Spelling suggestions: "subject:"biochimique"" "subject:"biochimiques""
381 |
Développement de méthodes de préparations d’échantillons pour l’imagerie par spectrométrie de masse de tissus autres que mammaliensKranjec, Elizabeth-Ann 08 1900 (has links)
L’imagerie par spectrométrie de masse (MSI) est une technique en pleine expansion ayant déjà été utilisée afin d’évaluer la distribution spatiale d’une grande variété de biomolécules. La plupart des applications découlent généralement du domaine médical et le modèle imagé est souvent mammalien, soit la souris ou le rat. L’optimisation de préparations d’échantillons sur ces modèles a permis d’obtenir de l’information reproductible et de grande qualité dans diverses applications biologiques. Il est cependant important de pouvoir reproduire les différentes préparations sur des échantillons diversifiés, permettant ainsi d’utiliser la technique dans plusieurs domaines de recherches différents. Les travaux de recherches présentés dans ce mémoire décrivent l’optimisation de méthodes de préparations d’échantillons afin d’imager des protéines et des lipides à travers des sections tissulaires minces d’un échantillon animal non mammalien. L’échantillon à l’étude était le Spodoptera exigua, un lépidoptère, qui sous sa forme larvaire est bien connu une chenille ravageuse de plantation. L’optimisation d’une méthode permettant la découpe en section tissulaire mince de ce type d’échantillon sera d’abord présentée. Ensuite, l’optimisation d’une méthode de déposition de matrice par sublimation/recristallisation à des fins d’imagerie de protéines sera décrite. Les résultats obtenus ont permis d’obtenir des données de qualité quant à la distribution de différentes protéines à travers des sections de chenilles. De plus, l’optimisation d’une méthode de préparation d’échantillon par sublimation de la matrice sera décrite. Ainsi, l’évaluation de la distribution spatiale de quatre différentes classes de phospholipides à travers ces sections a été possible.Enfin, il est possible de conclure que la qualité des signaux obtenus pour l’imagerie des protéines et des lipides à partir de sections tissulaires minces de chenille est équivalente à celle normalement observée sur des tissus mammaliens. / Imaging mass spectrometry (IMS) is a technique in full expansion that has been used in a large range of studies to assess the spatial distribution of a wide range of biomolecules. Most of the applications ensuing from IMS studies correlate the molecular expression and the health status of a tissue in the medical biology field, using mammalian models such as mice or rats. Optimization of different sample preparation methods for these models has permitted high quality and reproducible information in numerous biological applications. However, it is important to be able to reproduce this level of sample preparation and the quality of resultant data on a wider range of samples. This will open the technology to several scientific fields. The research work presented in this thesis proposes sample preparation methods to image the distribution of proteins and lipids across a thin tissue section of a non-mammalian model. This model is a moth, the Spodoptera exigua, one of the best-know agricultural pest insects in it’s caterpillar form. Firstly, optimization of sample handling prior to cutting thin tissue sections will be presented. Then, optimization of a matrix deposition method using sublimation/recrystallization in order to image the proteins across the sample will be described. Also, a sublimation method for the detection and imaging of lipids is described. The imaging results showed the distribution of four different classes of phospholipids across thin sections of the caterpillar. Lastly, the quality of imaging data for proteins and phospholipids across caterpillar sections can be compared directly to the expected data quality obtained from mammalian tissue sections.
|
382 |
Etude structurale et fonctionnelle du sous-complexe Fap7-Rps14 impliqué dans la biogenèse du ribosome / Structural and functional studies of the sub-complex Fap7-Rps14 in ribosome biogenesisLoc'h, Jérôme 10 October 2013 (has links)
Plus de 200 facteurs pré-ribosomiques sont impliqués dans la maturation des ribosomes. La majorité de ces facteurs sont essentiels à la survie cellulaire, mais la fonction précise de la plupart d’entre eux demeure inconnue. Une des dernières étapes de maturation de la petite sous-unité du ribosome est le clivage du pré-ARNr 20S en ARNr 18S mature. Ce clivage est réalisé par l'endonucléase Nob1 et nécessite également la présence de la NTPase Fap7 ainsi que d’une pléthore d’autres facteurs pré-ribosomiques. La fonction de Fap7 est particulièrement intrigante, car l'homologue humain hCINAP possède une activité adénylate kinase, activité enzymatique qui n’est généralement pas liée à la biogenèse des particules ribonucléoprotéiques. En outre, la fonction de Fap7 est intimement liée à son interaction avec la protéine ribosomique Rps14. La partie C-terminale de Rps14 est essentielle pour le clivage au niveau du site D et est située à proximité de l’extrémité 3’ de l’ARNr 18S dans le ribosome mature. La suppression de cette protéine provoque le syndrome 5q qui est phénotypiquement proche de l’anémie de Diamond-Blackfan. Ces deux protéines interviennent également au niveau d’une voie de régulation de p53 qui est dérégulée dans de nombreux cancers. La combinaison d’études structurales par cristallographie aux rayons X, d’études enzymatiques sur des protéines recombinantes ainsi que des tests de maturation in vitro réalisés sur des pré-ribosomes purifiés, nous a permis de mieux appréhender la fonction de Fap7 au sein de la sous-unité pré-40S du ribosome. Nous avons également montré que l'interaction Fap7-Rps14 est impliquée dans un changement conformationnel majeur au cœur des pré-ribosomes et que cette réorganisation est nécessaire afin d'exposer le site D pour le clivage par l’endonucléase Nob1. / Over 200 pre-ribosomal factors involved in the maturation of ribosomes. Most of these factors are essential to cell survival, but the precise function of most of these factors remains elusive. One of the last steps of maturation of the small subunit of the ribosome is the cleavage of 20S pre-rRNA in 18S rRNA in the cytoplasm. This cleavage is carried out by the endonuclease Nob1 and also requires the presence of other factors such as the methyltransferase Dim1, and a plethora of NTPases including the Rio protein kinases, Prp43 and its cofactor Pfa1, the Ltv1 GTPase and the Fap7 NTPase. The function of Fap7 is especially intriguing since the human homologue bears Adenylate activity, an enzymatic activity not usually linked to ribonucleoprotein biogenesis. In addition, the function of Fap7 is intimately linked its interaction with the Rps14 ribosomal protein. The Rps14 C-terminal is essential of D site cleavage and is located in proximity to the 18S C-terminus in the mature ribosome. The deletion of this protein causes the 5q syndrome that is phenotypically close to Diamond Blackfan anemia. The link between the enzymatic activity of Fap7 and its role in ribosome biogenesis remains enigmatic. Using a combination of structural studies by X-ray crystallography, small angle X-ray scattering (SAXS) in solution, enzymatic studies on purified proteins, and in vitro D site cleavage reaction assays on purified pre-ribosomes, we were able to uncover the function of Fap7 within pre-40S ribosomes. We show that the Fap7/Rps14 interaction is involved in a major conformational change at the heart of the pre-ribosomes and that this structural rearrangement is necessary to expose the D-site for cleavage by the endonuclease Nob1.
|
383 |
Illuminating biomolécules : shedding light on the utility of labeling using transglutaminasesRachel, Natalie 04 1900 (has links)
Le développement des technologies de recombinaison en biologie moléculaire fut un point tournant pour les sciences biologiques. Depuis cette découverte, diverses avancées extraordinaires qui ont un impact direct sur les humains ont pu être accomplies dans les domaines de recherches qui découlent de cette technologie. L’étude des enzymes produites en utilisant cette technique est le fondement de leurs applications éventuellement accessibles. À cet effet, la biocatalyse est un sous-domaine de l’enzymologie en développement continuel. Les chimistes et ingénieurs utilisent les composantes de systèmes biologiques ou même des systèmes complets afin de complémenter ou remplacer des méthodologies existantes. Cette thèse étudie la famille d’enzymes transglutaminase (TGase) comme biocatalyseur afin d’explorer et d’étendre l’ubiquité et les innovations rendues possibles grâce aux enzymes.
Les TGases sont des enzymes versatiles. Leur homologue bactérien, la transglutaminase bactérienne (MTG), est couramment utilisé à l’échelle industrielle pour la transformation alimentaire. Depuis une dizaines d’années, de nombreux efforts ont été faits afin de trouver de nouvelles applications des TGases. En premier lieu, une revue des accomplissements, progrès et défis reliés au développement des TGases sera décrite.
Les TGases sont intrinsèquement des catalyseurs de la formation de lien isopeptidiques entre une glutamine et une lysine. Par ce fait, elles ont été initialement testées dans cette thèse pour la synthèse de peptides. Une forme de l’enzyme TGase de mammifères fut en mesure de générer les composés dipeptidiques Gly-Xaa et D-Ala-Gly avec une faible conversion.
La MTG possède plusieurs caractéristiques qui font de cette enzyme un candidat intéressant pour le développement de biotechnologies. Elle est stable, non dépendante d’un cofacteur et connait peu de compétition pour sa réaction catalytique inverse. La majeure partie de cette thèse porte exclusivement sur l’utilisation de la MTG. Nous avons développé et caractérisé une réaction chimio-enzymatique en un seul pot pour la conjugaison de peptides et protéines. La présence de glutathion en quantité suffisante permet de contourner l’incompatibilité de la MTG avec le cuivre et ouvre la porte à l’utilisation de la réaction de cycloaddition entre un alcyne et un azoture catalysée par le cuivre, afin d’effectuer le marquage fluorescent de protéines. L’utilisation d’autres méthodes de chimie « click » sans métaux fut aussi étudiée afin d’incorporer divers substrats protéiques. Le marquage de protéines avec la MTG fut investigué de manière combinatoire. Précisément, la ligation de Staudinger, la cycloaddition azoture-alcyne promue par la tension de cycle, ainsi que la ligation de tetrazine (TL) ont été testées. Différents niveaux de conversion ont été atteints, le plus prometteur étant celui obtenu avec la TL.
Une étude par cristallographie a été effectuée afin d’élucider comment les substrats contenant une glutamine interagissent avec la MTG. Une méthode de purification alternative de la MTG a été développée afin d’atteindre ce but. Une discussion sur les stratégies et défis est présentée.
Finalement, la conjugaison entre un système contenant la MTG comme biocatalyseur de marquage, le domaine B1 de la protéine G (GB1) comme substrat et d’un fluorophore contenant une amine comme sonde fut étudié. Comme deux des constituants de ce système sont des protéines, l’ingénierie d’enzyme peut être entreprise afin d’améliorer leurs propriétés. Une banque de 24 variantes de GB1 fut construite grâce à une approche semi-rationnelle afin d’investiguer quels facteurs sont déterminants pour la sélectivité de la MTG envers la glutamine. Chaque variante étudiée comportait une seule glutamine à une position variable afin d’évaluer l’impact des éléments de structure secondaire où se retrouve la glutamine. L’efficacité pour le marquage a pu être améliorée d’au moins un ordre de grandeur pour huit des substitutions étudiées. Comme chacune des structures secondaires fut marquée, il fut démontré que la MTG n’en préfère pas une en particulier. De plus, la réactivité de la MTG envers la variante I6Q-GB1 fut augmentée en créant des mutations dans son site actif. Ces résultats permettent de comprendre d’avantage la sélectivité de la MTG envers la glutamine, tout en démontrant le potentiel de cette enzyme à être modifiée afin d’être améliorée. / The development of recombinant molecular biology technologies was a turning point for the biological sciences, which has since evolved into dozens upon dozens of different subfields and contributed to extraordinary advances for humans. At the core of many of these advances are the enzymes produced by these techniques, with efforts to understand their form and function laying the groundwork for their application. One of these continuously advancing subfields rooted in enzymology is biocatalysis, in which chemists and engineers embrace biological components and systems to complement, or even replace, existing methodologies. This thesis seeks to further contribute to the advancement and ubiquity of enzymes to be incorporated into future innovations. To this end, transglutaminase (TGase) is the biocatalyst selected for study.
TGases are versatile enzymes, with the bacterial homolog, microbial transglutaminase (MTG) being readily used in industrial processes for years, particularly for food processing. An abundance of efforts seeking to apply TGases to other processes have been made within the last decade. We commence by reviewing the accomplishments, progress, and challenges to developing TGase towards new goals.
TGase naturally catalyzes the formation of isopeptide bonds utilizing a glutamine and lysine substrates, and one of its first unconventional applications we investigated was for peptide synthesis. We determined the ability and specificity of one form of TGase for various amino acid-derived substrates, observing the formation of Gly-Xaa and D-Ala-Gly dipeptide products, albeit at a low conversion.
MTG exhibits several characteristics that make it an appealing candidate for biotechnological development, such as its independence from a cofactor, little competition for its reverse catalytic reaction, and increased stability relative to mammalian TGases. Therefore, the remainder of this thesis pertains exclusively to MTG. We developed and extensively characterized a one-pot chemoenzymatic peptide and protein conjugation scheme. The presence of sufficient glutathione circumvents the incompatibility of the copper-catalyzed azide-alkyne cycloaddition with MTG owing to the presence of copper. We ultimately utilized this chemoenzymatic conjugation scheme for fluorescent protein labeling.
We continue to expand upon combinatorial methods to undertake protein labeling by investigating to what extent metal-free click chemistries can be utilized in combination with MTG. Specifically, the Staudinger ligation, strain-promoted azide-alkyne cycloaddition, and tetrazine ligation (TL) were assayed on protein substrates to reveal varying levels of effective conjugation, with the TL being the most promising of the three.
The details surrounding the manner in which MTG interacts with its glutamine-containing substrate remains unclear. To address this knowledge gap, we sought to pursue crystallography studies, which required the development a modified purification strategy. We discuss the strategies we investigated and the challenges surrounding such efforts.
Finally, we present a conjugation system consisting of MTG as the labeling biocatalyst, the B1 domain of Protein G (GB1) as a substrate, and a small-molecule amine belonging to a recently developed class of fluorophores as a probe. As two components of this system are proteins, enzyme engineering can be applied to further improve their properties. A semi-rational approach was used to generate a 24-member GB1 library to probe the structural determinants of MTG’s glutamine selectivity. Each variant contained a single glutamine at varying positions covering all secondary structure elements, and assayed for reactivity. Eight substitutions resulting in an increased labeling efficiency of at least an order of magnitude were distributed throughout all secondary structure elements, indicating that MTG does not favor one preferentially. In addition, introducing point mutations within MTG’s active site also resulted in increased reactivity towards variant I6Q-GB1. Our results contribute further to understanding the nature of MTG’s glutamine selectivity, while simultaneously demonstrating the potential enzyme engineering has to improve and adjust this system.
|
384 |
Determination of reference intervals in small size dogs for variables used in veterinary cardiology / Détermination d'intervalles de référence chez les chiens de petit format pour des variables d'utilité en cardiologie vétérinaireMisbach, Charlotte 24 February 2015 (has links)
La dégénérescence valvulaire mitrale (MVD) est la cardiopathie la plus fréquente chez le chien de petit format. Certaines variables écho-Doppler et sanguines sont incontournables dans son évaluation mais nécessitent d'être interprétées selon un intervalle de référence (IR) spécifique. L'objectif de ce travail a été de déterminer des IR pour 31 variables d'utilité clinique en cardiologie vétérinaire dans une population importante de chiens sains de petit format et selon les recommandations du Clinical and Laboratory Standard Institute. Les trois études réalisées permettent de conclure que l'élaboration d'IR spécifiques dans une sous-population canine est pertinente pour certaines variables. De plus, l'effet de certains facteurs comme le poids, l'âge et le sexe doivent être pris en compte si un intérêt clinique est identifié. / Degenerative mitral valve disease is the most common heart disease in small size dogs. Several echocardiographic, Doppler and blood variables are crucial in the assessment of the disease but need to be interpreted in the light of a specific reference interval (RI). The aim of this work was to determine RI for 31 variables of clinical interest in veterinary cardiology within a large population of healthy small size dogs by using the Clinical and Laboratory Standard Institute recommendations. The three studies performed here allowed to conclude that determination of specific RI in this canine sub-population is relevant. Moreover, the effect of covariates such as body-weight, age and gender should be taken into account only if a clinical interest is identified.
|
385 |
Function and regulation of coiled‐coil domains in intracellular membrane fusion / Fonction et régulation des domaines "coiled-coil" dans la fusion des membranes intracellulairesDaste, Frédéric 30 January 2015 (has links)
Les mécanismes moléculaires impliqués dans la fusion membranaire ont été amplement étudiés au cours des trente dernières années. Notre compréhension actuelle de ce phénomène est principalement basée sur des résultats obtenus par (1) le développement de modèles physiques décrivant la fusion des membranes biologiques, (2) l’étude mécanistique et structurale des protéines de fusion membranaire des virus à enveloppe et (3) l’étude des évènements de fusion intracellulaire médiés par les protéines SNARES dans les cellules eucaryotes. La découverte du complexe SNARE fut l’aboutissement de travaux interdisciplinaires qui ont exigés un large éventail de techniques tel que la génétique de la levure, l’électrophysiologie, la biologie moléculaire, la biochimie cellulaire, la biophysique expérimentale et l’imagerie. Tirant parti des paradigmes et techniques biophysiques qui ont émergés de ces études, nous avons examiné les fonctions et mécanismes de régulation des domaines « coiled-coil » dans les processus de fusion intracellulaire impliquant des protéines de la famille des Longin-SNAREs ou des Mitofusines, deux machineries protéiques de fusion dont le mode d’action exact reste encore peu clair. La conception exacte des mécanismes moléculaires de la fusion membranaire requiert la reconstitution in vitro des protéines de fusion dans un large spectre d’environnement membranaire avec des propriétés biophysiques définies et facilement modulables. Idéalement, ces systèmes membranaires devraient permettre à l’expérimentateur de contrôler la composition lipidique et protéique, ainsi que la topologie membranaire, afin de rendre compte de l’importante variabilité observée entre les différents compartiments de fusion cellulaire. La reconstitution dans des liposomes offre une incroyable flexibilité avec la possibilité de faire varier la plupart des paramètres clefs et de créer un environnement minimal dans lequel les facteurs solubles et/ou membranaires peuvent être ajoutés, seuls ou en combinaison, pour dévoiler leur rôle avec clarté. Nous avons mis au point des systèmes in vitro de reconstitution de protéines dans des plateformes membranaires artificielles pour nos deux systèmes d’études (les deux protéines Longin-SNAREs TI-VAMP et Sec 22b, ainsi que les domaines « coiled-coil » des Mitofusines) et nous avons réalisé des expériences biochimiques pour caractériser le mode d’action de ces protéines. L’objectif à long-terme de ce projet est de comparer les mécanismes moléculaires des machineries de fusion associés aux protéines SNAREs et Mitofusines, et ainsi de dévoiler des similitudes structurelles et fonctionnelles entre (1) leur protéines de fusion principales et (2) leur facteurs régulateurs. / The molecular mechanisms involved in membrane fusion have been extensively studied for the past thirty years. Our current understanding of this phenomenon is mainly based on results obtained by (i) the development of physical models describing the fusion of membranes, (ii) structural and mechanistic investigations on fusion proteins of enveloped viruses and (iii) studies of SNARE protein-mediated intracellular fusion events of eukaryotic cells. Discovery of the SNARE complex was the outcome of interdisciplinary works which involved a wide range of techniques including yeast genetics, electrophysiology, molecular biology, cell-free biochemistry, adhesion/fusion biophysics and imaging. Taking advantage of the paradigms and biophysical techniques that emerged from these studies, we investigated the function and regulation of coiled-coil domains in intracellular fusion processes involving Longin-SNAREs or Mitofusins, two fusion protein machineries whose exact mode of action still remains unclear. A comprehensive understanding of the molecular mechanisms of membrane fusion requires the in vitro reconstitution of fusion proteins into a wide variety of membrane environments with defined and tunable biophysical properties. Ideally, these membrane systems should allow the experimentalists to control the lipid and protein composition as well as the membrane topology, to account for the variability observed across cellular fusing compartments. Reconstitution into liposomes offers amazing flexibility with the capacity to vary most of these relevant parameters, and to create a minimal environment in which membrane and/or soluble factors can be added, one at a time or in combination, to reveal their role with clarity. We have set up the in vitro reconstitution of proteins into various artificial membrane platforms for both systems (the Longin-SNAREs TI-VAMP and Sec22b and the coiled-coil domains of Mitofusins) and performed biochemical assays to gain insight into how these proteins execute their functions. The long-term goal of this project is to compare the molecular mechanisms of SNARE and Mitofusin fusion machineries and thus reveal structural and functional similitudes between (i) their core fusion proteins, and (ii) their regulatory factors.
|
386 |
Staphylococcus aureus se met transitoirement en dormance pour utiliser les acides gras de l'hôte et échapper à une inhibition par un anti-FASII : quel signal active son réveil ? / Staphylococcus aureus undergoes transient dormancy and uses host fatty acids to bypass FASII inhibition : what's the wakeup signal?Kénanian, Gérald 13 September 2018 (has links)
Le traitement des infections dues aux bactéries multirésistantes aux antibiotiques est un défi médical majeur du 21ème siècle. Ce défi a incité la recherche de cibles ayant des fonctions essentielles pour le développement de nouveaux antibiotiques. Les enzymes de la voie FASII, responsables de la synthèse des acides gras (AG), sont considérées comme essentielles et de nombreux antibiotiques, appelés anti-FASII, ont été développés pour lutter contre des pathogènes du phylum des Firmicutes. Cependant, notre laboratoire a montré que plusieurs pathogènes contournent l’inhibition des anti-FASII par l’utilisation des AGs exogènes abondants chez l’hôte (sang, organes, aliments). Ce contournement compromet l’utilisation des anti-FASII en traitement. Le statut du pathogène majeur, Staphylococcus aureus, est néanmoins resté en débat. Il synthétise un AG non disponible chez l’hôte, et donc, d’après la littérature, ne pourrait pas être compensé. La question de cette thèse est de comprendre les mécanismes utilisés par S. aureus lui permettant de contourner les anti-FASII. Deux mécanismes sont mis en évidence: I- Des mutations à haute fréquence du gène fabD surviennent et permettent à la bactérie d’utiliser des AGs exogènes. Ce type de mutation favorise la disponibilité de la protéine ACP permettant l’utilisation des AGs exogènes. II- Une stratégie sans mutation décelable survient en présence de fluides hôtes tels que le sérum. Elle comprend une première étape de "dormance" d’environ 8 à 10 heures pendant laquelle des AGs sont incorporés. Durant cette adaptation les bactéries semblent bloquées dans la division cellulaire, et subissent des changements morphologiques. Cette étape est suivie par une reprise de croissance « normale » où S. aureus utilise librement des AGs exogènes et reste insensible aux anti-FASII. Dans nos conditions, une étude microscopique « time-lapse », a permis de visualiser qu’environ 3% de la population bactérienne adaptée aux anti-FASII émerge. Nos résultats pointent vers un mécanisme d’adaptation dans lequel le sérum diminuerait le stress bactérien et augmenterait ainsi la disponibilité de l’ACP et des AGs exogènes, facilitant leur utilisation pour la synthèse des phospholipides. Les AGs exogènes peuvent donc remplacer totalement les endogènes. Ce résultat va à l’encontre de l’hypothèse couramment acceptée qu’un AG endogène de S. aureus est conservé et essentiel. Nous avons poursuivi cette étude par des analyses protéomiques et par le criblage d’une banque de 2000 mutants de S. aureus en cherchant des loci impliqués dans l’adaptation aux anti-FASII. Des fonctions de la réponse au stress, la division cellulaire et le métabolisme des lipides semblent être impliqués dans cette adaptation. Pour conclure, cette étude a permis de clarifier les étapes impliquées dans la réponse adaptative de S. aureus aux anti-FASII. Même si nos résultats prouvent que S. aureus contourne les anti-FASII, une approche combinatoire pourrait être envisagée où l’anti-FASII serait couplé avec un deuxième inhibiteur qui bloquerait sa capacité à sortir de la dormance. / Treatment of infections caused by multidrug-resistant bacteria is a major medical challenge of the 21st century, which has stimulated the search for essential bacterial functions as potential antimicrobial drug targets. The fatty acid synthesis (FASII) pathway enzymes are considered essential, and numerous antibiotics called (anti-FASII), have been developed to eliminate pathogens of the Firmicutes phylum. However, our laboratory has shown that several pathogens bypass FASII inhibitors by incorporating exogenous fatty acids (FAs), which are abundant in the host (in blood, organs and foods). FASII bypass thus compromises the use of FASII-based antibiotics. The status of the major pathogen, Staphylococcus aureus, has remained in debate. S. aureus synthesizes an FA not produced by the host and according to the literature, is required and would not be available in the host. However, work in my lab showed that indeed bypasses FASII. The goal of my research project is to understand the mechanisms used by S. aureus to bypass FASII antibiotics. Two mechanisms are highlighted: I- High frequency mutations of the fabD gene allow S. aureus to use exogenous FAs; our study indicates that higher availability of ACP in these mutants facilitates FA utilization. II- A strategy without detectable mutation occurs in the presence of host fluids such as serum. It comprises a first "dormancy" step of about 8 to 10 hours, followed by outgrowth; FAs are incorporated throughout these steps. The latency phase appears to be due to a division block, during which cells undergo morphological changes. During "normal" growth recovery, S. aureus freely uses exogenous FAs and remains insensitive to anti-FASII. Using « time-lapse » microscopic study, we showed in our test conditions that about 3% of the bacterial population adapted to FASII antibiotics. Ours results point to an adaptation mechanism in which serum decreases bacterial stress, leading to increased availability of ACP and exogenous FAs. These substrates can then be used for phospholipid synthesis. These results resolve the debate by showing that S. aureus can replace endogenous FAs with exogenous FAs when FASII is blocked. Contrary to current dogma, FASII is not essential in S. aureus. To identify the loci involved in adaptation to anti-FASII, we performed proteomic analyses and also screened a S. aureus mutant library. Functions of stress response, cell division, and lipid metabolism appear to be involved in this adaptation. To conclude, this study clarified the steps leading to S. aureus adaptation to FASII antibiotics. Although our results show that S. aureus bypasses anti-FASII, a combinatorial approach could be considered in which FASII antibiotics could be coupled to a second inhibitor that would prevent exit from the dormancy.
|
387 |
The Paradigm of Self-compartmentalized M42 Aminopeptidases: Insight into Their Oligomerization, Substrate Specificities, and Physiological FunctionDutoit, Raphaël 25 November 2020 (has links) (PDF)
M42 aminopeptidases are dinuclear enzymes widely found in prokaryotes but completely absent from eukaryotes. They have been proposed to hydrolyze peptides downstream the proteasome or other related proteolytic complexes. Their description relies mainly on the pioneering work on four M42 aminopeptidases from Pyrococcus horikoshii. Their quaternary structure consists of twelve subunits adopting a tetrahedral-shaped structure. Such a spatial organization allows the compartmentalization of the active sites which are only accessible to unfolded peptides. The dodecamer assembly results from the self-association of dimers under the control of the metal ion cofactors. Both oligomers have been shown to co-exist in vivo and heterododecamers with broadened substrate specificity may even occur. Yet, the molecular determinants behind the dodecamer assembly remain unknown due the lack of a high-resolution structure of a stable dimer. In addition, the bacterial M42 aminopeptidases are still ill-described due to the paucity of structural studies. This work focuses mainly on the characterization of TmPep1050, an M42 aminopeptidase from Thermotoga maritima. As expected, TmPep1050 adopts the genuine tetrahedral-shaped structure with twelve subunits. It also displays a leucyl-aminopeptidase activity requiring Co2+ as a cofactor. In addition to its catalytic function, Co2+ has a role in the enzyme thermostability and oligomerization. The absence of Co2+ provokes the disassembly of active TmPep1050 dodecamers into inactive dimers. The process, however, is reversible since Co2+ triggers the self-association of dimers into dodecamers, as shown by native MS. The main achievement of this work is the determination of the first high-resolution structure of a dimer, allowing to better understand the dimer-dodecamer transition. Several structural motifs involved in oligomerization are displaced or highly flexible in the TmPep1050 dimer structure. Furthermore, a loop bringing two catalytic relevant residues is displaced outside the catalytic site. These residues are the catalytic base and a ligand involved in the Co2+ binding at the M1 site. The metal ion binding sites have been further investigated to define how they influence the oligomerization of TmPep1050. A mutational study shows that the M1 site strictly controls the dodecamer formation while the M2 site contributes only partly to it. A strictly conserved aspartate residue of the M2 site second shell also plays an important structural role in maintaining the active site integrity. Indeed, its substitution prevents the formation of dodecamer probably due to the lack of stabilization of the active site loop. The characterization of TmPep1050 supports that bacterial M42 aminopeptidases probably share the quaternary structures and dodecamer assembly with their archaeal counterparts. The dimer structure highlights several structural modifications occurring in the dimer-dodecamer transition. Yet, based on current knowledge, no general rules can be drawn for the role of the M1 and M2 sites in oligomerization. Besides, the physiological function of the M42 aminopeptidases is under-examined albeit the proposed link to the proteasome. In this work, this has been investigated using the Escherichia coli M42 aminopeptidases as a model. Yet, no phenotype has been associated to the deletion of their coding genes. Preliminary results have shown that the three enzymes (i) display a redundant substrate specificity, (ii) could be localized partly to the membrane, and (iii) form heterocomplexes. Further experiments are still required to crack the function of these M42 aminopeptidases. / Option Biologie moléculaire du Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
388 |
Synthèse et étude de nouveaux complexes de ruthéniumII à base de ligands polyazaaromatiques étendus en vue d'applications dans le domaine de l'opte-électroniqueTroian Gautier, Ludovic 12 December 2014 (has links)
Les complexes de métaux de transition, et plus particulièrement de ruthéniumII, ont connu un essor formidable depuis le milieu des années 1950 avec la découverte du complexe [Ru(bpy)3]2+. Depuis lors, de nombreuses recherches et découvertes ont permis de mettre au point un schéma photophysique prototypique pour les complexes de ruthéniumII comportant des ligands polypyridiniques. En variant la nature des ligands complexés à ce centre métallique, il a été possible de faire varier les propriétés photophysiques, photochimiques et électrochimiques des complexes résultants. Toutes ces modifications ont permis de mettre au point des complexes de ruthéniumII qui possèdent des applications dans des domaines variés. Ils sont par exemple utilisés dans le domaine de la photo-conversion d’énergie solaire ou dans le domaine de la photo-catalyse, permettant notamment de scinder l’eau en oxygène, ou de produire du dihydrogène au départ de protons. Ces complexes de ruthéniumII sont également utilisés dans le domaine biologique où ils peuvent interagir avec l’ADN via de nombreux processus. Les recherches au laboratoire de chimie organique et photochimie de l’Université libre de Bruxelles ont été concentrées sur le développement de ligands polyazaaromatiques qui possèdent un caractère π-accepteur prononcé. L’utilisation de tels ligands permet d’accéder à des complexes de ruthéniumII dont le caractère photo-oxydant est davantage prononcé que celui de leurs analogues de type [Ru(bpy)3]2+. Ce caractère photo-oxydant permet, dans le cadre d’applications biologique, d’induire la formation d’un photo-adduit résultant d’un transfert d’électron entre la guanine, base la plus réductrice de l’ADN, et le complexe de ruthéniumII. <p>Les ligands π-accepteurs permettent également de diriger et de localiser le transfert d’électron à l’état excité. Lorsque le complexe absorbe un rayonnement lumineux de bonne énergie, un électron peut être transféré du centre de ruthéniumII vers un des ligands ancillaires. Ce transfert d’électron aura lieu vers le ligand qui est le plus avide en électrons. Ce phénomène trouve des applications directes en photo-conversion d’énergie solaire. En effet, afin de convertir de l’énergie solaire, il est important d’absorber le rayonnement lumineux, mais également de pouvoir transférer cette énergie en un lieu donné. L’utilisation de ligands avides en électrons permet donc de diriger cette énergie en un lieu précis. <p>Dans le cadre de cette thèse de doctorat, nous nous sommes focalisés sur la synthèse de nouveaux ligands polyazaaromatiques qui devraient conférer des propriétés inédites aux complexes résultants. La première partie de cette thèse de doctorat a donc consisté à synthétiser des ligands polyazaaromatiques possédant un plan aromatique étendu. Nous avons mis au point une voie de synthèse pour obtenir des ligands tels que la 1,4,5,8-tétraazaphénanthrène-9,10-dione, précurseur du ligand 1,4,5,8-tétraazaphénanthrèno[9,10-b]1,4,5,8,9,12-hexaazatriphénylène (TAPHAT). Au cours de la synthèse de la 1,4,5,8-tétraazaphénanthrène-9,10-dione, nous avons également pu mettre au point une nouvelle méthode d’oxydation de noyaux de type quinoxaline à l’aide de dérivé d’iode hypervalent. Une fois la synthèse du ligand TAPHAT et des différents précurseurs effectuée, nous avons pu procéder à la synthèse des complexes de ruthéniumII. Le ligand TAPHAT, étant fortement insoluble et possédant quatre sites de chélation, nous avons décidé de procéder à la synthèse de complexes précurseurs pour préparer des complexes porteurs de ce ligand. Nous avons dès lors tenté d’obtenir les complexes précurseurs [Ru(TAP)2(diNH2TAP)]2+ et [Ru(TAP)2(tapdione)]2+. La synthèse de ces précurseurs a présenté de nombreux problèmes de chélation, donnant lieu cependant à des complexes très intéressants. Face à ces problèmes, nous nous sommes donc uniquement focalisés sur la synthèse du [Ru(TAP)2(diNH2TAP)]2+. Ce complexe précurseur a ensuite permis d’accéder à des complexes tels que le [Ru(TAP)2(HATPHE)]2+. Les complexes à base du ligand 9,10-diamino-1,4,5,8-tétraazaphénanthrène, à savoir le [Ru(TAP)2(diNH2TAP)]2+ et le [Ru(phen)2(diNH2TAP)]2+ ont ensuite été utilisés pour accéder aux complexes mono- et binucléaires symétriques du TAPHAT. Nous avons ensuite étudié les complexes à base du ligand PHEHAT ainsi que ceux à base du ligand TAPHAT et comparé leurs propriétés photophysiques, photochimiques et électrochimiques. <p>En plus de ces complexes à base de ligands PHEHAT et TAPHAT, nous avons également eu l’occasion de synthétiser des ligands analogues au ligand DPPZ. Nous avons synthétisé deux ligands plus étendus que le DPPZ, à savoir le DPQQX, dont la synthèse avait déjà été rapportée dans la littérature, et le PDPPZ. Bien que les complexes à base du ligand PDPPZ n’aient pas pu être purifiés au cours de cette thèse, nous avons tout de même pu obtenir les complexes [Ru(TAP)2(DPQQX)]2+ et [Ru(phen)2(DPQQX)]2+. Les études photophysiques, photochimique et électrochimiques ont permis de mettre en évidence de nombreuses propriétés intéressantes. De plus, des études poussées en résonance magnétique nucléaire 1H ainsi qu’en dichroïsme circulaire ont permis de montrer un processus d’auto-assemblage en solution. <p>Finalement, en plus de la synthèse de ligands polyazaaromatiques et de leurs complexes de ruthéniumII, nous avons également exploité la technique d’absorption transitoire dans le cadre d’une collaboration avec le laboratoire de résonance magnétique nucléaire. Cet axe de recherche s’est articulé autour de l’utilisation de deux complexes de ruthéniumII à savoir le [Ru(TAP)3]2+ et le [Ru(TAP)2(HAT)]2+. Ces complexes sont capables, sous illumination, de réaliser un transfert d’électron avec un réducteur. Ces processus de transfert d’électron photo-induit entre des réducteurs tels que la GMP, la N-acétyl-tyrosine, l’hydroquinone et les deux complexes de ruthéniumII ont été étudiés par les membres du laboratoire de résonance magnétique nucléaire à l’aide d’une technique dite Photo-Chemically Induced Dynamic Nuclear Polarization (Photo-CIDNP). Notre contribution a été d’investiguer les paramètres de quenching entre ces complexes et les différents réducteurs à l’aide de techniques classiques telles que la détermination de constantes de quenching via des analyses de type Stern-Volmer ainsi qu’à l’aide de techniques plus pointues telles que la photolyse éclair laser. <p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
389 |
Synthèse et étude des propriétés photophysiques de complexes de Ru(II) dérivés de ligands 1,2,3-triazole et de ligands calix[4 et 6]aréniques: utilisation de calix[4]tétradiazoniums pour la modification de surfacesMattiuzzi, Alice 09 March 2012 (has links)
Notre recherche se divise en deux parties distinctes. La première est issue d’une collaboration avec le Laboratoire de Chimie Organique et Photochimie de l’ULB des Pr. A. Kirsch-De Mesmaeker et C. Moucheron. Les travaux de ce groupe consistent à utiliser des complexes de Ru(II) polyazaaromatiques comme drogues photoactivables ou comme agents de diagnostic dans des systèmes biologiques. Cependant à cause de leur grande hydrophilie, ces complexes de Ru(II) ne peuvent pas pénétrer les membranes cellulaires, ce qui complique leur utilisation comme drogues photoactivables. <p>Afin d’améliorer cette pénétration cellulaire, deux stratégies ont été développées dans le cadre de cette collaboration. La première consistait en la synthèse et l’étude de deux nouveaux complexes de Ru(II) possédant des N,N-ligands facilement fonctionnalisables :[Ru(TAP)2btz]2+ et [Ru(TAP)2pytz]²+. Les études électrochimiques et photophysiques ont montré que l’état ³MLCT de ces complexes était un excellent agent oxydant. Ces complexes pourraient donc photo-réagir avec une guanine pour former un photo-adduit. Néanmoins, une étude photophysique plus détaillée a montré que l’état excité du complexe [Ru(TAP)2pytz]²+ possédait une durée de vie plus longue que celui du [Ru(TAP)2btz]2+. Par ailleurs, le [Ru(TAP)2pytz]²+ est plus photostable dans l’eau que le [Ru(TAP)2btz]2+. Seul, le complexe de Ru(II) constitué de deux ligands TAP et d’un ligand pytz facilement fonctionnalisable pourrait donc être utilisé pour photo-réagir avec des biomolécules dans l’eau.<p>La deuxième stratégie concernait la synthèse et l’étude de complexes de Ru(II) à partir de ligands dérivés de calix[4 ou 6]arènes. Des stratégies de synthèses originales ont été mises au point pour greffer une unité phen ou pytz sur des calix[4 ou 6]arènes mono-fonctionnalisés. Par la suite, des antennes de reconnaissance cellulaire (sucres) ont été introduites sur les positions phénoliques restantes des calixarènes dans le but d’effectuer une vectorisation ciblée. Pour cela, l’alkylation des positions phénoliques par des groupes azido a été mise au point. Ces groupes azido ont alors été mis en réaction avec des sucres possédant une fonction alcyne afin d’obtenir des ligands multivalents. Après, une réaction de complexation avec les précurseurs métalliques de Ru(II), ces différents ligands ont conduit aux nouveaux complexes calix[4 ou 6]arène-Ru(II) désirés.<p>Les propriétés électrochimiques et photophysiques des différents complexes de Ru(II) ont ensuite été étudiées. L’état ³MLCT des différents complexes est un excellent agent oxydant. Cependant, l’étude des propriétés photophysiques a montré que seul le complexe [(TAP)2Rupytz’(diN3C6)2+ était un candidat potentiel pour photo-réagir avec des biomolécules. En effet, un quenching des durées de vie a été observé pour les complexes de Ru(II) possédant des groupes phénol. Il est probablement provoqué par un transfert d’électron intramoléculaire du phénol vers l’état excité du complexe. Un quenching de luminescence a également été observé avec le complexe [(TAP)2Ruphen’(trisN3C4)2+ qui est probablement dû à un TE intramoléculaire du complexe excité vers le groupe azido. Le complexe multivalent n’a pas pu être étudié dans le cadre de ce travail mais il devrait être intéressant pour photo-réagir avec une biomolécule. <p>La seconde partie de ce travail est le fruit d’une collaboration avec le Laboratoire de Matière Condensée et de Systèmes Electroactifs (équipe des Dr. P. Hapiot et C. Lagrost, UMR 6510, Université de RENNES 1) et avec le Pr. O. Reinaud (Laboratoire de Chimie et Biochimie pharmacologiques et toxicologiques, UMR 8610, Université Paris Descartes). <p>Our research is divided into two distinct parts. The first part was developed in collaboration with the Laboratory of Organic Chemistry and Photochemistry of the Professors Andrée De Mesmaeker and Cécile Moucheron (ULB). The research topic of this group consists in using polyazaaromatic Ru(II) complexes as potential drugs in anti-cancer therapy or as diagnostic agents in biological systems. However, because of their high hydrophilicity, these Ru(II) complexes can not penetrate cell membranes which prevents their use as photoreactive drugs.<p>In order to enhance the cellular uptake, two strategies have been developed in the frame of this collaboration. The first one has consisted in the synthesis and study of two new Ru(II) complexes from N,N-ligands that can be readily functionalized: [Ru(TAP)2btz]2+ and [Ru(TAP)2pytz]²+. The photophysical and electrochemical studies have shown that both complexes behave as excellent oxidizing agents in their ³MLCT state. Thus, these complexes could photo-react with a guanine to form a photo-adduct. However, a more detailed examination of the photophysical parameters has shown that the excited state lifetimes of the complex [Ru(TAP)2pytz]²+ is longer than that of [Ru(TAP)2btz]2+. Moreover, the [Ru(TAP)2pytz]²+ is more photostable in water than the [Ru(TAP)2btz]2+. So, the Ru(II) complex obtained by the combination of two TAP ligands and one functionalized pytz ligand is an attractive photoreagent for biomolecules.<p>The second strategy has involved the synthesis and study of Ru(II) complexes from ligands based on calix[4 or 6]arenes. Original strategies have been developed to graft one phen or pytz unit on mono-functionalized calix[4 or 6]arenes. Subsequently, cellular recognition subunits (sugars) were introduced on the phenolic positions of calixarenes in order to perform a targeted vectorization. For this, the alkylation of phenolic positions by azido groups has been developed. These azido groups were then reacted with alkyne-glycoside to obtain multivalent ligands. After a complexation reaction with Ru(II) precursors, these ligands have led to new calix [4 or 6] arene-Ru(II) complexes. <p>Then, the photophysical and electrochemical properties of the different Ru(II) complexes were studied. The various complexes are sufficiently oxydizing in their ³MLCT. However, the study of their photophysical properties has shown that only the complex [(TAP)2Rupytz'(diN3C6)2+ could be a potential candidate to photo-react with biomolecules. Indeed, a quenching of lifetimes has been observed for the Ru(II) complexes with phenolic groups. It is probably due to an intramolecular electron transfer from the phenolic groups to the excited state of the complex. A luminescence quenching was also observed with the complex [(TAP)2Ruphen'(trisN3C4)]2+ probably because of an intramolecular electron transfer from the excited complex to the azido group. The multivalent complex has not been studied but it should be a valuable candidate to photo-react with a biomolecule. <p>The second part of this work is the result of a collaboration with the Laboratory of Condensed Matter and Electroactive Systems (Doctors Philippe Hapiot and Corinne Lagrost team, UMR 6510, Université de Rennes 1) and With the Professor Olivia Reinaud (Laboratory of Chimie et Biochimie pharmacologiques et toxicologiques, UMR 8610, Université Paris Descartes). / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
390 |
Conception de protéines artificielles multidomaines / Conception of multidomain artificial proteinsLéger, Corentin 12 November 2018 (has links)
La création de nouvelles fonctions basées sur la reconnaissance protéique et sur l'assemblage de domaines est un enjeu majeur en biotechnologie et est un moyen de comprendre les relations structures/fonctions des protéines engagées dans des processus d'interactions. Aujourd’hui, des bibliothèques de protéines artificielles obtenues par ingénierie peuvent être sources de protéines aux propriétés de reconnaissance analogues à celles des dérivés d’anticorps.L’équipe Modélisation et Ingénierie des Protéines a ainsi construit une banque de protéines à motifs structuraux répétés appelées « alphaReps ». Les alphaReps présentent des propriétés remarquables en termes de production et de stabilité. Contrairement à la plupart des anticorps et dérivés d’anticorps, elles peuvent même s’exprimer sous forme fonctionnelle dans le cytoplasme de cellules eucaryotes. De tels objets peuvent donc maintenant être utilisés comme des briques élémentaires en vue d’une ingénierie modulaire. Ainsi la construction de nouvelles fonctions de reconnaissance optimisées tant au niveau de la spécificité que de l’affinité sera possible en réarrangeant et/ou dupliquant ces briques élémentaires.Un premier volet de ce projet de thèse a consisté à construire puis étudier les propriétés biophysiques de protéines bidomaines basées sur les alphaReps afin de mieux comprendre les comportements adoptés par de telles constructions. Outre l’aspect fondamental de cette question, cette étude donnera « les règles » pour moduler de façon contrôlée les interactions entre ces protéines. Les résultats montrent qu'il est possible de créer de nouvelles fonctions par simple ajout d'un linker entre deux alphaReps : avidité, coopérativité, changement de conformation.Dans un second temps, l’objectif a été de développer, à partir des protéines bidomaines précédemment étudiées, de nouveaux biosenseurs basés sur le FRET (Förster Resonance Energy Transfer) pouvant être utilisés in vivo et in vitro. Cette deuxième partie présente deux biosenseurs avec des limites de détection de l'ordre du nanomolaire. Les alphaReps utilisées dans ces constructions pouvant être changées en fonction de la cible souhaitée, il s'agit ici d'une preuve de concept pouvant être généralisée à n'importe quelle cible.Enfin la dernière partie de cette thèse s'est portée sur la conception et l'étude de nouveaux biosenseurs génétiquement codables. Ces biosenseurs présentent notamment l’avantage d’être utilisables immédiatement après production et ne nécessitent donc plus d’étape de couplage chimique. Les résultats obtenus montrent que la création de tels biosenseurs est possible mais qu’une optimisation reste encore nécessaire pour améliorer leur spécificité, leur stabilité et leur capacité de détection. / The creation of new protein functions based on recognition and molecular assembly is not only a major goal in biotechnology but is also a means to understand the relation structure/function of proteins involved in interaction processes. Today, libraries of artificial proteins obtained by engineering can be a source of proteins with recognition properties similar to the properties of antibodies.The team Protein Engineering and Modeling has thus created a library of proteins with structural repeats called the “alphaReps”. The alphaReps present remarkable properties in terms of production and stability. Unlike most of the antibodies and their derivatives, they can even be expressed and functional in the cytoplasm of eukaryotic cells. Such objects can therefore be used as building bricks in modular engineering. The construction of new optimized recognition functions both in specificity and in affinity can then be possible by rearranging or duplicating these elementary bricks.The first part of this thesis project consisted in the construction and study of the biophysical properties of bidomain proteins based on alphaRep in order to have a better understanding of the behaviour of such constructions. Beside the fundamental aspect of this question, this study will give the “rules” to modulate the interactions between these proteins in a controlled way. The results show that it is possible to create new functions such as avidity, cooperativity, conformational change, simply by adding a linker between two alphaReps.In a second step, the goal was to develop, with the bidomain proteins previously studied, new biosensors based on the FRET (Förster Resonance Energy Transfer) which can be used in vivo and in vitro. This second part presents two biosensors with limits of detection in the nanomolar range. Since the alphaReps used in these constructions can be changed depending on the chosen target, it is a proof of concept which can be adapted to any desired target.Finally, the third part of this thesis focused on the development of genetically codable biosensors. These biosensors have the particular advantage of being usable directly after production and therefore no longer require a chemical coupling step. The results show that the development of such biosensors is worth considering but an optimization is still required in order to improve their specificity, their stability and their detection capacity.
|
Page generated in 0.0697 seconds