71 |
EnzymologyValiev, Abduvali 01 February 2007 (has links) (PDF)
In this study, two symbiotic fungi of Southern Pine Beetle (SPB),
Entomocorticium peryii and Entomocorticium sp.A were evaluated in terms of
polyphenol oxidase (PPO) production. The effect of different inhibitors, inducers and
assay parameters such as temperature and pH on enzyme activity were investigated
and maximum PPO activity was observed at 30° / C, pH 8.0 and when tannic acid was
used as an inducer. Copper-chelator salicyl hydroxamic acid (SHAM) and pcoumaric
acid, both indicated as inhibitors of tyrosinase and catechol oxidase
significantly reduced the activity.
For biochemical characterization studies, the enzyme was concentrated by
ultrafiltration. To determine type of the enzyme, activity staining after Native-PAGE
was carried out. Type of polyphenol oxidase produced by E. peryii and E. sp.A was
determined as catechol oxidase by activity staining. However higher activity was
observed on hydroquinone (p-diphenol) rather than catechol (o-diphenol).
The enzyme obeys Michealis-Menten kinetics with Km and Vmaxvalues being 10.72 mM hydroquinone and 59.44 U/ml for E. peryii and 8.55 mM hydroquinone and 73.72 U/ml for E. sp.A respectively..
|
72 |
Caracterização dos efeitos tóxicos do 1,2-dihidroxibenzeno em células do sistema nervoso central: investigação do efeito protetor de derivados de plantasGóes, Lizandra Moreira January 2013 (has links)
Submitted by Ana Maria Fiscina Sampaio (fiscina@bahia.fiocruz.br) on 2014-02-07T19:19:35Z
No. of bitstreams: 1
Lizandra Moreira Góes... Caracterização dos efeitos tóxicos....pdf: 1602592 bytes, checksum: 16b9153b36fb34585abb21b40bd4bdef (MD5) / Made available in DSpace on 2014-02-07T19:19:35Z (GMT). No. of bitstreams: 1
Lizandra Moreira Góes... Caracterização dos efeitos tóxicos....pdf: 1602592 bytes, checksum: 16b9153b36fb34585abb21b40bd4bdef (MD5)
Previous issue date: 2013 / Fundação Oswaldo Cruz. Centro de Pesquisa Gonçalo Moniz. Salvador, BA, Brasil / Universidade Federal da Bahia. Faculdade de Medicina. Salvador, BA, Brasil / Catecóis são derivados do benzeno, podendo apresentar citotoxicidade, que pode constituir um modelo experimental útil para o desenvolvimento de novos fármacos. No bioma brasileiro inúmeras plantas produzem metabólitos com atividades diversas, como antioxidantes, ou inibidores do crescimento celular. No Brasil, as neoplasias são a segunda causa de óbito, especialmente aquelas derivadas do sistema nervoso, aumentando o interesse por novos antineoplásicos e agentes neuroprotetores. Este trabalho caracteriza efeitos citotóxicos do 1,2-dihidroxibenzeno (CAT) e discretamina (DSC) em células do sistema nervoso in vitro. Determinou-se a EC50 de CAT e DSC usando brometo de 3-(4,5-dimetiltiazol-2-il)-2,5-difeniltetrazolium (MTT), investigou-se sua auto-oxidação por espectrofotometria, avaliou-se mudanças morfológicas e condensação/fragmentação nuclear por microscopia. Avaliou-se a proteção de DSC e 8-metoxipsoraleno (8-MOP) contra a citotoxicidade do CAT. O padrão de morte celular foi analisado por citometria de fluxo. A espoliação de glutation reduzido (GSH) foi analisada usando monoclorobimano. A toxicidade do CAT para células SH-SY5Y e C6 depende da dose e associa-se à formação de quinonas. Houve mudanças morfológicas, condensação/fragmentação da cromatina e morte apoptótica, não relacionada à espoliação de GSH. DSC não foi tóxica para células SH-SY5Y, porém protegeu contra os efeitos do CAT em baixas concentrações. DSC mostrou-se citotóxica para células de glioma (GL-15 e C6) e potencializou o CAT. Pré-tratamento por 30 minutos com DSC protegeu contra a ação do CAT após 72 horas. 8-MOP potencializou os efeitos do CAT, não revertendo seus efeitos na viabilidade celular, morfologia celular, condensação/fragmentação nuclear, e espoliação de GSH. Esses resultados caracterizam um modelo de citotoxicidade que pode ser aplicado no desenvolvimento de novos agentes farmacológicos. Estudos complementares são necessários para elucidar a proteção da DSC. / Catechols are benzene derivatives, which may exhibit cytotoxic activity that can be employed to develop new drugs. Plants are important sources of metabolites with pharmacological activities such as antioxidants, or cell growth inhibitors. In Brazil, cancer is the second leading cause of death, especially those derived from the nervous system, which increase the interest for new antineoplastic and neuroprotective drugs. The cytotoxic effects promoted by 1,2-dihydroxybenzene (CAT) and discretamine (DSC) in nervous system cells were characterized in vitro. The protective effects of DSC and 8-methoxypsoralen (8-MOP) against CAT-induced cytotoxicity were also evaluated. CAT and DSC EC50 was determined by using 3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyltetrazolium bromide (MTT). CAT auto-oxidation was investigated by spectrophotometry. Morphological changes and nuclear condensation/ fragmentation were evaluated by microscopy. The pattern of cell death was obtained by flow cytometry. Reduced glutathione (GSH) depletion was analyzed by using monochlorobimane. CAT induced a dose-dependent toxicity to SH-SY5Y and C6 cells, associated with reactive quinones formation. It also induced morphological changes, nuclear condensation/fragmentation, and apoptotic death not caused by GSH depletion. DSC was not toxic to SH-SY5Y cells, but protected against CAT effects at low concentrations. DSC was be cytotoxic to glioma cells (GL-15 and C6) and potentiated CAT effects. However, pretreatment for 30 minutes with DSC protected them against CAT after 72 hours. 8-MOP also potentiated CAT effects instead to protect cells. These results characterize an experimental model useful for studies searching new pharmacological agents. However, further studies are needed to elucidate the DSC protective effects.
|
73 |
Utilisation de la stratégie du cheval de Troie pour lutter contre Pseudomonas aeruginosa : synthèses et propriétés biologiques de conjugués sidérophores-antibiotiques / Use of the Trojan horse strategy against Pseudomonas aeruginosa : syntheses and biological properties of siderophore-antibiotic conjugatesPaulen, Aurélie 07 April 2017 (has links)
La découverte de stratégies thérapeutiques innovantes contre les bactéries pathogènes est cruciale. Le fer est essentiel pour la prolifération bactérienne et les bactéries pathogènes excrètent des molécules organiques de faible poids moléculaire, appelées sidérophores, pour acquérir le fer(III). Les systèmes d’acquisition de fer sidérophores-dépendants sont transmembranaires et peuvent être utilisés comme des portes d’entrée pour faire pénétrer des conjugués sidérophores-antibiotiques dans la bactérie dans le cadre d’une stratégie dite du cheval de Troie. Nous avons synthétisé des conjugués constitués d’analogues des sidérophores pyochéline, aminochéline ou azotochéline couplés à des oxazolidinones antibiotiques. Dans la majorité de nos approches la liaison entre le sidérophore et l’antibiotique est le résultat d’une réaction de chimie click. La synthèse et les propriétés biologiques des vecteurs et des conjugués synthétisés sont présentées dans ce manuscrit. / Constant discovery of innovative therapeutic strategies against pathogenic bacteria is crucial. Iron is essential for bacterial proliferation since it is integrated in the active site of essential enzymes. Many pathogenic bacteria excrete low molecular weight secondary metabolites called siderophores in order to promote iron (III) acquisition. Transmembrane siderophore-dependent iron uptake systems can be used as gates by siderophore-antibiotic conjugates. In this context, we synthesized conjugates between analogs of pyochelin, aminochelin or azotochelin with oxazolidinones antibiotics. In this project many of the conjugation between vectors and antibiotics were the result of click chemistry reactions even the use of peptidic bonds was also explored. Synthesis and biological properties of conjugates and vectors are presented in this manuscript.
|
74 |
Bio-inspired self-construction and self-assembly of organic films triggered by electrochemistry / Auto-construction et auto-assemblage bio-inspirés de films organiques par électrochimieMaerten, Clément 20 September 2016 (has links)
Les architectures moléculaires qui se forment exclusivement sur une surface sont encore rares. L’électrodéposition est un procédé exploitant des « signaux » électriques afin de déclencher et contrôler l’assemblage de films. Récemment, une nouvelle méthode : l’autoconstruction de films en « une étape » par l’utilisation d’un morphogène (un gradient de catalyseur généré depuis une électrode), a attiré l’attention de la communauté scientifique. En effet, elle permet l’auto-assemblage rapide de films polymériques robustes. Cependant, cette technique était limitée à des systèmes basés sur la chimie click du Cu (I). Le but de ce travail était d’étendre cette stratégie à d’autres systèmes en utilisant une approche bio-inspirée. Le concept du morphogène a été appliqué pour développer deux nouveaux systèmes d’autoconstruction déclenchées par électrochimie. Le premier système est basé sur l’autoconstruction covalente de films polymériques induite par l’oxydation d’une molécule organique, inspirée de la moule. Le deuxième est basé sur l’auto-assemblage de films de polyphénols par électro-assemblage par liaisons de coordinations. Enfin, nous avons appliqué ces deux concepts pour immobiliser électrochimiquement une enzyme sur une électrode afin de créer un biosenseur. / Molecular architectures that spontaneously grow exclusively near a surface are rare. Electrodeposition is a process in which imposed electrical « signals » are employed to direct the assembly of thin films. Recently, a new method based on the one-pot self-construction of films by means of a morphogen (a catalyst gradient generated from a surface) has attracted attention since it allows the quick self-assembly of robust films. Nevertheless, this technique was quite limited to systems based on click chemistry.The purpose of this work was to extend this strategy to other systems using a bio-inspired approach. The one-pot morphogen concept was applied to design two new electro-triggered self-construction concepts. The first one is based on the self-construction of covalent polymer films triggered by mussel-inspired molecule oxidation. The second one is based on the electro-self-assembly of polyphenols films based on ionic bonds coordination. Finally, we tried to apply these concepts in order to electrochemically immobilize an enzyme on an electrode to create a biosensor.
|
75 |
Entwicklung von PCR-Primern zum Nachweis von Genen des Chloraromaten-Abbaus in mikrobiellen LebensgemeinschaftenThiel, Monika 15 October 2004 (has links)
In dieser Arbeit wurden PCR-Primer für den Nachweis von Genen des bakteriellen Chloraromaten-Abbaus entwickelt. Als Zielgene wurden hierfür die Gene der Chlorcatechol-1,2-Dioxygenasen und Chlormuconat-Cycloisomerasen des modifizierten ortho-Weges ausgesucht. Die entwickelten Primer wurden an verschiedenen Chloraromaten abbauenden Bakterien getestet. Es gelang dabei erstmals, Fragmente von Chlormuconat-Cycloisomerase-Genen aus alpha-Proteobakterien zu erhalten. Mit den neu entwickelten Primern zum Nachweis der Chlorcatechol-1,2-Dioxygenase-Gene wurden aus den Stämmen Burkholderia sp. 3CB-1 und Rhodococcus opacus 1CP auch Fragmente amplifiziert, die nur relativ geringe Ähnlichkeiten zu bereits bekannten Genen aufwiesen. Um die Sequenzdatenbasis für das Primerdesign zu erweitern, wurden außerdem Chlorcatechol-Gencluster aus zwei Vertretern der alpha-Proteobakterien kloniert und sequenziert. Aus dem Stamm Sphingomonas sp. TFD44 konnten dabei zwei verschiedene Gencluster charakterisiert werden, von denen nur eines einen kompletten Satz der Chlorcatechol-Gene enthielt. Die beiden Gencluster aus dem anderen Stamm, Sphingomonas sp. EML146, wiesen Homologien zu diesem Gencluster auf. Die Konstruktion einer Knockout-Mutante und Proteinanreicherungen ergaben Hinweise auf weitere Chlorcatechol-Abbaugene in Sphingomonas sp. TFD44.
|
76 |
Designing Functional Biomimetic Adhesives: Bringing Nature's Methods to MarketAmelia A Putnam (8586705) 16 December 2020 (has links)
<div>An estimated 20 million tons of adhesives are used globally each year, and the amount is continually increasing. Glues are used in nearly every economic sector but are largely consumed by key external drivers of the industry including construction and transportation equipment to replace mechanical fasteners. Many of these applications require specific functionality, like moisture resistance, desirable mechanical properties, or low toxicity. However, specific features usually occur at the expense of adhesive strength, and there is no “one size fits all” adhesive. The search for more practical and stronger glues has contributed to the development of biomimetic adhesives. Marine mussels and other sea creatures produce biological adhesives that stick well underwater. By using nature as an inspiration for better glues, we can combine stronger bonding and additional functionality into one adhesive system. Introducing the same catechol moiety used by marine organisms into synthetic polymers has allowed us to produce adhesives stronger than commercial glues in both dry and wet environments.</div><div><br></div><div>While many of these biomimetic polymer adhesives have been prepared, few have made it to market. Here, multiple biomimetic polymer adhesives are studied and optimized for different applications to provide the next step towards commercialization. The adhesives were tailored for use on different surfaces and conditions through formulation or polymer design. Structure-function studies have showed how surface energy influences optimal adhesion with catechol-containing polymers for applications in bonding dissimilar substrates while maintaining desired mechanical properties. Multiple adhesive systems were studied in mice to assess toxicity and determine viability as potential surgical glues. Underwater formulation and application methods were also pursued to improve product development strategies for offering a competitive advantage as an underwater glue. In addition to these practical-use modifications of the adhesives, industry research and market analysis was conducted to provide insight into further applications to pursue. A cost analysis led to creating new synthetic strategies for cost-reduction and scale-up, both of which are essential in the commercialization of a catechol-containing polymer adhesive.<br></div>
|
77 |
Functional Materials and Chemistry Education: Biomimetic Metallopolymers, Photoresponsive Gels and Infrared CamerasGreen, Travis Cole 29 April 2020 (has links)
No description available.
|
78 |
The COMT p.Val158Met Polymorphism and Cognitive Performance in Adult Development, Healthy Aging and Mild Cognitive ImpairmentDegen, Christina, Zschocke, Johannes, Toro, Pablo, Sattler, Christine, Wahl, Hans-Werner, Schönknecht, Peter, Schröder, Johannes 10 August 2022 (has links)
Background: The impact of genetic polymorphisms on cognition is assumed to increase with
age as losses of brain resources have to be compensated for. We investigate the relation of
catechol-O-methyltransferase (COMT) p.Val158Met polymorphism and cognitive capacity in
the course of adult development, healthy aging and the development of mild cognitive impairment
(MCI) in two birth cohorts of subjects born between 1930 and 1932 or between 1950
and 1952. Methods: Thorough neuropsychological assessment was conducted in a total of
587 participants across three examination waves between 1993 and 2008. The COMT genotype
was determined as a restriction fragment length polymorphism after PCR amplification
and digestion with Nla III. Results: Significant effects of the COMT p.Val158Met polymorphism
were identified for attention and cognitive flexibility in the younger but not the older cohort.
Conclusion: These results confirm the importance of the COMT p.Val158Met genotype on
tasks assessing attention and cognitive flexibility in midlife but not in healthy aging and the
development of MCI. Our findings suggest that the influence of COMT changes as a function
of age, decreasing from midlife to aging.
|
79 |
The Effects of Amine Moieties on Adhesion and Cohesion of Mussel-Inspired PolymersJennifer Marie Garcia Rodriguez (17458722) 28 November 2023 (has links)
<p dir="ltr">Water molecules present an obstacle between most synthetic adhesives and surfaces, limiting molecular contact between the glue and substrates. Water can also hydrolyze or swell bulk adhesives, weakening cohesive strength. Nature has solved these challenges for millennia. Marine mussels’ ability to adhere well to wet surfaces stems from an uncommon amino acid, 3,4-dihydroxyphenylalanine (Dopa). The amino acid Dopa contains a catechol moiety that contributes to adhesion and cohesion through hydrogen bonding, metal coordination, and oxidative cross-linking. Hence, biomimetic systems often incorporate catechol groups to provide strong adhesion in both dry and wet environments. In addition to Dopa, mussel adhesive proteins are rich in cationic amino acids lysine and arginine. Previous studies have suggested that cations could displace surface-bound ions, enhancing surface adhesion. However, adhesion performance varied between systems, with no agreement on whether cations are advantageous or disadvantageous. A clear picture of how cations influence underwater adhesion has yet to emerge; therefore, this thesis aims to systematically study these effects.</p><p dir="ltr">In Chapter 2, the synthesis of catechol-containing biomimetic polymers with varying amounts of quaternary ammoniums is presented. Quaternary ammoniums, unlike protonated primary amines, contain non-reactive cations and were used to isolate effects from only charges on adhesion. In Chapter 3, differences between reactive primary amines and quaternary ammoniums were investigated. Structure-function studies have shown how cations influence bulk cohesion versus surface adhesion in dry, under deionized water, and under salt water. The roles of cations in adhesion were complex, with both cohesive and surface bonding relevant in different ways, sometimes even working in opposite directions.</p><p dir="ltr">Furthermore, a styrene-based catechol-containing polymer with excellent underwater adhesion performance is ready to enter the market, but several barriers hinder its industrial implementation. In Chapter 4, new synthetic strategies were developed to scale up and reduce the cost of producing p[vinylcatechol-<i>co-</i>styrene], which are essential for commercialization. This was achieved by selecting cheaper starting materials, switching from anionic to suspension polymerization, and optimizing deprotection reaction conditions. This change also improved adhesion in both dry and underwater conditions. This work is presented as part of our effort to advance the design of adhesives that function in challenging environments.</p>
|
80 |
INTRODUCTION OF NEGATIVELY CHARGED FUNCTIONALITIES INTO DOPA CONTAINING POLYMER MIMICSTaylor A Jones (9187493) 09 September 2022 (has links)
Many sticky denizens of the ocean use unique and effective techniques to stick together
and adhere to surfaces underwater. Underwater adhesion is a daunting task that many have set out
to solve. One of the key factors of underwater adhesion and focus of this dissertation will be on
negative charges and their role in underwater adhesion. Following previous work done on
poly[(3,4-dihydroxystyrene)-co-styrene], an adhesive mimic to mussel adhesives, new functional
groups were introduced to the same backbone to determine the change in adhesion in underwater
and dry conditions. These functional groups were mainly comprised of negatively charged
moieties such as sulfonates, phosphates, and phosphonates. Phosphates have been shown to exist
in mussel proteins alongside positively charged proteins.
A main facet of this dissertation will be focused on the specific synthesis pathways of
modified charged synthetic mimics of existing polymer systems both styrene and acrylic based.
Synthetic pathways were a challenging aspect of designing these polymers as functionalization
can add many steps to the synthesis of polymers which makes the process tedious and lengthy.
Characterization of these polymers were also important for determining the successful synthesis
of these functionalized polymers. Several reactions conducted from this research have not been
used on polymeric species and have been shown primarily in small organic molecules. Early work
on poly[(3,4-dihydroxystyrene)-co-styrene]-based sulfonates, phosphates, and phosphonates
established a foundation in pre and post functionalization of polymer species. Testing of adhesion,
exploration of functionalization and synthesis optimization were the main goals for each type of
functionalized polymer.
Following the tests of many poly[(3,4-dihydroxystyrene)-co-styrene] based functionalized
polymers it was shown that acrylic versions of phosphates performed substantially better for both
16
dry and underwater adhesion, especially on SAE 304 stainless steel. The acrylic phosphate
polymers were based on previous DMA/MMA polymer systems that have shown to have excellent
adhesive potential. The phosphate monomer MAEP was introduced to the polymer structure,
which facilitated increased binding to steel substrates. Despite the acrylics overwhelmingly higher
adhesion compared to the functionalized poly[(3,4-dihydroxystyrene)-co-styrene] polymers the
phosphonate versions were shown to form a coacervate like material with positive charged
poly[(3,4-dihydroxystyrene)-co-styrene] mimics. These “coacervates” had appreciable adhesion,
much higher than the negative or positive versions had alone in dry conditions but despite this
could not retain their metastable coacervate phase in wet conditions. Further study is underway in
determining the role of negative charges in varying systems and determining whether adding
negative charge to a polymer system truly helps with underwater adhesion alone.
|
Page generated in 0.0876 seconds