• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 7
  • 6
  • 4
  • 2
  • 1
  • Tagged with
  • 63
  • 63
  • 18
  • 15
  • 12
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Tumour-stroma Signalling in Cancer Cell Motility and Metastasis

Luga, Valbona 10 January 2014 (has links)
The tumour-associated stroma, consisting of fibroblasts, inflammatory cells, vasculature and extracellular matrix proteins, plays a critical role in tumour growth, but how it regulates cancer cell migration and metastasis is poorly understood. The Wnt-planar cell polarity (PCP) pathway regulates convergent extension movements in vertebrate development. However, it is unclear whether this pathway also functions in cancer cell migration. In addition, the factors that mobilize long-range signalling of Wnt morphogens, which are tightly associated with the plasma membrane, have yet to be completely characterized. Here, I show that fibroblasts secrete membrane microvesicles of endocytic origin, termed exosomes, which promote tumour cell protrusive activity, motility and metastasis via the exosome component Cd81. In addition, I demonstrate that fibroblast exosomes activate autocrine Wnt-PCP signalling in breast cancer cells as detected by the association of Wnt with Fzd receptors and the asymmetric distribution of Fzd-Dvl and Vangl-Pk complexes in exosome-stimulated cancer cell protrusive structures. Moreover, I show that Pk expression in breast cancer cells is essential for fibroblast-stimulated cancer cell metastasis. Lastly, I reveal that trafficking in cancer cells promotes tethering of autocrine Wnt11 to fibroblast exosomes. These studies further our understanding of the role of the tumour-associated stroma in cancer metastasis and bring us closer to a more targeted approach for the treatment of cancer spread.
42

Tumour-stroma Signalling in Cancer Cell Motility and Metastasis

Luga, Valbona 10 January 2014 (has links)
The tumour-associated stroma, consisting of fibroblasts, inflammatory cells, vasculature and extracellular matrix proteins, plays a critical role in tumour growth, but how it regulates cancer cell migration and metastasis is poorly understood. The Wnt-planar cell polarity (PCP) pathway regulates convergent extension movements in vertebrate development. However, it is unclear whether this pathway also functions in cancer cell migration. In addition, the factors that mobilize long-range signalling of Wnt morphogens, which are tightly associated with the plasma membrane, have yet to be completely characterized. Here, I show that fibroblasts secrete membrane microvesicles of endocytic origin, termed exosomes, which promote tumour cell protrusive activity, motility and metastasis via the exosome component Cd81. In addition, I demonstrate that fibroblast exosomes activate autocrine Wnt-PCP signalling in breast cancer cells as detected by the association of Wnt with Fzd receptors and the asymmetric distribution of Fzd-Dvl and Vangl-Pk complexes in exosome-stimulated cancer cell protrusive structures. Moreover, I show that Pk expression in breast cancer cells is essential for fibroblast-stimulated cancer cell metastasis. Lastly, I reveal that trafficking in cancer cells promotes tethering of autocrine Wnt11 to fibroblast exosomes. These studies further our understanding of the role of the tumour-associated stroma in cancer metastasis and bring us closer to a more targeted approach for the treatment of cancer spread.
43

Origin and Spatial Distribution of Forces in Motile Cells

Brunner, Claudia 15 April 2011 (has links)
Die selbständige, gerichtete Bewegung von biologischen Zellen ist eine der grundlegendsten und komplexesten Erscheinungen der Natur. In höher entwickelten Lebewesen spielt die Zellbewegung eine wichtige Rolle, z.B. bei der Entwicklung des Organismus, bei der Funktion des Immunsystems aber auch bei der Metastase von Krebszellen. Die physikalischen Prozesse die dieser Fähigkeit zugrunde liegen, sind im Fokus dieser Arbeit. Um besser zu verstehen welche Prozesse im Einzelnen und in welcher Kombination den Zellen erlauben sich gerichtet fortzubewegen, wurde in der vorliegenden Arbeit ein representatives Modellsystem von motilen Zellen untersucht. Fischkeratozyten bewegen sich in vitro regelmäßig und gleichförmig, relativ schnell über die Substratfläche, und stellen aus physikalischer Sicht eine optimierte, sich selbständig bewegende Polymermaschine dar. Um Kräfte in der Bewegungsebene der Zellen zu untersuchen, wurde in der vorliegenden Arbeit eine neuartige, auf dem Rasterkraftmikroskop (RKM) basierende Methode entwickelt. Zusätzlich wurden hochaufgelöste, mit dem Phasenkontrastmikroskop aufgenommene Bilderserien analysiert und die Geschwindigkeitsverteilung in der Zelle durch Korrelationsalgorithmen bestimmt. Die Struktur des Polymernetzwerkes wurde in mit Fluoreszenzfarbstoff markierten Zellen untersucht, und elastische Eigenschaften wurden mit rheologischen RKM-Messungen bestimmt. Traktionskraftmessungen an elastischen Substraten runden das umfassende Bild ab. Durch Veränderung der molekularen Strukturen mit verschiedenen Chemikalien, die unterschiedliche Prozesse im Gesamtsystem stören, konnte nun ein Phasenraum der Kraftgenerierungsprozesse untersucht und unterschiedliche Effekte verschiedenen Prozessen eindeutig zugeordnet werden. Es wurde somit erstmalig experimentell bewiesen, dass die Polymerisation von Aktin die treibende Kraft am vorderen Rand der Zelle ist. Darüber hinaus wurde das Verhalten des Kraftaufbaus mit einem Model beschrieben, das Aufschluss über die Funktionsweise der darunterliegenden Aktinpolymerstrukturens gibt. Desweiteren wurde in der Mitte der Zelle, zwischen vorderem Rand und Zellkörper, erstmalig eine rückwärtsgerichtete Kraft gemessen, die wichtig ist um ein Kräftegleichgewicht zu erstellen. Ein Model das auf entropischen Kräften im Polymersystem basiert, beschreibt diese kontraktilen Kräfte und ordnet sie der Depolymerisation von Aktin zu. Die Bewegung des Zellkörpers wiederum basiert auf dem Zusammenspiel dieser beiden Mechanismen, sowie der Kontraktion von Aktin und Aktinbündeln durch molekulare Motoren. Eine umfassendes Charakterisierung über verschiedene lokale Mechanismen und ihrer Wechselwirkungen konnte somit erstellt werden, und damit das Verständnis der Kraftgenerierung zur Zellbewegung vertieft.
44

Intracellular polymer network as source od cell motility

Fuhs, Thomas 16 September 2013 (has links)
Cell motility has been found to play a role in many important body functions as well as the embryogenenis of mulitcellular organisms like vertebrates. From a physics point of view the interesting questions behind every motion are: Why is it moving? Where do the forces come from? Today we know that the motility of many cells is dependent on an active polymer network. Actin, one of the most abundant proteins in the body, is constantly polymerized, being moved around and depolymerized in motile cells. Until now, only forces outside the cell like traction forces could be measured. The direct measurement of the force generated by polymerizing actin filaments has only been measured by our lab and the lab of M. Radmacher. In these measurements fish keratocytes were used. Whereas I did these experiments, for the first time, on mammalian cells. To measure forward forces on neuronal growth cones I stabilized the SFM, as measurement times went up from minutes to hours. Furthermore measurements had to be performed at 37°C instead of room temerature, this induced drifts of the substrate. I incorporated an optical trap into the microscope to track the motion of the substrate. A feedback loop moved the SFM cantilever to minimize relative motion of substrate and cantilever. For keratocytes I directly measured the forces produced by actin polymerization and, to my knowledge for the first time, the forces associated with the retrograde actin flow using a SFM. The result was that both actin and myosin play important but different roles in motility. For actin it turned out that considering just the polymerization was not enough. Actin depolymerization and the resulting entropic forces are a completely new physical effect in actin based cell motility. With this new force in the force balance I can explain all effects observed in my experiments without introducing any new biochemical feedback loops. Finally I showed that neuronal growth cones are very soft and weak structures. They are at least one order of magnitude softer and weaker as for example fibroblasts or cells forming the blood vessel walls. As neurons are usually located in soft environments this does not impede their normal outgrowth. It could even serve as a safety mechanism that prevents cell from growing into wrong areas like breaching the blood-brain-barrier, on a physical level. For a neuron the wall of a blood vessel feels like a brick wall for us.
45

Role of Substrate Stiffness on Migratory Properties and Epithelial to Mesenchymal Transition in Human Lung Cancer Cells

Subisak, Angel Dharshini January 2012 (has links)
No description available.
46

Regulation Of Osteoclast Function By Alpha Gene Tropomyosins, TM-2/3 And TM-5a/5b

Kotadiya, Preeyal 28 September 2009 (has links)
No description available.
47

The influence of BRCA1's ubiquitin ligase activity on cell motility

Sengupta, Sameer January 2014 (has links)
Breast cancer type 1 susceptibility protein (BRCA1) has been established as an important tumour suppressor protein and its loss of function is associated with hereditary breast and ovarian cancer. An emerging body of work suggests that BRCA1 is involved in sporadic cases of breast and ovarian cancers and may also have a role in other cancers, indicating a more global role in tumourigenesis. BRCA1-mutated cancers can be early-onset and are characterised by being highly aggressive with a propensity to metastasize, thus from a clinical perspective there is a requirement to understand the molecular mechanisms in order to be able to tailor treatments and develop therapeutics. BRCA1 has numerous cellular functions, many ascribed to its role in maintenance of genome integrity, transcription and checkpoint control. More recently, a number of extra-nuclear roles have been established. An interesting novel function is the role of the E3 ubiquitin ligase activity on cell motility. Abrogation of the ubiquitin ligase activity of BRCA1 results in cells exhibiting a hypermotile, invasive phenotype which may help to account for the metastatic nature of BRCA1-mutated tumours. Our aim was to further elucidate BRCA1’s role in cell motility, starting with the identification of relevant candidate ubiquitin ligase substrates. To date, there has yet to be a systematic approach to identify BRCA1’s ubiquitin ligase substrates. Thus we undertook an unbiased proteomic approach to identify extra-nuclear candidates by comparing the profiles of ubiquitinated proteins in breast cancer epithelial cells expressing either functional BRCA1 or ubiquitin ligase-dead BRCA1. We identified 55 candidates which were differentially enriched between the two cell lines and through pathway analysis we determined a significant proportion were cytoskeletal and translation related proteins. Using an ubiquitin-remnant profiling approach, we also identified the site(s) of ubiquitination for many of the candidates. To assess the role of these candidates in cell motility initially we adopted an in silico approach. We used existing time-lapse movies from the online database (www.mitocheck.org) which systematically siRNA knocked down every single gene in the human genome. We developed a series of algorithms which track cell motility from these movies and used these to analyse 192,000 movies containing 3.5 billion cell steps. We have produced a complete database containing motility information after siRNA knockdown of every gene in the human genome, which has been annotated with gene ontologies, KEGG families, Gene Descriptions, SwissProt, Ensembl IDs and siRNA information. In addition to providing motility data of our candidates, we also carried out gene set enrichment analysis on the whole dataset to uncover structural or functional families that may be involved in up-regulating motility when knocked down by siRNA. This is the first report of a genome-wide motility database. Based on overlaps between the results from these two large-scale unbiased proteomic and in silico datasets, we selected 4 candidates, namely, ezrin, moesin, fermitin-2 and delta-catenin. Through monolayer wound healing, cell spreading and single cell motility assays, we determined that ezrin was a particularly relevant and informative candidate. The hypermotile phenotype observed in cells expressing ubiquitin ligase dead BRCA1 was rescued through siRNA knockdown of ezrin and thus we suggest that BRCA1 may regulate cell motility through effects on ezrin. This thesis has investigated candidate BRCA1’s role in cell motility, identified candidate substrates for the E3 ubiquitin ligase activity, established a genome-wide motility database and proposed a possible pathway through which BRCA1 may mediate cell motility and by extension metastasis.
48

Regulace signalní dráhy ERK prostřednictvím scaffold proteinu RACK1 / The regulation of the ERK signalling pathway by scaffold protein RACK1

Bráborec, Vojtěch January 2012 (has links)
The ERK signalling cascade comprised of protein kinases Raf, MEK and ERK is an evolutionarily conserved member of MAPK family that is activated in response to wide range of extracellular stimuli. The ERK pathway controls fundamental cellular functions including cell proliferation, differentiation, apoptosis or cell motility. To control such a diverse cellular responses by a single pathway cells have evolved regulatory mechanisms that channel the extracellular signals towards the specific biological response. Crucial to this control are non- enzymatic proteins termed scaffolds that associate with and enhance functional interaction of the components of MAPK pathways and can regulate amplitude, timing, specificity and location of signals. Scaffold protein RACK1 associates with several components of cell migration machinery including integrins, FAK, Src and the ERK pathway core protein kinases. RACK1 regulates distinct steps of cell migration such as establishment of cell polarity and focal adhesion turnover, however, the molecular mechanism by which RACK1 regulates these processes remains largely unknown. The main aim of this study was to investigate the functional role of RACK1 in cell motility, in particular to identify new effector proteins utilized by the ERK pathway and RACK1 in the regulation of...
49

Modeling the lamellipodium of motile cells

Zimmermann, Juliane 06 January 2014 (has links)
Das Kriechen von Zellen über Oberflächen spielt eine entscheidende Rolle bei lebenswichtigen Prozessen wie der Embryonalentwicklung, der Immunantwort und der Wundheilung, aber auch bei der Metastasenbildung. Die Zellbewegung erfolgt über die Bildung einer flachen Ausstülpung der Zellmembran, des Lamellipodiums. In dieser Arbeit wird ein mathematisches Modell entwickelt, das die Bildung, Stabilität und Stärke des Lamellipodiums, sowie die Dynamik der Zellvorderkante beschreibt. Dabei werden zwei Bereiche innerhalb des Lamellipodiums unterschieden. Im Hauptteil besteht es aus einem dichten Netzwerk von Aktinfilamenten, dem sogenannten Aktingel. An der Vorderkante wachsen die Enden der Aktinfilamente durch Polymerisation und bilden einen dynamischen Grenzbereich, die semiflexible Region. Das Gleichgewicht zwischen den Filamentkräften in der semiflexiblen Region und den viskosen sowie den äußeren Kräften bestimmt die Geschwindigkeit der Zellvorderkante. Eine Stabilitätsanalyse liefert Bedingungen für die Existenz stabiler Lamellipodien. Im Parameterbereich mit Filamentdichte Null können keine stabilen Lamellipodien existieren, aber aufgrund von Anregbarkeit trotzdem vorrübergehend gebildet werden. Hier beschreibt das Modell sehr gut das in Epithelzellen gemessene aufeinanderfolgende Vorschieben und Zurückziehen von Lamellipodien. Es zeigt, dass für die Zyklen prinzipiell keine Änderung in der Konzentration von Signalmolekülen innerhalb der Zelle notwendig ist. Das Modell wird auch auf die gemessene Kraft-Geschwindigkeits-Beziehung von Fischkeratozyten angewandt. Aufgrund der guten Übereinstimmung zwischen Experiment und Simulationen wird ein Mechanismus vorgeschlagen, der die charakteristischen Merkmale der Beziehung erklärt. Es wird gezeigt, dass die gemessene Kraft-Geschwindigkeits-Beziehung ein dynamisches Phänomen ist. Eine stationäre Beziehung, die unter der Bedingung gilt, dass die Zellen einer konstanten Kraft ausgesetzt sind, wird vorhergesagt. / Many cells move over surfaces during embryonic development, immune response, wound healing or cancer metastasis by protruding flat lamellipodia into the direction of migration. In this thesis, a mathematical model is developed that describes the formation of lamellipodia, their stability, strength and leading edge dynamics. Two regions inside the lamellipodium are distinguished in the model. The bulk contains a dense cross-linked actin filament network called actin gel. The newly polymerized tips of the actin filaments form a highly dynamic boundary layer at the leading edge called semiflexible region. The balance of filament forces on the membrane in the semiflexible region with viscous and external forces determines the velocity of the leading edge. A stability analysis defines criteria for the existence of stable lamellipodia. No stable lamellipodium can exist in the parameter regime with a filament density of zero. However, due to excitability, lamellipodia can still form transiently. The measured subsequent protrusions and retractions of lamellipodia in epithelial cells are very well reproduced by the excitable behavior. The modeling results show that in principle no signaling is necessary for cycles of protrusion and retraction. Furthermore, they are fitted to the force-velocity relation of keratocytes, which has been measured by placing a flexible cantilever into the cell''s path of migration. Due to the good agreement between experiment and simulations, a mechanism leading to the characteristic features of the force-velocity relation is suggested. Moreover, properties of the structure of the stable keratocyte lamellipodium, like the length of actin filaments and the branch point density, can be concluded. It is shown that the force-velocity relation measured with the cantilever is a dynamic phenomenon. A stationary force-velocity relation is predicted that should apply if cells experience a constant force, e.g. exerted by surrounding tissue.
50

Mesure des déplacements cellulaires dans les tissus non transparents : une application de la diffusion dynamique de la lumière / Measuring cell displacements inside non-transparent tissues : an application of dynamic light scattering

Brunel, Benjamin 29 October 2018 (has links)
Lorsqu'une tumeur grossit, elle exerce une pression sur les tissus environnants et est comprimée en retour. Des expériences sur un modèle de tumeur in vitro, appelé sphéroïde, ont montré que cette pression influence largement le devenir du tissu cancéreux, notamment en freinant sa croissance, mais aussi en le rendant plus invasif. Pour mieux comprendre ce dernier effet, nous avons cherché à étudier le comportement migratoire des cellules à l'intérieur d'un sphéroïde sous pression. Observer l'intérieur d'un sphéroïde pose cependant un problème technique car les méthodes usuelles d'imagerie ne sont pas utilisables dans des tissus épais (> 100 μm). L'imagerie classique étant limitée en profondeur à cause de la diffusion de la lumière, nous nous sommes tournés vers une méthode qui utilise justement celle-ci : la diffusion dynamique de lumière ou DLS (Dynamic Light Scattering). Nous avons développé son application à la migration cellulaire, afin d'obtenir la distribution des déplacements relatifs des cellules au cours du temps. Cette mesure est faite sans utiliser de marqueurs spécifiques et est applicable à des sphéroïdes allant jusqu'à 400 μm de diamètre. Nous avons ainsi mis en évidence une organisation radiale du sphéroïde en termes de mobilité, avec des cellules rapides en surface et plus lentes au centre. Nous avons aussi montré qu'en appliquant une contrainte au sphéroïde, la vitesse moyenne diminue jusqu'à être réduite de moitié pour des pressions supérieures à 15kPa. Une autre équipe a mesuré par ailleurs une augmentation de la vitesse des cellules en surface suite à une compression, ce qui indique que l'organisation radiale se retrouve dans la réponse à la pression. Nous avons montré que cette sensibilité à la pression est une propriété qui émerge de l'organisation 3D du tissu, dans laquelle la matrice extracellulaire joue un rôle primordial. Enfin, pour explorer les possibilités qu'offre notre technique, nous l'avons appliquée à une autre question : comment la migration des macrophages est-elle affectée par les signaux provenant de cellules apoptotiques ? Les résultats ont montré que les cellules apoptotiques précoces augmentent la vitesse des macrophages tandis que les cellules apoptotiques tardives la réduisent. D'un cas à l'autre, la longueur de persistance du mouvement est conservée. / As a tumor grows, it exerts a mechanical pressure on its surrounding tissue and is compressed back as a reaction. Recent experiments on an in vitro tumor model, called spheroid, have shown that this pressure is crucial for the fate of the cancerous tissue. In particular, the pressure slows down its growth, but makes it more invasive. To further understand the latter effect, we decided to study the migration of cells inside spheroids under pressure. However, imaging the inside of a spheroid is technically challenging as usual microscopy methods do not work on thick tissues (> 100 μm). Standard imaging methods are limited in terms of depth penetration because of light scattering. For this reason, we decided to take advantage of this scattered light with a method called Dynamic Light Scattering (DLS). We developed its application to cell migration in order to measure the distribution of cells displacements over time. The measurement is label-free and works with spheroids as thick as 400 μm in diameter. By this means, we revealed a radial organization inside the spheroid in terms of mobility, with fast cells at the surface and slower cells in the core. We also showed that applying a pressure onto spheroids decreases the average cell speed by a factor up to two for pressure greater than 15 kPa. Another team reported an increase in the speed of cells located at the surface of a compressed spheroid, which implies that the radial organization is also true for the impact of pressure. We demonstrated that this sensitivity to an external pressure is a 3D emergent property, in which the extracellular matrix plays an essential role. Finally, we explored the potential of our technique by addressing another question: how do apoptotic cells signals affect the migration of macrophages? We found that early apoptotic cells increase the speed of macrophages whereas late apoptotic cells decrease it. In both cases, the persistence length of the motion is the same.

Page generated in 0.0466 seconds