Spelling suggestions: "subject:"cobordisms"" "subject:"cobordism""
1 |
Structures produit sur l'homologie de Floer des cobordismes lagrangiens / Product structures in Floer theory for Lagrangian cobordismsLegout, Noémie 26 January 2018 (has links)
Dans cette thèse, nous construisons un produit sur le complexe de Floer associé à une paire de cobordismes lagrangiens, où ce complexe de Floer est un complexe quotient du complexe de Cthulhu défini par Chantraine, Dimitroglou-Rizell, Ghiggini et Golovko. Plus précisément, pour tout triplet de cobordismes lagrangiens exacts transverses dans la symplectisation d’une variété de contact, nous définissons une application m2 en comptant des courbes holomorphes rigides à bord sur les cobordismes et asymptotes à des points d’intersection et à des cordes de Reeb dans les bouts legendriens négatifs des cobordismes. En étudiant les dégénérescences de courbes holomorphes, on montre que m2 satisfait la relation de Leibniz sur les complexes de Floer associés. / We construct a product on the Floer complex associated to a pair of Lagrangian cobordisms. This complex is a quotient complex of the Cthulhu complex defined by Chantraine, Dimitroglou-Rizell, Ghiggini and Golovko. More precisely, given three exact transverse Lagrangian cobordisms in the symplectization of a contact manifold, we define a map m2 by a count of rigid holomorphic curves with boundary on the cobordisms and asymptotic to intersection points and Reeb chords in the negative Legendrian ends of the cobordisms. By studying breakings of holomorphic curves, we prove that m2 satisfy the Leibniz rule on Floer complexes.
|
2 |
Cobordismes Lagrangiens des noeuds LegendriensChantraine, Baptiste January 2009 (has links) (PDF)
Nous proposons et commençons ici l'étude des cobordismes lagrangiens reliant deux noeuds legendriens dans la symplectisation d'une variété de contact (M,ξ). En étudiant l'homomorphisme naturel du groupe des contactomorphismes de (M, ξ) vers les symplectomorphsimes de sa symplectisation, nous démontrons que l'existence d'un tel cobordisme ne dépend que de la classe d'isotopie des noeuds legendriens en question. Nous étudions ensuite le comportement des invariants classiques sous la relation de cobordisme lagrangien. A l'aide de l'inégalité de Bennequin et de ses généralisations, nous étudions les liens existants entre cette relation et la topologie des noeuds, notamment nous obtenons un critère pour calculer le 4-genre d'un noeud dans certaines situations. Nous en concluons notamment une nouvelle preuve de la conjecture locale de Thom. Parmi les applications nous donnons le lien entre les cobordismes lagrangiens et les cobordismes symplectiques via les chirurgies legendriennes. Nous démontrons aussi l'existence d'un homomorphisme induit en homologie de contact incluant cette relation dans le tableau global de la théorie symplectique des champs. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Géométrie de contact et symplectique, Lagrangien, Legendrien, Conjecture locale de Thom, Homologie de contact.
|
3 |
H-cobordismes en géométrie symplectique / H-cobordisms in symplectic geometryCourte, Sylvain 04 June 2015 (has links)
À toute variété de contact, on peut associer canoniquement une variété symplectique appelée sa symplectisation de sorte que la géométrie de contact peut se reformuler en termes de géométrie symplectique équivariante. Au sujet de cette construction fondamentale, une question basique restait ouverte : si deux variété de contact ont des symplectisations isomorphes sont-elles isomorphes ? On construit dans cette thèse des contre-exemples à cette question. Il existe en effet, en toute dimension impaire supérieure ou égale à 5, des variétés de contact non difféomorphes admettant pourtant des symplectisations isomorphes. On construit également, sur une même variété deux structures de contact non conjuguées par un difféomorphisme mais admettant des symplectisations isomorphes. Les démonstrations sont basées sur un phénomène bien connu en topologie différentielle (l'existence de h-cobordismes non triviaux, détectée par la torsion de Whitehead) ainsi que sur des résultats de flexibilité en géométrie symplectique dus à Cieliebak et Eliashberg. Un autre résultat de cette th?e affirme que ces variété de contact, bien que non isomorphes, le deviennent toutefois après un nombre suffisant de sommes connexes avec un produit de sphères. / To any contact manifold one can associate a symplectic manifold called its symplectisation in such a way that contact geometry can be reformulated in terms of equivariant symplectic geometry. Concerning this fundamental construction, a basic question remained open : if two contact manifolds have isomorphic symplectizations, are they isomorphic ? In this thesis, we construct counter-examples to this question. Indeed, in any odd dimension greater than or equal to 5, there exist non-diffeomorphic contact manifolds with isomorphic symplectisations. In addition, we construct two contact structures on a closed manifold that are not conjugate by a diffeomorphism though their symplectizations are isomorphic. The proofs are based on a well-known phenomenon in differential topology (the existence of non-trivial h-cobordisms, detected by Whitehead torsion) as well as flexibility results in symplectic geometry due to Cieliebak and Eliashberg. Another result from this thesis asserts that though these contact manifolds are not isomorphic, they become so after sufficiently many connect sum with a product of spheres.
|
4 |
Quelques propriétés symplectiques des variétés Kählériennes / Some symplectic properties of Kähler manifoldsVérine, Alexandre 28 September 2018 (has links)
La géométrie symplectique et la géométrie complexe sont intimement liées, en particulier par les techniques asymptotiquement holomorphes de Donaldson et Auroux d'une part et par les travaux d’Eliashberget et Cieliebak sur la pseudoconvexité d'autre part. Les travaux présentés dans cette thèse sont motivés par ces deux liens. On donne d’abord la caractérisation symplectique suivante des constantes de Seshadri. Dans une variété complexe, la constante de Seshadri d’une classe de Kähler entière en un point est la borne supérieure des capacités de boules standard admettant, pour une certaine forme de Kähler dans cette classe, un plongement holomorphe et iso-Kähler de codimension 0 centré en ce point. Ce critère était connu de Eckl en 2014 ; on en donne une preuve différente. La deuxième partie est motivée par la question suivante de Donaldson : <<Toute sphère lagrangienne d'une variété projective complexe est-elle un cycle évanescent d'une déformation complexe vers une variété à singularité conique ?>> D'une part, on présente toute sous-variété lagrangienne close d’une variété symplectique/kählérienne close dont les périodes relatives sont entières comme lieu des minima d’une exhaustion <<convexe>> définie sur le complémentaire d'une section hyperplane symplectique/complexe. Dans le cadre kählérien, <<convexe>> signifie strictement plurisousharmonique tandis que dans le cadre symplectique, cela signifie de Lyapounov pour un champ de Liouville. D'autre part, on montre que toute sphère lagrangienne d'un domaine de Stein qui est le lieu des minima d’une fonction <<convexe>> est un cycle évanescent d'une déformation complexe sur le disque vers un domaine à singularité conique. / Symplectic geometry and complex geometry are closely related, in particular by Donaldson and Auroux’s asymptotically holomorphic techniques and by Eliashberg and Cieliebak’s work on pseudoconvexity. The work presented in this thesis is motivated by these two connections. We first give the following symplectic characterisation of Seshadri constants. In a complex manifold, the Seshadri constant of an integral Kähler class at a point is the upper bound on the capacities of standard balls admitting, for some Kähler form in this class, a codimension 0 holomorphic and iso-Kähler embedding centered at this point. This criterion was known by Eckl in 2014; we give a different proof of it. The second part is motivated by Donaldon’s following question: ‘Is every Lagrangian sphere of a complex projective manifold a vanishing cycle of a complex deformation to a variety with a conical singularity?’ On the one hand, we present every closed Lagrangian submanifold of a closed symplectic/Kähler manifold whose relative periods are integers as the lowest level set of a ‘convex’ exhaustion defined on the complement of a symplectic/complex hyperplane section. In the Kähler setting ‘complex’ means strictly plurisubharmonic while in the symplectic setting it refers to the existence of a Liouville pseudogradient. On the other hand, we prove that any Lagrangian sphere of a Stein domain which is the lowest level-set of a ‘convex’ function is a vanishing cycle of some complex deformation over the disc to a variety with a conical singularity.
|
5 |
Constructions de sous-variétés legendriennes dans les espaces de jets d'ordre un de fonctions et fonctions génératrices / Constructions of Legendrian submanifolds in spaces of 1-jets of functions and generating functionsLimouzineau, Maÿlis 21 October 2016 (has links)
Dans cette thèse, on manipule deux types d'objets fondamentaux de la topologie de contact : les sous-variétés legendriennes des espaces de 1-jets de fonctions dé finies sur une variété M, noté J1(M;R), et la notion intimement liée de fonctions génératrices. On étudie des "opérations" que l'on peut faire sur ces objets, c'est-à-dire des procédures qui construisent (génériquement) de nouvelles sous-variétés legendriennes à partir d'anciennes. On dé finit en particulier les opérations somme et convolution des sous-variétés legendriennes, qui sont conjuguées par une transformation de type transformée de Legendre. Nous montrons que ces opérations se refl ètent harmonieusement dans le monde des fonctions génératrices. Ce second point de vue nous conduit en particulier à nous interroger sur l'effet de nos opérations sur le sélecteur, notion classique de géométrie symplectique dont on adapte la construction à ce contexte. Pour fi nir, on se concentre sur l'espace à trois dimensions J1(R;R) et sur les noeuds legendriens qui admettent (globalement) une fonction génératrice. C'est une condition forte sur les sous-variétés legendriennes, que l'on choisit d'étudier en proposant plusieurs constructions explicites. On termine avec l'étude des notions de cobordisme legendrien naturellement associées, où l'opération somme évoquée plus s'avère tenir une place centrale. / This thesis concerns two types of fundamental objects of the contact topology : Legendrian submanifolds in 1-jet spaces of functions de fined on a manifold M, denoted by J1(M;R), and the closed related notion of generating functions. We study "operations" that build (generically) new Legendrian submanifolds from old ones. In particular, we de fined the operations sum and convolution of Legendrian submanifolds, which are linked by a form of the Legendre transform. We show how the operations are well re flected in terms of generating functions. It offers a second point of view and leads us to wonder the effect of our operations on the selector, which is a classical notion of symplectic geometry, and we adapt its construction to this context. Finally, we focus on the three dimensional space J1(R;R) and Legendrian knots which admit a (global) generating function. It is a strong condition for Legendrian submanifolds, and we choose to examine it by proposing several explicit constructions. We conclude by studying the notions of Legendrian cobordism which are naturally related. The operation sum mentioned before finds there a central role.
|
6 |
Extension de l'homomorphisme de Calabi aux cobordismes lagrangiensMailhot, Pierre-Alexandre 09 1900 (has links)
Ce mémoire traite de la construction d’un nouvel invariant des cobordismes lagrangiens. Cette construction est inspirée des travaux récents de Solomon dans lesquels une extension de l’homomorphisme de Calabi aux chemins lagrangiens exacts est donnée. Cette extension fut entre autres motivée par le fait que le graphe d’une isotopie hamiltonienne est un chemin lagrangien exact. Nous utilisons la suspension lagrangienne, qui associe à chaque chemin lagrangien exact un cobordisme lagrangien, pour étendre la construction de Solomon aux cobordismes lagrangiens. Au premier chapitre nous donnons une brève exposition des propriétés élémentaires des variétés symplectiques et des sous-variétés lagrangiennes. Le second chapitre traite du groupe des difféomorphismes hamiltoniens et des propriétés fondamentales de l’homomorphisme de Calabi. Le chapitre 3 est dédié aux chemins lagrangiens, l’invariant de Solomon et ses points critiques. Au dernier chapitre nous introduisons la notion de cobordisme lagrangien et construisons le nouvel invariant pour finalement analyser ses points critiques et l’évaluer sur la trace de la chirurgie de deux courbes sur le tore. Dans le cadre de ce calcul, nous serons en mesure de borner la valeur du nouvel invariant en fonction de l’ombre du cobordisme, une notion récemment introduite par Cornea et Shelukhin. / In this master's thesis, we construct a new invariant of Lagrangian cobordisms. This construction is inspired by the recent works of Solomon in which an extension of the Calabi homomorphism to exact Lagrangian paths is given. Solomon's extension was motivated by the fact that the graph of any Hamiltonian isotopy is an exact Lagrangian path. We use the Lagrangian suspension construction, which associates to every exact Lagrangian path a Lagrangian cobordism, to extend Solomon's invariant to Lagrangian cobordisms. In the first chapter, we give a brief introduction to the elementary properties of symplectic manifolds and their Lagrangian submanifolds. In the second chapter, we present an introduction to the group of Hamiltonian diffeomorphisms and discuss the fundamental properties of the Calabi homomorphism. Chapter 3 is dedicated to Lagrangian paths, Solomon's invariant and its critical points. In the last chapter, we introduce the notion of Lagrangian cobordism and we construct the new invariant. We analyze its critical points and evaluate it on the trace of the Lagrangian surgery of two curves on the torus. In this setting we further bound the new invariant in terms of the shadow of the cobordism, a notion recently introduced by Cornea and Shelukhin.
|
7 |
Groupes de cobordisme lagrangien immergé et structure des polygones pseudo-holomorphesPerrier, Alexandre 12 1900 (has links)
No description available.
|
8 |
Homomorphismes de type Johnson pour les surfaces et invariant perturbatif universel des variétés de dimension trois / Johnson-type homomorphisms for surfaces and the universal perturbative invariant of 3-manifoldsVera Arboleda, Anderson Arley 28 June 2019 (has links)
Soit Σ une surface compacte connexe orientée avec une seule composante du bord. Notons par M le groupe d'homéotopie de Σ. En considérant l'action de M sur le groupe fondamental de Σ, il est possible de définir différentes filtrations de M ainsi que des homomorphismes sur chaque terme de ces filtrations. Le but de cette thèse est double. En premier lieu, nous étudions deux filtrations de M : la " filtration de Johnson-Levine " introduite par Levine et la " filtration de Johnson alternative " introduite recemment par Habiro et Massuyeau. Les définitions de ces deux filtrations prennent en compte un corps en anses bordé par la surface. Nous nous référons à ces filtrations comme " filtrations de type Johnson " et les homomorphismes correspondants sont appelés " homomorphismes de type Johnson " par leur analogie avec la filtration de Johnson originale et les homomorphismes de Johnson usuels. Nous donnons une comparaison de la filtration de Johnson avec la filtration de Johnson-Levine au niveau du monoïde des cobordismes d'homologie de Σ. Nous donnons également une comparaison entre la filtration de Johnson alternative, la filtration Johnson-Levine et la filtration de Johnson au niveau du groupe d'homéotopie. Deuxièmement, nous étudions la relation entre les " homomorphismes de type Johnson" et l'extension fonctorielle de l'invariant perturbatif universel des variétés de dimension trois (l'invariant de Le-Murakami-Ohtsuki ou invariant LMO). Cette extension fonctorielle s'appelle le foncteur LMO et il prend ses valeurs dans une catégorie de diagrammes. Nous démontrons que les "homomorphismes de type Johnson " peuvent être lus dans la réduction arborée du foncteur LMO. En particulier, cela fournit une nouvelle grille de lecture de la réduction arborée du foncteur LMO. / Let Σ be a compact oriented surface with one boundary component and let M denote the mapping class group of Σ. By considering the action of M on the fundamental group of Σ it is possible to define different filtrations of M together with some homomorphisms on each term of the filtrations. The aim of this thesis is twofold. First, we study two filtrations of M : the « Johnson-Levine filtration » introduced by Levine and « the alternative Johsnon filtration » introduced recently by Habiro and Massuyeau. The definition of both filtrations involve a handlebody bounded by Σ. We refer to these filtrations as ≪ Johnson-type filtrations » and the corresponding homomorphisms have referred to as « Johnson-type homomorphisms » by their analogy with the original Johnson filtration and the usual Johnson homomorphisms. We provide a comparison of the Johnson filtration with the Johnson-Levine filtration at the level of the monoid of homology cobordisms of Σ. We also provide a comparison of the alternative Johnson filtration with the Johnson-Levine filtration and the Johnson filtration at the level of the mapping class group. Secondly, we study the relationship between the « Johnson-type homomorphisms » and the functorial extension of the universal perturbative invariant of 3-manifolds (the Le-Murakami-Ohtsuki invariant or LMO invariant). This functorial extension is calling the LMO functor and it takes values in a category of diagrams. We prove that the « Johnson-type homomorphisms » is in the tree reduction of the LMO functor. In particular, this provides a new reading grid of the tree reduction of the LMO functor.
|
9 |
Cobordismes lagrangiens et uniréglageLétourneau, Vincent 11 1900 (has links)
Ce mémoire traite de la question suivante: est-ce que les cobordismes lagrangiens préservent l'uniréglage? Dans les deux premiers chapitres, on présente en survol la théorie des courbes pseudo-holomorphes nécessaire. On examine d'abord en détail la preuve que les espaces de courbes $ J $-holomorphes simples est une variété de dimension finie. On présente ensuite les résultats nécessaires à la compactification de ces espaces pour arriver à la définition des invariants de Gromov-Witten. Le troisième chapitre traite ensuite de quelques résultats sur la propriété d'uniréglage, ce qu'elle entraine et comment elle peut être démontrée. Le quatrième chapitre est consacré à la définition et la description de l'homologie quantique, en particulier celle des cobordismes lagrangiens, ainsi que sa structure d'anneau et de module qui sont finalement utilisées dans le dernier chapitre pour présenter quelques cas ou la conjecture tient. / In this dissertation we study the following question: do Lagrangian cobordisms preserve uniruling? In the two first chapters, the necessary pseudoholomorphic curves theory is quickly presented. We first study in detail the proof that the spaces of simple $ J $-holomorphic curves is a manifold of finite dimension. We then present the necessary results to produce the appropriate compactification of these spaces to get to the definition of Gromov-Witten invariants. In the third chapter then some results on the property of uniruling are presented: what are its consequences, how can it be obtained. In the fourth chapter quantum homology is defined, in particular for Lagrangian cobordism, and its ring and module structures are studied which are finally used in the last chapter to present examples of cobordisms which preserves uniruling.
|
10 |
Fukaya categories of Lagrangian cobordisms and dualityCampling, Emily 11 1900 (has links)
No description available.
|
Page generated in 0.0475 seconds