome et sa fonction.Tran van, Nhan 21 September 2017 (has links)
La traduction des ARNm est un processus très complexe qui en plus des nombreux facteurs impliqués, nécessite également des étapes de maturation des protéines et ARN pour la production fidèle des protéines. Parmi ces évènements, des modifications post-transcriptionnelles et post-traductionnelles, dont la méthylation est la plus fréquente, sont trouvées dans tous les composants et principalement chez les eucaryotes. Le rôle des méthylations dans la traduction est parfaitement illustré par la protéine Trm112, qui est un activateur essentiel pour la fonction de 4 méthyltransférases (MTase) (Trm9, Trm11, Bud23 et Mtq2) qui modifient des facteurs impliqués dans la synthèse des protéines. Chez la levure, les complexes Trm9-Trm112 et Trm11-Trm112 catalysent la formation de mcm5U34 et m2G10, respectivement sur certains ARNts. Le complexe Bud23-Trm112 modifie l’ARNr 18S pour former la m7G1575 tandis que le complexe Mtq2-Trm112 modifie le facteur de terminaison de classe I eRF1sur la chaine latérale de la glutamine du motif GGQ. Jusqu’à présent, des études structurales et fonctionnelles du réseau d’interaction de la protéine Trm112 se sont uniquement focalisées chez les eucaryotes alors que cette protéine est trouvée dans les 3 domaines du vivant. Dans cette étude, des expériences de co-immunoprécipitations couplées à de la LC-MS/MS ont permis d’étudier le réseau d’interaction de la protéine Trm112 chez l’archée H. volcanii. Celui-ci s’avère être composé de plus de MTase que chez les eucaryotes. Pour la première fois, la structure cristallographique d’un complexe Trm112-MTase d’archée a été déterminée, révélant un mode d’interaction conservé par rapport aux complexes eucaryotes malgré une très faible identité de séquence. De façon très intéressante, un des partenaires de Trm112 chez H. volcanii est orthologue d’une protéine humaine dont nous avons pu démontré qu’elle est une nouveau partenaire de la protéine TRMT112 humaine / Methylation is a widely distributed modification found in a variety of substrates involved in different steps of eukaryotic protein translation. Methylation reactions are catalyzed by enzymes called methyltransferases (MTases) generally using S-adenosyl-L- methionine (SAM or AdoMet) as the methyl donor. The effects of methylation on translation are perfectly illustrated by the Trm112 protein, which is an activating platform, essential for the function of four SAM-dependent MTases (Trm9, Trm11, Bud23 and Mtq2) modifying factors participated in protein synthesis. The Trm9-Trm112 and Trm11-Trm112 complexes methylate some tRNAs to form mcm5U34 and m2G10 respectively. The Bud23-Trm112 complex modifies 18S rRNA to form m7G1715 while the Mtq2-Trm112 complex methylates class I translation termination factor eRF1 at glutamine side chain of GGQ motif. Until now, the study of Trm112 network in eukaryotes has been quite clear structurally and functionally, however, little is known for corresponding proteins in Archaea.My PhD project aims to characterize the Trm112 network in archaea using Haloferax volcanii as a model organism and to decipher the mechanisms of substrate modification by Trm112-MTase complexes. This will help understanding the roles of these enzymes in protein synthesis from an evolutionary point of view.Towards this goal, I have generated several H. volcanii strains (Δtrm112, Δtrm112 Trm112-Flag, …). Co-immunoprecipitation of Trm112-Flag coupled to mass spectrometry allowed me identifying a significant number of methyltransferases (MTases), including putative orthologues of eukaryotic Trm112 partners, as potential interactors. I have next validated these new partners by biochemical approaches (co-purification, enzymatic assays, …) and determined the crystal structure for one Trm112-MTase complex. I have then convincing evidences that H. volcanii Trm12 has more MTase partners than the eukaryotic one. My work opens new routes towards the characterization of the role of Trm112 in archaea but has also led to the identification of a new MTase partner of the eukaryotic Trm112.
|
308 |
Interaction réciproque entre la palmitylation et la phosphorylation du récepteur β₂-adrénergiqueAdam, Lynda 12 1900 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal. / Le récepteur β₂-adrénergique est, parmi les récepteurs couplés aux protéines G, le mieux connu et, par conséquent, sert de prototype pour cette grande famille de récepteurs. Les différents mécanismes responsables de régulariser l'activité fonctionnelle du β₂AR sont relativement bien établis. Par exemple, à la suite d'une stimulation soutenue par un agoniste, la phosphorylation et la palmitylation du β₂AR sont modifiées. Cependant, contrairement à la phosphorylation, peu d'études se sont attardées à caractériser la palmitylation du récepteur. Cette modification consiste à l'ajout d'un acide gras saturé de seize atomes de carbone sur le résidu cystéine 341 du récepteur via une liaison thioester. Selon les résultats d'études antérieures, la palmitylation pourrait correspondre à un niveau supplémentaire de régulation de l'activité fonctionnelle du β₂AR. Le premier objectif vise donc à mieux comprendre la dynamique de palmitylation du récepteur. A la suite d'expériences de radiomarquages et de "pulse-chase", nous avons démontré que la palmitylation est une modification post-traductionnelle réversible durant la vie du récepteur indépendamment du système d'expression utilisé (cellules de mammifères et cellules d'insectes). De plus, l'état d'activation du récepteur influence grandement sa palmitylation. L'activation du récepteur par un agoniste aboutit à une augmentation nette de la vitesse de renouvellement du palmitate associé au récepteur. Dans ce contexte d'activation, nous avons mis en évidence par mutagenèse dirigée que le site de phosphorylation de la PKA (343RRSS3) dans la portion C-terminale du récepteur y joue un rôle déterminant. La phosphorylation de ce site de la PKA serait responsable, par une répulsion entre les charges négatives des phospholipides de la membrane plasmique, et celles des serines phosphorylées 345 et 346, de la diminution de la stabilité de l'ancrage du palmitate dans la membrane. Ultimement, la phosphorylation du récepteur favoriserait une forme non palmitylée du β₂AR. La déphosphorylation du β₂AR serait nécessaire pour permettre au récepteur d'être de nouveau palmitylé. Dans l'ensemble, ces résultats suggèrent que la palmitylation est régulée non seulement à la suite de l'activation du récepteur, mais également par l'état de phosphorylation du β₂AR. Cette interaction entre la phosphorylation et la palmitylation du récepteur a été observée en utilisant des cellules de mammifère et des cellules d'insectes (Sf9). Cependant, une différence existe entre ces deux systèmes en ce qui a trait à la vitesse de renouvellement du palmitate associé au récepteur. Dans les cellules de mammifères, la vitesse de renouvellement du palmitate associé au récepteur est beaucoup plus lente que celle observée dans les cellules d'insectes (Sf9). Pour cette raison, nous croyons que la palmitylation pourrait avoir d'autres fonctions. Cependant, le ou les rôles pouvant être rattachés à cette modification demeurent à être déterminés. Nous avons également démontré que la palmitylation du β₂AR pouvait être régulé indépendamment de l'activation du récepteur. Nous avons mis en évidence le fait que e monoxyde d'azote exerce une modulation sur l'état de palmitylation du β₂AR. Les résultats de cette étude ont démontré que la présence de monoxyde d'azote diminue l'incorporation du palmitate tritié au niveau du récepteur activé ou pas par un agoniste tel que l'isoprotérénol. Cet effet du monoxyde d'azote est accompagné du découplage fonctionnel du récepteur avec la protéine Gas. Selon nos résultats, le monoxyde d'azote module directement la voie β₂-adrénergique en régulant l'état de palmitylation du β₂AR.
|
309 |
Phosphate homeostasis and transport in relation with the liver microsomal glucose-6-phosphatase systemXie, Wensheng 07 1900 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal. / La production hépatique de glucose dérive du glucose-6-phosphate (G6P) produit par la glycogénolyse et la néoglucogénèse et son hydrolyse subséquente par la glucose-6-phosphatase (G6Pase). C'est pourquoi la G6Pase joue un rôle crucial dans le maintien de la glycémie. La G6Pase est un système enzymatique à plusieurs composantes, situé dans le réticulum endoplasmique (RE) et est exprimé dans les deux organes néoglucogéniques, foie et rein, ainsi que dans l'intestin. Jusqu'à maintenant, deux composantes du système ont été clonées, l'unité catalytique qui est une protéine de 36 kDa (p36) et un transporteur putatif de G6P de masse moléculaire de 46 kDa (p46). Depuis le clonage du gène et de l' ADNc de p36, la régulation de l'expression de p36 a été étudiée en détail. Des effecteurs positifs qui augmentent l' ARNm de p36 comprennent le glucose, l' AMP cyclique, les glucocorticoïdes et les acides gras, tandis que l'insuline diminue l'abondance de l' ARNm de p36. Le glucose, l' AMP cyclique et les glucocorticoïdes ont également un effet positif sur l' ARN m de p46, tandis que l'insuline contrecarre ces effets. Deux modèles ont été proposés pour expliquer le mécanisme fonctionnel du système G6Pase : le modèle de transport du substrat et le modèle conformationnel. Le premier propose que la G6Pase est un système à plusieurs composantes, comprenant une unité catalytique dont le site actif est orienté vers la lumière du RE, un transporteur de G6P appelé Tl, un transporteur de phosphate inorganique (Pi) appelé T2 et un transporteur de glucose appelé T3. Tl serait l'étape limitante de la conversion de G6P en glucose et Pi. Il a été proposé que des mutations dans les gènes de ces quatres composantes causent des glycogènoses de type la, lb, le, and Id, respectivement. Le modèle conformationnel propose que la G6Pase est une protéine formant un canal dans la membrane du RE, où le site actif est enfoui dans une poche hydrophile. Le substrat a accès au site actif via le canal. Le processus hydrolytique a lieu dans la poche hydrophile et les produits sont délivrés dans la lumière et exportés dans le cytoplasme par l'intermédiaire du canal. Les cinétiques rapides d'hydrolyse du G6P indiquent une transition hystérétique dans le processus catalytique qui réduit la vitesse de la réaction au profit d'une spécifité accrue pour le G6P.
Le phosphate inorganique (Pi) est une composante fondamentale de l'organisme par son implication dans de nombreuses fonctions physiologiques. L'homéostasie du Pi est règlée au niveau du rein par sa réabsorption par un co-transporteur de sodium et de phosphate (NaPi), essentiellement }'isoforme NaPi-2. Le contenu en Pi dans la diète, qui est important pour le maintien de la phosphatémie normale; affecte l'expression de la NaPi-2, de l'hormone parathyroïdienne, du Pi et du calcium sérique. L'hypophosphatémie liée au chromosome X est causée par une mutation dans le gène PHEX (pour : Phosphate-regulating gene with Homologies to Endopeptidase located on the X chromosome).
Des travaux établissant que des perturbations dans l'homéostasie du phosphate pouvaient causer une intolérance au glucose et une résistance à l'insuline suggèrent une association entre l'homéostasie du glucose et du phosphate. La nature même de cette association est néanmoins encore inconnue. Nous avons donc investigué le métabolisme du glucose hépatique lors d'une diète déficiente en phosphate ainsi que chez un modèle animal d'hypophosphatémie liée au chromosome X, la souris Hyp. Les résultats montrent que le phosphate plasmatique était diminué chez des rats nourris pendant 48h avec une diète déficiente en Pi (-Pi) comparés à une diète contrôle (+Pi). Dans le groupe (-Pi), l'activité de la G6Pase hépatique était augmentée lorsque mesurée dans des microsomes intacts ou perméabilisés au moyen de détergent, à des concentrations de substrat physiologiques ou saturantes. Cette activité accrue était due à une stimulation de l'expression de l'unité catalytique, comme en témoigne l'augmentation de l'abondance de l' ARN m et de l'immunoréactivité de p36. L' ARNm de p46 était également augmentée dans le groupe (-Pi), mais sans changement dans la quantité de protéine. Nos études subséquentes montrèrent que dans le foie des animaux du groupe (-Pi), la pyruvate kinase était inactivée et le phosphoenolpyruvate augmenté, et que le fiuctose-2,6- bisphosphate, un inhibiteur de la néoglucogénèse, était réduit de moitié. L'activité de la glucokinase n'était pas modifiée et celle de la phosphoenolpyruvate kinase était marginalement augmentée par la diète (-Pi), L'ensemble de ces résultats peuvent s'expliquer par l'augmentation de la concentration de l' AMP cyclique observée dans le foie des rats nourris avec la diète (-Pï). Ces résultats suggèrent que la néoglucogénèse hépatique pourrait être stimulée dans des conditions d'hypophosphatémie et qu'une production accrue de glucose pourrait contribuer à une altération du métabolisme du glucose. Cette possibilité est renforcée par l'observation que la glycémie des rats nourris avec la diète (-Pi) était nettement augmentée, tandis que la concentration de l'insuline plasmatique était diminuée. Un test de tolérance intravéneuse au glucose n'a pas permis d'observer de différence au niveau de la normalisation de la glycémie, mais a cependant indiqué une légère intolérance au glucose dans la mesure ou le pic de glucose atteint après le test était plus élevé dans le groupe (-Pi). Par ailleurs, la production endogène de glucose était nettement moins inhibée après un bolus de glucose au cours du test de tolérance intravéneuse au glucose.
Afin d'élucider d'avantage la relation entre homéostasie du glucose et du :?i, le système G6Pase de foie et de rein furent examinés chez la souris Hyp. Les résultats montrent que l'activité de la G6Pase était augmentée dans ces organes des souris Hyp, semblablement à l'augmentation observée chez les rats nourris avec la diète (Pi). Cette activité accrue de la G6Pase chez la souris Hyp s'explique par une plus grande quantité d' ARNm et de protéine p36, aussi bien dans le foie que dans le rein. Contrairement au modèle diététique d'hypophosphatémie, chez la souris Hyp l'abondance de l' ARNm et l'immunoréactivité du p46 hépatique et rénal sont nettement diminués.
Globalement, l'hypophosphatémie résultant soit d'une carence alimentaire ou due à un défaut génétique a pour effet d'augmenter de façon consistante l'activité de la G6Pase, elle-même causée par une stimulation de l'expression de son unité catalytique, p36. L'expression de p46 est différemment règlée par la diète déficiente en Pi ou dans le modèle génétique, indicant que d'autres facteurs que l'hypophosphatémie affectent ce gène dans ces conditions. Il apparaît que la régulation de l'expression de p3 6 et de p46 est distincte.
Bien que le système G6Pase a été étudié depuis vo1c1 cinquante ans, son organisation et son mécanisme fonctionnel restent à être définis. Les propriétés cinétiques de transport du substrat, le G6P, et des produits, le glucose et le Pï, ne sont pas encore élucidés. Ces propriétés ont été investiguées au moyen d'un appareil à collection et filtration rapide (FSRF A). Le transport microsomal du Pi montre des valeurs identiques de T v. à différentes concentrations de KH2P04. Le HgCh et des inhibiteurs potentiels de la G6Pase n'affectent pas les propriétés cinétiques du transport de Pi. On n'a également pas trouvé d'échange accéléré de Pi ou de saturation du transport de celui-ci. Ces résultats ne sont pas compatibles avec l'existence d'un transporteur spécifique pour le Pi dans la membrane du RE. Des conclusions similaires ont été tirées d'études du transport microsomal du glucose.
L'accumulation intramicrosomale de radioactivité à partir de [U-14C]G6P ou de [32P]G6P correspond à des paramètres cinétiques différents, indicant que les substances accumulées dans les microsomes à partir de G6P sont les produits de la réaction de la G6Pase plutôt que le substrat. Cette observation suggère que l'étape de transport du G6P, si tant est qu'elle existe, n'est pas l'étape limitante au cours de la conversion du G6P en glucose et Pï, Les paramètres cinétiques d'accumulation de radioactivité à partir de [32P]G6P et les effets des inhibiteurs de la G6Pase démontrent que cette accumulation est étroitement couplée à l'activité hydrolytique de la G6Pase. De plus, nous n'avons pas observé d'échange de transport entre le G6P et le Pi ou le glucose, en accord avec l'absence présumée de transporteur spécifique pour le Pi ou le glucose. Globalement, ces données sont compatibles avec le modèle conformationnel de la G6Pase. Une nouvelle version de ce modèle, intégrant les résultats concernant le transport de Pï et de glucose, propose qu'un pore dans la membrane du RE puisse remplir la fonction d'influx/efllux des produits de la G6Pase. / Glucose-6-phosphatase (G6Pase), a multicomponent enzyme, plays a crucial role in glucose metabolism by hydrolyzing glucose-6-phosphate (G6P) into glucose and inorganic phosphate (Pi). G6Pase is located in the endoplasmic reticulum membrane and highly expressed in liver and kidneys. Two components of G6Pase have been cloned, the catalytic subunit (p36) and the putative G6P translocase (p46). Despite the great progress in G6Pase field, the hydrolytic mechanism of G6Pase is still in debate. Meanwhile, evidence also indicates that Pi deficiency is related to impaired glucose metabolism with an unclear mechanism. In this thesis, the effects of Pi deficiency on G6Pase and other glucoregulatory factors were investigated. Meanwhile, the hydrolytic mechanism of G6Pase was also studied in terms of its transport properties.
Results showed that compared to the rats fed with a control diet ( +Pi), in the rats fed with a phosphate deficient diet (-Pi) for 48h, plasma phosphate concentration was decreased. Liver G6Pase was upregulated, gluconeogenesis key steps ;vere stimulated, liver glycogen content was decreased and plasma glucose concentration was increased in the fed (-Pi) group. These changes could be accounted for by increased liver cAMP content and decreased plasma insulin concentration in the fed (-Pi) group. During an intravenous glucose tolerance test, although similar glucose fall rates and insulin responses were observed in overnight fasted (+Pi) and (-Pi) group, a tendency to hyperglycemia and less suppressed endogenous glucose production were obtained in the (-Pi) group. Ali of these results demonstrated that under the phosphate deficient condition, G6Pase was upregulated and glucose production was enhanced. The enhanced glucose production, potentially caused by the altered insulin/glucagon ratio, may contribute to the impaired glucose metabolism.
To further elucidate the relationship between glucose homeostasis and phosphate homeostasis, liver and kidney G6Pase system were investigated in X-linked hypophosphatemic mice, Hyp mice. Results showed G6Pase activity was increased in Hyp mouse liver and kidney. Consistently, the protein amount and mRNA abundance of the catalytic subunit, p36, were increased in Hyp mouse liver and kidney. In contrast, the mRNA abundance and protein amount of p46 were decreased in Hyp mouse liver and kidney. These results further dernonstrated that G6Pase activity was stimulated by Pi deficiency. The increased G6pase activity may enhance glucose production, probably contributing to impaired glucose metabolisrn.
The hydrolytic mechanism of G6Pase was investigated via transport studies. Inorganic phosphate (KH2P04) transport across rnicrosornes showed identical T 112 values around 23 s at different KH2P04 concentrations, which were unaffected by potential inhibitors of G6Pase. Neither accelerated exchanging transport nor saturable effect was observed in this process. These results supported no specific inorganic phosphate transporter in the ER membrane. Similar phenomena were observed for the glucose transport process, which was characterized with T 112 values of 40 s. Tracer equilibration during [U-14C]- and [32P]G6P hydrolysis proceeded with T 112 values of 4 7 and 21 s, respectively. Steady state levels of tracer accumulation from [U-14C]and [32P]G6P were also different frorn each other and had a similar ratio to that of their T 112 values. This result dernonstrated that the accumulated radiotracer was the product, Pi or glucose, rather than the substrate G6P. Effects of unlabelled G6P and inhibitors on [32P]G6P uptake dernonstrated that G6P uptake and hydrolysis were tightly coupled processes. Moreover, no exchanging transport between G6P and inorganic phosphate/glucose was observed. These results are not compatible with the substrate-transport rnodel of G6Pase. Based on these data, a new combinedconformational model is proposed to explain the G6Pase system. In this model, G6P transport/hydrolysis are tightly coupled processes whereas glucose and phosphate share with water and a variety of other organic and inorganic solutes a common porelike structure accounting for their transport through the ER membrane. The p46 protein rnay be more like a G6P sensor than a G6P transporter. The binding of G6P to p46 may affect the conformation of p46 and p36 via their coupling interaction. The conformational change rnay account for the specificity and latency of G6Pase.
|
310 |
Regulation of the expression of the two components of liver glucose-6-phosphataseLi, Yazhou 07 1900 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal. / La glucose-6-phosphatase (G6Pase) catalyse l'hydrolyse du glucose-6- phosphate (G6P), qui est l'étape terminale aussi bien de la glycogénolyse que de la néoglucogénèse. La localisation dans la membrane du réticulum endoplasmique de la G6Pase est suggérée sur des bases biochimiques et génétiques et cette enzyme est constituée de plusieurs composantes. À ce jour, deux composantes du système G6Pase ont été clonées, une sous-unité catalytique de masse moléculaire 36 kDa (p36) et un transporteur putatif de G6P de 46 kDa (p46). Des études topologiques indiquent que p36 et p46 sont très hydrophobiques, avec 9 et 10 domaines transmembranaires, respectivement. Deux modèles différents ont été proposés pour décrire le système complexe de la G6Pase, nommés le modèle de transport du substrat et le modèle conformationnel. La distribution tissulaire de p36 est essentiellement dans les organes néoglucogéniques comme le foie, le cortex rénal et l'intestin grêle, tandis que l'expression de p46 est plus étendue, étant présente dans la majorité des tissus et dans plusieurs lignées cellulaires. La glycogènose de type I (GSD-I) est une maladie autosomale récessive causée par une déficience en G6Pase, caractérisée par une hypoglycémie sévère et une accumulation excessive de glycogène hépatique. Des mutations dans le gène de p36 sont trouvées essentiellement chez les patients GSD-Ia, tandis que des mutations dans le gène de p46 expliquent la majorité des cas de GSD-Ib, le et Id, nouvellement qualifiés de "non a". Puisqu'une augmentation dans l'activité de la G6Pase est associée avec les deux types de diabète sucré et peut donc contribuer à l'augmentation de la production hépatique de glucose dans cette condition, p36 et p46 peuvent être considérés comme des gènes-candidats pour le diabète. La surexpression de p36 dans des hépatocytes et in vivo au moyen d'un adenovirus résulte en une augmentation de la néoglucogénèse et en une diminution du flux glycolytique et de la synthèse de glycogène, tandis que la surexpression de p36 dans les cellules d'insulinome INS-1 invalide la sécrétion d'insuline induite par le glucose.
Il est connu que l'activité de la G6Pase est augmentée dans le foie de rats à jeun ou diabétiques. Le clonage des gènes de la G6Pase (qui incluent maintenant les gènes de p36 et p46) et la disponibilité de sondes d' ADNc ont permis d'examiner si les changements d'activité de la G6Pase dans ces conditions était dûe à des altérations dans l'expression de ces gènes ou était la conséquence de modifications post-traductionnelles de l'enzyme. Il a été rapporté que dans les cellules FAO, le niveau d'ARNm de p36 était augmenté par I' AMP cylique et les glucocorticoïdes, tandis que l'insuline avait un effet dominant négatif de suppression de ce gène. Dans ces mêmes cellules, des concentrations élevées de glucose (25 mM) étaient associées avec une quantité accrue d' ARNm de p36 et cette observation fut ultérieurement confirmé dans des hépatocytes en culture primaire et in vivo. L'expression du gène de p36 est donc règlé par des facteurs nutritionels et hormonaux. La régulation du gène de p46 nouvellement cloné, qui joue un rôle essentiel dans la G6Pase, n'a pas encore été exploré. Dans notre travail nous avons caractérisé l'expression de p46 en parallèle avec p36, dans le diabète expérimental, la déficience alimentaire en Pi, divers traitements hormonaux et différentes concentrations de glucose. Chez les rats rendus diabétiques par traitement à la streptozocine, nous avons trouvé une activité élevée de la G6Pase associée avec une augmentation de l'abondance de l 'ARNm de p46 et une augmentation similaire de la protéine p46 dans le foie, le rein et l'intestin, outre la stimulation de l'expression du gène de p36 documenté auparavent.
Chez les rats nourris avec une diète déficiente en Pi, les niveaux relatifs d' ARNm de p36 et de p46 étaient augmentés ensemble dans le foie de concert avec une activité accrue de la G6Pase. Nous avons de plus étudié la régulation gènique de p36 et p46 dans les cellules HepG2, dont les concentrations de nutriments et d'hormones peuvent être aisément manipulés dans le milieu de culture. Nous avons trouvé que le glucose causait une augmentation dosedépendante dans l'expression des gènes de p36 aussi bien que de p46 au niveau de l 'ARNm et des protéines. Cependant, des études dose-réponse de différentes hormones et agents affectant l'expression des gènes de p36 et p46 ont révélé des sensibilités différentes de ces deux composantes du système G6Pase. Nous montrons dans les cellules HepG2 qu'alors que l'insuline, à des concentrations physiologiques (0.01-10 nM), supprimait l 'ARNm de p36, celle de p46 n'était affectée que de 20-30% et réduite au plus à 50% avec 1 µM d'insuline. De plus, l'AMP cyclique, le glucagon, ainsi que la thapsigargine (un inhibiteur de la Ca2+-ATPase du RE) augmentaient l'ARNm de p36 aux concentrations 10-100 nM, sans affecter la transcription du gène de p46. Par contre, la dexamethasone (0.1-100 nM) augmentait similairement l'ARNm de p36 et de p46. Afin de caractériser ultérieurement l'impact métabolique d'une expression accrue de p46 et de comprendre la fonction de la protéine p46, nous avons surexprimé celle-ci au moyen d'un adenovirus recombinant dans des hépatocytes de rat en culture primaire. Les résultats montrent que la surexpression de p46 a pour conséquence d'induire l' ARNm de p36 et l'activité de la G6Pase. On observait également une diminution de la synthèse du glycogène et du flux glycolytique ainsi qu'une augmentation de la dégradation du glycogène. Puisque des mutations de p46 ont été trouvées chez des patients GSD-1 non a, qui ont par rapport aux patients GSD-1 a des symptômes additionnels comme une neutropénie et une dysfonction des neutrophiles et des monocytes, nous avons formulé l'hypothèse que p46 pourrait avoir d'autres fonctions que celle de contrôler p36, qui est absent des leucocytes. De plus, nous avons d'abord découvert dans une librairie d' ADNc de leucocytes humains et avons ensuite confirmé dans des échantillons sanguins la présence de quatre transcrits différents du gène de p46, dont trois ne sont pas présent dans le foie. Cette découverte supporte la possibilité que d'autres produits du gène de p46, possédant des fonctions distinctes, puissent être formés par épissage alternatif.
En conclusion, nos résultats indiquent: (1) que dans le diabète insulinoprive, l'hyperglycémie, la déficience en insuline et l'augmentation de l 'AMP cyclique due à des hormones contrerégulatrices non opposées peuvent contribuer de façon indépendante l'un de l'autre à une expression accrue des gènes de p36 et p46. La surexpression de p46 avec un adenovirus recombinant résulte en des changements métaboliques semblables à ceux d'une surexpression de p36, indicant que des dérégulations aussi bien de p36 que de p46 peuvent être impliquées dans l'activité accrue de la G6Pase, menant à une production hépatique de glucose plus forte qui peut exacerber l'hyperglycemie du diabète; (2) que la régulation hormonale distincte de p36 et p46 indique que celles qui affectent seulement p36 coïncide avec des modifications connues de la production hépatique de glucose, tandis que celles qui affectent p36 et p46 sont consistantes avec une stimulation de la synthèse de glycogène; (3) que p46 pourrait être une protéine multifonctionnelle avec des propriétés tissulaires spécifiques. Dans les tissus où p36 est présent, comme dans le foie, p46 pourrait founir le G6P nécessaire à son hydrolyse par p36. Dans d'autres tissus, qui ne possèdent pas p36, p46 a probablement d'autres fonctions qui sont déficientes dans les leucocytes des patients GSD-lb. / Glucose-6-phosphatase (G6Pase) plays an important role in glucose metabolism by catalyzing the terminal step of both glycogenolysis and gluconeogenesis. Although G6Pase is proposed to be a multifunctional and multicomponent system residing in the membrane of endoplasmic reticulum, until now neither the structure of its components nor the function of each protein has been totally understood. So far two components of the G6Pase system have been cloned, including the G6Pase catalytic subunit (p36) and the putative glucose-6-phosphate translocase (p46). Genetie deficiency of G6Pase leads to glycogen storage disease type-1 (GSD-1), while mutations in p36 and p46 genes account for GSD-Ia and most of GSD-1 non a respectively. Furthermore, diabetes mellitus is associated with increased G6Pase activity, which may contribute to the enhanced hepatic glucose production.
Previous studies have shown that p36 gene express10n 1s under nutritional and hormonal regulation. In this work, the gene regulation of newly cloned p46 was investigated and compared with that of p36 gene. We found that under the conditions like increased glucose concentration, dietary phosphate deprivation or streptozotocin-induced diabetes, p36 and p46 genes were similarly up-regulated. However, the sensitivities of these two genes to different hormones or reagents were found to be quite different as shown in HepG2 hepatoma cells. Insulin has dominant negative effects on bath p36 and p46 gene expression, but compared to p36, p46 gene has a much .lower sensitivity to insulin. Glucagon, cAMP and thapsigargin significantly increase p36 gene transcription but barely affect p46 gene, while glucocorticoids remarkably and sensitively induce bath genes. Based on the distinct hormonal regulation of p36 and p46 gene expression, their possible roles in glucose metabolism were proposed.
We explored in two ways to study the yet unclear p46 function: (1) On the one hand, in order to study the p46 function in hepatic G6Pase system, we perfonned p46 overexpression in hepatocytes via recombinant adenovirus mediated gene transfer, which resulted in induced p36 transcription and increased G6Pase activity. In addition, overexpression of p46 led to significant metabolic impacts in primary hepatocytes, including decreased glycogen synthesis, increased glycogen degradation and decreased glycolysis; (2) On the other hand, we studied p46 gene transcription in leucocytes, where p36 is absent, and identified four different p46 transcripts, three of which are not present in liver. We hypothesize that mutated p46 gene might be responsible for neutropenia and neutrophil dysfunctions seen in GSD-Ib and le; p46 may bear other functions in leucocytes by differential mRNA splicing. In conclusion, we characterized the gene regulation of newly cloned p46 gene, investigated effects of adenovirus mediated overexpression of p46 on glucose and glycogen metabolisms and discovered different transcripts of p46 gene in leucocytes.
Key works: glucose-6-phosphatase catalytic subunit; putative glucose-6- phosphate translocase; glucose; phosphate; hormones; gene regulation; overexpress10n.
|
Page generated in 0.0411 seconds