31 |
Computational Complexity and Delay Reduction for RLNC Single and Multi-hop CommunicationsTasdemir, Elif 20 March 2023 (has links)
Today’s communication network is changing rapidly and radically. Demand for low latency, high reliability and low energy consumption increases as well the variety of characteristics of the connected devices. It is also expected that the number of connected devices will be massive in coming years. Some devices will be connected to the new generation base stations directly, while some of them will be connected through other devices via multi-hops. Reliable communication between these massive devices can be done via re-transmission, repetition of packets several times or via Forward Error Correction (FEC). In re-transmission method, when packets are negatively acknowledged or the sender’s acknowledgment timer expires, packets are re-transmitted. In repetition method, every packet can be send several times. Both aforementioned methods can cause a huge delay, particularly, in multi-hop network. On the contrary of these methods, FEC methods are preferred for low latency applications. Source information are transmitted together with redundant information. Hence, the number of transmissions are reduced comparing to the methods mentioned above.
Random Linear Network Coding (RLNC) is a packet level erasure correcting codes which aims to reduce latency. Specifically, source packets are combined and these combinations or coded packets are sent to the destination. Lost packets do no need to be re-sent since another coded packet can be substituted to the lost coded packet. Hence, the feedback mechanism and re-sending process becomes unnecessary. There are many variations of RLNC. One variation is called sliding window RLNC which apples FEC mechanism. This coding scheme achieves low latency via interleaved coded packets in between source packets. Another variation of the RLNC is Fulcrum, which is a versatile code. Fulcrum provides three different decoding options. Received coded packets can be decoded with low, high or middle complexity. This is a very important feature since connected devices will have different computation capabilities and proving a versatile code will allow them flexibility.
Although the aforementioned coding schemes are well suited to error prone network, there are still remaining challenges need to be studied. For instance, Fulcrum RLNC has high encoding and decoding complexity which increase the computation time and energy consumption. Moreover, although original Fulcrum RLNC strengths the reliability, it needs to be improved for low latency applications. Another remaining challenges is that recoding strategy of RLNC is not optimal for low latency. Allowing the intermediate nodes to combine received packets is referred as recoding. As described earlier, data packets will pass many hops until they reach destination. Therefore, compute-and-forward paradigm will be preferred rather than store-and-forward. Although recoding capability of RLNC differs it from other coding schemes (Raptor, LT), the conventional way of recoding is not efficient for low latency. Hence, the aim of this thesis is to address the aforementioned remaining challenges.
One way to address the remaining challenges is to employ sparsity. In other words, a few source packets can be combined rather than a large set of source packets to generate coded packets. Particularly, a dynamic sparse mechanism is proposed to vary the number of combined source packets during the encoding without a signaling between sender and receiver for Fulcrum RLNC to speed up encoding and decoding process without increasing overhead amount. Then, two different sliding window schemes were integrated into Fulcrum RLNC to make Fulcrum RLNC gain the low latency property. Sending source packets systematically and then spreading sparse coded packets in between systematic source packets can be referred as systematic sparsity. Moreover, different sparse and systematic recoding strategies have been proposed in this thesis to lower the delay and computation time at the intermediate nodes and destination. Finally, one of the proposed recoding strategy has been applied to the vehicle platooning scenario to increase reliability. All proposed coding schemes were analyzed and performed on KODO which is well known network coding library.
|
32 |
Lernen mit dynamisch-ikonischen Repräsentationen aufgezeigt an Inhalten zur Mechanik / Learning from dynamic-iconic representationsGalmbacher, Matthias January 2007 (has links) (PDF)
Im Physikunterricht wurde lange Zeit die Bedeutung quantitativer Zusammenhänge für das Physiklernen überbewertet, qualitative Zusammenhänge spielten dagegen eine eher untergeordnete Rolle. Dies führte dazu, dass das Wissen der Schüler zumeist oberflächlich blieb und nicht auf neue Situationen angewendet werden konnte. TIMSS und Pisa offenbarten diese Schwierigkeiten. In den Abschlussberichten wurde kritisiert, dass die Schüler kaum in der Lage seien, Lernstoff zu transferieren oder problemlösend zu denken. Um physikalische Abläufe deuten und entsprechende Probleme lösen zu können, ist qualitativ-konzeptuelles Wissen nötig. Dieses kann, wie Forschungsergebnisse belegen, am besten durch die konstruktivistisch motivierte Gestaltung von Lernsituationen sowie durch die Integration externer Repräsentationen von Versuchsaussagen in den Schulunterricht erreicht werden. Eine konkrete Umsetzung dieser Bedingungen stellt der Einsatz rechnergestützter Experimente dar, der heutzutage ohne allzu großen technischen Aufwand realisiert werden kann. Diese Experimente erleichtern es dem Lernenden, durch den direkten Umgang mit realen Abläufen, physikalische Konzepte zu erschließen und somit qualitative Zusammenhänge zu verstehen. Während man lange Zeit von einer grundsätzlichen Lernwirksamkeit animierter Lernumgebungen ausging, zeigen dagegen neuere Untersuchungen eher Gegenteiliges auf. Schüler müssen offensichtlich erst lernen, wie mit multicodierten Repräsentationen zu arbeiten ist. Die vorliegende Arbeit will einen Beitrag dazu leisten, herauszufinden, wie lernwirksam sogenannte dynamisch-ikonische Repräsentationen (DIR) sind, die physikalische Größen vor dem Hintergrund konkreter Versuchsabläufe visualisieren. Dazu bearbeiteten im Rahmen einer DFG-Studie insgesamt 110 Schüler jeweils 16 Projekte, in denen mechanische Konzepte (Ort, Geschwindigkeit, Beschleunigung und Kraft) aufgegriffen wurden. Es zeigte sich, dass die Probanden mit den eingesetzten DIR nicht erfolgreicher lernen konnten als vergleichbare Schüler, die die gleichen Lerninhalte ohne die Unterstützung der DIR erarbeiteten. Im Gegenteil: Schüler mit einem geringen visuellen Vorstellungsvermögen schnitten aufgrund der Darbietung einer zusätzlichen Codierung schlechter ab als ihre Mitschüler. Andererseits belegen Untersuchungen von Blaschke, dass solche Repräsentationen in der Erarbeitungsphase einer neu entwickelten Unterrichtskonzeption auch und gerade von schwächeren Schülern konstruktiv zum Wissenserwerb genutzt werden konnten. Es scheint also, dass die Lerner zunächst Hilfe beim Umgang mit neuartigen Repräsentationsformen benötigen, bevor sie diese für den weiteren Aufbau adäquater physikalischer Modelle nutzen können. Eine experimentelle Untersuchung mit Schülern der 10. Jahrgangsstufe bestätigte diese Vermutung. Hier lernten 24 Probanden in zwei Gruppen die mechanischen Konzepte zu Ort, Geschwindigkeit und Beschleunigung kennen, bevor sie im Unterricht behandelt wurden. Während die Teilnehmer der ersten Gruppe nur die Simulationen von Bewegungsabläufen und die zugehörigen Liniendiagramme sahen, wurden für die zweite Gruppe unterstützend DIR eingesetzt, die den Zusammenhang von Bewegungsablauf und Liniendiagramm veranschaulichen sollten. In beiden Gruppen war es den Probanden möglich, Fragen zu stellen und Hilfe von einem Tutor zu erhalten. Die Ergebnisse zeigten auf, dass es den Schülern durch diese Maßnahme ermöglicht wurde, die DIR erfolgreich zum Wissenserwerb einzusetzen und signifikant besser abzuschneiden als die Teilnehmer in der Kontrollgruppe. In einer weiteren Untersuchung wurde abschließend der Frage nachgegangen, ob DIR unter Anleitung eines Tutors eventuell bereits in der Unterstufe sinnvoll eingesetzt werden können. Ausgangspunkt dieser Überlegung war die Tatsache, dass mit der Einführung des neuen bayerischen G8-Lehrplans wesentliche Inhalte, die Bestandteil der vorherigen Untersuchungen waren, aus dem Physikunterricht der 11. Jgst. in die 7. Jahrgangsstufe verlegt wurden. So bot es sich an, mit den Inhalten auch die DIR in der Unterstufe einzusetzen. Die Untersuchungen einer quasiexperimentellen Feldstudie in zwei siebten Klassen belegten, dass die betrachteten Repräsentationen beim Aufbau entsprechender Konzepte keinesfalls hinderlich, sondern sogar förderlich sein dürften. Denn die Schülergruppe, die mit Hilfe der DIR lernte, schnitt im direkten hypothesenprüfenden Vergleich mit der Kontrollklasse deutlich besser ab. Ein Kurztest, der die Nachhaltigkeit des Gelernten nach etwa einem Jahr überprüfen sollte, zeigte zudem auf, dass die Schüler der DIR-Gruppe die Konzepte, die unter Zuhilfenahme der DIR erarbeitet wurden, im Vergleich zu Schülern der Kontrollklasse und zu Schülern aus 11. Klassen insgesamt überraschend gut verstanden und behalten hatten. / For a long time the significance of quantitative interrelations for the acquisition of physics has been overestimated in physics education while qualitative interrelations have been considered of less importance. This has resulted in the students’ knowledge most often remaining superficial and not suited to be adapted to new situations. TIMSS and Pisa have revealed these difficulties, criticizing the conventional physics education for demanding too little transfer achievements and not preparing students to solve physical problems on their own by thinking constructively. To be able to solve physical problems and interpret physical processes, qualitative-conceptual knowledge is vital. According to results of the latest research this can be achieved most efficiently by creating constructivist learning situations as well as integrating external representations of conclusions from experiments. A concrete way to reach these envisaged aims is the application of PC-assisted experiments, which can be put in practise without an exceeding technical effort. These experiments enable the students - by being directly confronted with a realistic process - to get insight into physical concepts and thus to understand qualitative interrelations. For a long time a basic learning efficiency of animated learning environments was assumed, more recent research, however, has rather pointed in the opposite direction. Obviously students must first learn how to work with multi-coded representations. This paper is intended to contribute to the exploration of the efficiency of the so-called dynamic-iconic representations (DIR), which visualize physical values against the background of concrete test procedures. For this purpose 110 students have covered 16 projects each within a DFG study, in which mechanical concepts (place, velocity, acceleration and force) are dealt with and developed further. As it turned out, students working with the dynamic-iconic representations did not learn more efficiently than those working without the assistance of the dynamic-iconic representations. On the contrary: students with a less distinct visual-spatial ability did worse than their fellow-students, obviously due to the presentation of yet another encoding. On the other hand research by Blaschke has proven that such representations can be used constructively to gain knowledge especially by the inefficient students during the acquisition stages of a (newly-developed) teaching conception. Consequently, it seems that students must first receive some sort of assistance with handling novel forms of representation before being able to use them for getting to know about the further construction of physical models. An experimental study with participants from tenth-grade high school classes has confirmed this assumption. Another study dealt with the question as to whether dynamic-iconic representations can already be applied expediently in the lower grade. It was performed because significant contents of the physics year 11 curriculum had been moved to year 7 with the introduction of the new Bavarian G8 (eight-year high school) curriculum. Thus it seemed advisable to apply the dynamic-iconic representations along with the contents in the lower grade. The research done in a quasi experimental field study has shown that the representations in question are by no means obstructive, but in parts conducive to the students’ ability to develop corresponding conceptions. This can be seen from the fact that the group of students learning with the assistance of dynamic-iconic representations did indeed considerably better than the ‘control group’. With its results this paper is supposed to contribute to a better understanding of the application of multimedia learning environments. The medium alone cannot induce meaningful learning processes – these processes must be well-structured and start as soon as possible, so that they can teach the students to deal with the different encodings sensibly. I am convinced that this is the only way the various possibilities our current IT age offers us with its multimedia worlds or multi-coded learning environments can be used efficiently.
|
33 |
Sensory coding in natural environmentsMachens, Christian 23 January 2002 (has links)
Sinnessysteme erfassen und verarbeiten staendig die vielfaeltigen und komplexen Reize der Umwelt. Um die funktionellen Eigenschaften eines solchen Systems zu untersuchen, verwendet man jedoch oft relativ einfache, abstrakte Reize. Diese Reize erlauben aber meist nicht, die Funktion des Systems im Verhaltenskontext zu interpretieren. Ferner erhaelt man durch einfache Reize im allgemeinen eine unvollstaendige Beschreibung des Systems. Innerhalb dieser Arbeit zeige ich exemplarisch am Beispiel von auditorischen Rezeptorneuronen von Heuschrecken, wie man natuerliche Stimuli einsetzen kann, um die sensorische Codierung zu untersuchen.Heuschrecken verwenden akustische Kommunikation zur Partnerfindung und -auswahl. Dabei sind die Weibchen hochselektiv bei der Wahl eines Maennchens. Von besonderem Interesse ist daher, inwieweit Informationen ueber Unterschiede zwischen Maennchengesaengen durch die auditorischen Rezeptoren des Weibchens erhalten werden. Wie in der Arbeit gezeigt wird, liefern selbst einzelne Rezeptorneuronen hinreichend Information, um selbst kleine Unterschiede zwischen den Maennchengesaengen zu erkennen. Diese erstaunliche Aufloesung der Gesaenge dient vermutlich der Auswahl von genetisch hochwertigen Partnern. Ferner wird gezeigt, dass auditorische Rezeptoren nicht allgemein viel Information ueber Stimuli liefern, sondern auf spezifische Zeitskalen und Strukturen der natuerlichen Stimuli optimiert sind. Falls sensorische Systeme generell gut auf die jeweilig verhaltensrelevanten Stimuli abgestimmt sind, so kann man diese Stimuli auch automatisch finden. Im letzten Teil der Arbeit wird ein Online-Algorithmus vorgestellt, der dieses Ziel unter Verwendung informationstheoretischer Prinzipien erreicht. Dieser Algorithmus kann in Zukunft dazu dienen, die Effizienz elektrophysiologischer Experimente in beliebigen Systemen zu erhoehen. / In their natural environment, sensory systems process a wealth of complex stimuli. In contrast, most experimental tests of sensory systems employ simple stimuli that can be described by one or two parameters. However, these simple stimuli do usually not allow to relate the function of a specific system to an animal's behaviour. Furthermore, in many cases a complete characterisation of a sensory system cannot be achieved by simple stimuli alone. Within this thesis, I demonstrate how one can employ natural stimuli to study aspects of sensory coding. Grasshoppers use acoustic communication for mate detection and selection. Females show preferences for certain "qualities" of the signals produced by different conspecific males. In this thesis, I investigated how much information female grasshoppers obtain about differences between the mating songs of males. Already single auditory receptor neurons of female grasshoppers encode sufficient information to distinguish even fine variations of male songs. Presumably, this astonishing resolution is needed to single out males of high genetic quality. Furthermore, I show that the ensemble of stimuli that best explores the coding regime of a given receptor has features and time scales that are typical for grasshopper songs. If a close match between the behaviourally relevant stimuli and the sensory system is an evolutionary design principle, then one can extract the relevant stimuli from a given system without prior knowledge. In the last part of the thesis, an online algorithm is introduced, that achieves this goal using information-theoretic principles. This algorithm might help to improve the performance of experiments within the limited time of an electrophysiological recording session.
|
34 |
Network Coding Strategies for Multi-Core ArchitecturesWunderlich, Simon 09 November 2021 (has links)
Random Linear Network Coding (RLNC) is a new coding technique which can provide higher reliability and efficiency in wireless networks. Applying it on the fifth generation of cellular networks (5G) is now possible due to the softwarization approach of the 5G architecture. However, the complex computations necessary to encode and decode symbols in RLNC are limiting the achievable throughput and energy efficiency on todays mobile computers.
Most computers, phones, TVs, or network equipment nowadays come with multiple, possibly heteregoneous (i.e. slow low-power and fast high-power) processing cores. Previous multi core research focused on RLNC optimization for big data chunks which are useful for storage, however network operations tend to use smaller packets (e.g. Ethernet MTUs of 1500 byte) and code over smaller generations of packets. Also latency is an increasingly important performance aspect in the upcoming Tactile Internet, however latency has received only small attention in RLNC optimization so far. The primary research question of my thesis is therefore how to optimize throughput and delay of RLNC on todays most common computing architectures. By fully leveraging the resources of todays consumer electronics hardware, RLNC can be practically adopted in todays wireless systems with just a software update and improve the network efficiency and user experience.
I am generally following a constructive approach by introducing algorithms and methods, and then demonstrating their performance by benchmarking actual implementations on common consumer electronics hardware against the state of the art. Inspired by linear algebra parallelization methods used in high performance computers (HPC), I’ve developed a RLNC encoder/decoder which schedules matrix block tasks for multiple cores using a directed acyclic graph (DAG) based on data dependencies between the tasks. A non-progressive variant works with pre-computed DAG schedules which can be re-used to push throughput even higher. I’ve also developed a progressive variant which can be used to minimize latency. Both variants are achieving higher throughput performance than the fastest currently known RLNC decoder, with up to three times the throughput for small generation size and short packets. Unlike previous approaches, they can utilize all cores also on heterogeneous architectures. The progressive decoder greatly reduces latency while allowing to keep a high throughput, reducing the latency up to a factor ten compared to the non-progressive variant.
Progressive decoders need special low-delay codes to release packets early instead of waiting for more dependent packets from the network. I'm introducing Caterpillar RLNC (CRLNC), a sliding window code using a fixed sliding window over a stream of packets. CRLNC can be implemented on top of a conventional generation based RLNC decoder. CRLNC combines the resilience against packet loss and fixed resource boundaries (number of computations and memory) of conventional generation based RLNC decoders with the low delay of an infinite sliding window decoder.
The DAG RLNC coders and the Caterpillar RLNC method together provide a powerful toolset to practically enable RLNC in 5G or other wireless systems while achieving high throughput and low delay as required by upcoming immersive and machine control applications.:1 Introduction
2 Background and Related Work
2.1 Network Delay
2.2 Network Coding Basics
2.3 RLNC Optimization for Throughput
2.3.1 SIMD Optimization
2.3.2 Block Operation
Increasing Cache Efficieny with Subblocking
2.3.3 Optimizing Matrix Computations
2.4 Progressive RLNC Decoders
2.5 Sliding Window RLNC
3 Optimized RLNC Parallelization with Scheduling Graphs
3.1 Offline Directed Acyclic Graph (DAG) Scheduling
3.1.1 Blocked LU Matrix Inversion
3.1.2 Scheduling on a DAG
3.1.3 Phase 1: DAG Recording
3.1.4 Phase 2: DAG Schedule Execution
3.1.5 DAG Scheduling vs. Conventional Multithreading
3.1.6 Task Size Considerations
3.1.7 Scheduling Strategies
First Task Strategy
Task Dependency Strategy
Data Locality Strategy
Combined Task Dependency and Data Locality Strategy
3.2 Online DAG Scheduling
3.2.1 Online DAG Operation
Forward Elimination
Backward Substitution
Row Swapping
3.2.2 Scheduling on an Online DAG
Data Dependency Traversal
Online DAG Creating and Task Delegation
3.2.3 Optimizations
Stripe Optimization
Full Rows Optimization
3.3 Evaluation Setup
3.3.1 Multicore Boards
ODROID-XU3
ODROID-XU4
ODROID-XU+E
Cubieboard 4
Raspberry Pi 2 Model B
3.3.2 Evaluation Parameters
Parameter Settings
Matrix Types
3.3.3 Performance Metrics
Throughput
Delay
Energy
3.3.4 Evaluation Methodology
3.4 Evaluation Results
3.4.1 Block Size b
3.4.2 Comparison of Scheduling Strategies
3.4.3 Single Thread Throughput
3.4.4 Multi Thread Throughput
3.4.5 Comparison of Multicore Boards
3.4.6 Energy Consumption
3.4.7 Online DAG vs. Offline DAG Throughput
3.4.8 DAG vs Progressive CD
3.4.9 Delay
3.4.10 Trading Throughput with Delay
3.4.11 Sparse Coefficient Matrices in Online DAG
4 Sliding Window - Caterpillar RLNC (CRLNC)
4.1 CRLNC Overview
4.2 CRLNC Packet Format And Encoding
4.3 CRLNC Decoding
4.3.1 Shifting the Row Echelon Form
Same sequence number: s_p = s_d
New Packet: s_p > s_d
Old Packet: s_p < s_d
4.3.2 Larger Decoding Windows: w_d > w_e
4.3.3 CRLNC Decoding Storage and Computing Requirements
4.4 CRLNC Evaluation
4.4.1 Performance Metrics
Packet Loss Probability
In-Order Packet Delay
4.4.2 Evaluation Methodology
4.5 Evaluation Results
4.5.1 Packet Loss Probability
4.5.2 In-Order Packet Delay
4.5.3 Tradeoffs for Larger Decoding Windows
4.5.4 Computation Complexity
5 Summary and Conclusion
List of Publications
Bibliography
|
35 |
Usecase Driven Evolution of Network Coding Parameters Enabling Tactile Internet ApplicationsLatzko, Vincent, Vielhaus, Christian, Fitzek, Frank H. P. 01 June 2021 (has links)
Present-day and future network protocols that include and implement Forward Error Correction are configurable by internal parameters, typically incorporating expert knowledge to set up.We introduce a framework to systematically, objectively and efficiently determine parameters for Random Linear Network Codes (RLNC). Our approach uses an unbiased, consistent simulator in an optimization loop and utilizes a customizable, powerful and extendable parametric loss function. This allows to tailor existing protocols to various use cases, including ultra reliable, low latency communication (URLLC) codes. Successful configurations exploring the search space are under evolutionary pressure and written into a database for instant retrieval. We demonstrate three examples, Full Vector Coding, tail RLNC, and PACE with different focus for each.
|
36 |
Multifunctional Droplet-based Micro-magnetofluidic DevicesLin, Gungun 23 August 2016 (has links) (PDF)
Confronted with the global demographic changes and the increasing pressure on modern healthcare system, there has been a surge of developing new technology platforms in the past decades. Droplet microfluidics is a prominent example of such technology platforms, which offers an efficient format for massively parallelized screening of a large number of samples and holds great promise to boost the throughput and reduce the costs of modern biomedical activities. Despite recent achievements, the realization of a compact and generic screening system which is suited for resource-limited settings and point-of-care applications remains elusive.
To address the above challenges, the dissertation focuses on the development of a compact multifunctional droplet micro-magnetofluidic system by exploring the advantages of magnetic in-flow detection principles. The methodologies behind a novel technique for biomedical applications, namely, magnetic in-flow cytometry have been put forth, which encompass magnetic indexing schemes, quantitative multiparametric analytics and magnetically-activated sorting. A magnetic indexing scheme is introduced and intrinsic to the magnetofluidic system. Two parameters characteristic of the magnetic signal when detecting magnetically functionalized objects, i.e. signal amplitude and peak width, providing information which is necessary to perform quantitative analysis in the spirit of optical cytometry has been proposed and realized. Magnetically-activated sorting is demonstrated to actively select individual droplets or to purify a population of droplets of interest. Together with the magnetic indexing scheme and multiparametric analytic technique, this functionality synergistically enables controlled synthesis, quality administration and screening of encoded magnetic microcarriers, which is crucial for the practical realization of magnetic suspension arrays technologies. Furthermore, to satisfy the needs of cost-efficient fabrication and high-volume delivery, an approach to fabricate magnetofluidic devices on flexible foils is demonstrated. The resultant device retains high performance of its rigid counterpart and exhibits excellent mechanical properties, which promises long-term stability in practical applications.
|
37 |
Psychophysical characterization of single neuron stimulation effects in rat barrel cortexDoron, Guy 21 June 2013 (has links)
Die Aktionspotential (AP) -Aktivität einzelner kortikaler Neuronen kann messbare sensorische Effekte hervorrufen. Es ist jedoch nicht bekannt, wie AP-Sequenzen Parameter und spezifische neuronale Subtypen die hervorgerufenen Sinnesempfindungen beeinflussen. Hier haben wir einen ‘Reverse-Physiology‘ Ansatz angewendet, um die Beziehung zwischen der Aktivität einzelner Neuronen und der Empfindung zu untersuchen. Zunächst wird der Prozess der Nanostimulation, eine von der juxtazellulären Markierungstechnik abgeleiteten Einzelzell-Stimulationsmethode, detailliert beschrieben. Nanostimulation ist einfach anzuwenden und kann auf eine Vielzahl von identifizierbaren Neuronen in narkotisierten und wachen Tieren angewandt werden. Wir beschreiben die Aufnahmetechnik und die elektrische Konfiguration für Nanostimulation. Während eine exakte zeitliche Bestimmung der AP nicht erreicht wurde, konnten Frequenz und Anzahl der AP parametrisch kontrolliert werden. Wir zeigen, dass Nanostimulation auch angewendet werden kann, um sensorische Reaktionen in identifizierbaren Neuronen selektiv zu inhibieren. Als nächstes haben wir untersucht wie sich die Frequenz und Anzahl der AP sowie die Regelmäßigkeit der Pulsfolge auf die Detektion von Einzelzell-Stimulationen im somatosensorischen Kortex von Ratten auswirken. Für mutmaßlichen erregende regular-spiking Neuronen erhöhte sich die Nachweisbarkeit mit abnehmender Frequenz und Anzahl der AP. Die Stimulation einzelner, mutmaßlichen inhibitorischer und schnell feuernder Neuronen führte zu wesentlich stärkeren sensorischen Effekten, die unabhängig von Frequenz und Anzahl der AP waren. Außerdem fanden wir heraus, dass Unregelmäßigkeiten der Pulsfolge die sensorischen Effekte von putativ erregenden Neuronen stark erhöhten. Diese Unregelmäßigkeiten wurden in durchschnittlich 8% der Durchgänge festgestellt. Unsere Daten deuten darauf hin, dass das es auf Verhaltnisebene eine große Sensivität für kortikale AP und deren zeitlichen Abfolge gibt. / The action potential (AP) activity of single cortical neurons can evoke measurable sensory effects, but it is not known how spiking parameters and specific neuronal subtypes affect the evoked sensations. Here we applied a reverse physiology approach to investigate the relationship between single neuron activity and sensation. First, we provide a detailed description of the procedures involved in nanostimulation, a single-cell stimulation method derived from the juxtacellular labeling technique. Nanostimulation is easy to apply and can be directed to a wide variety of identifiable neurons in anesthetized and awake animals. We describe the recording approach and the parameters of the electric configuration underlying nanostimulation. While exact AP timing has not been achieved, AP frequency and AP number can be parametrically controlled. We demonstrate that nanostimulation can also be used to selectively inhibit sensory responses in identifiable neurons. Next, we examined the effects of AP frequency, AP number and spike train regularity on the detectability of single-cell stimulation in rat somatosensory cortex. For putative excitatory, regular spiking neurons detectability increased with decreasing AP frequencies and decreasing AP numbers. Stimulation of single putative inhibitory, fast spiking neurons led to much larger sensory effects that were not dependent on AP frequency and AP number. In addition, we found that spike train irregularity greatly increased the sensory effects of putative excitatory neurons, with irregular spike trains being detected in on average 8% of trials. Our data suggest that the behaving animal is extremely sensitive to cortical APs and their temporal patterning.
|
38 |
Compute-and-Forward in Multi-User Relay NetworksRichter, Johannes 25 July 2017 (has links) (PDF)
In this thesis, we investigate physical-layer network coding in an L × M × K relay network, where L source nodes want to transmit messages to K sink nodes via M relay nodes. We focus on the information processing at the relay nodes and the compute-and-forward framework. Nested lattice codes are used, which have the property that every linear combination of codewords is a valid codeword. This property is essential for physical-layer network coding.
Because the actual network coding occurs on the physical layer, the network coding coefficients are determined by the channel realizations. Finding the optimal network coding coefficients for given channel realizations is a non-trivial optimization problem. In this thesis, we provide an algorithm to find network coding coefficients that result in the highest data rate at a chosen relay. The solution of this optimization problem is only locally optimal, i.e., it is optimal for a particular relay. If we consider a multi-hop network, each potential receiver must get enough linear independent combinations to be able to decode the individual messages. If this is not the case, outage occurs, which results in data loss. In this thesis, we propose a new strategy for choosing the network coding coefficients locally at the relays without solving the optimization problem globally.
We thereby reduce the solution space for the relays such that linear independence between their decoded linear combinations is guaranteed. Further, we discuss the influence of spatial correlation on the optimization problem. Having solved the optimization problem, we combine physical-layer network coding with physical-layer secrecy. This allows us to propose a coding scheme to exploit untrusted relays in multi-user relay networks. We show that physical-layer network coding, especially compute-and-forward, is a key technology for simultaneous and secure communication of several users over an untrusted relay. First, we derive the achievable secrecy rate for the two-way relay channel. Then, we enhance this scenario to a multi-way relay channel with multiple antennas.
We describe our implementation of the compute-and-forward framework with software-defined radio and demonstrate the practical feasibility. We show that it is possible to use the framework in real-life scenarios and demonstrate a transmission from two users to a relay. We gain valuable insights into a real transmission using the compute-and-forward framework. We discuss possible improvements of the current implementation and point out further work. / In dieser Arbeit untersuchen wir Netzwerkcodierung auf der Übertragungsschicht in einem Relay-Netzwerk, in dem L Quellen-Knoten Nachrichten zu K Senken-Knoten über M Relay-Knoten senden wollen. Der Fokus dieser Arbeit liegt auf der Informationsverarbeitung an den Relay-Knoten und dem Compute-and-Forward Framework. Es werden Nested Lattice Codes eingesetzt, welche die Eigenschaft besitzen, dass jede Linearkombination zweier Codewörter wieder ein gültiges Codewort ergibt. Dies ist eine Eigenschaft, die für die Netzwerkcodierung von entscheidender Bedeutung ist.
Da die eigentliche Netzwerkcodierung auf der Übertragungsschicht stattfindet, werden die Netzwerkcodierungskoeffizienten von den Kanalrealisierungen bestimmt. Das Finden der optimalen Koeffizienten für gegebene Kanalrealisierungen ist ein nicht-triviales Optimierungsproblem. Wir schlagen in dieser Arbeit einen Algorithmus vor, welcher Netzwerkcodierungskoeffizienten findet, die in der höchsten Übertragungsrate an einem gewählten Relay resultieren. Die Lösung dieses Optimierungsproblems ist zunächst nur lokal, d. h. für dieses Relay, optimal. An jedem potentiellen Empfänger müssen ausreichend unabhängige Linearkombinationen vorhanden sein, um die einzelnen Nachrichten decodieren zu können. Ist dies nicht der Fall, kommt es zu Datenverlusten. Um dieses Problem zu umgehen, ohne dabei das Optimierungsproblem global lösen zu müssen, schlagen wir eine neue Strategie vor, welche den Lösungsraum an einem Relay soweit einschränkt, dass lineare Unabhängigkeit zwischen den decodierten Linearkombinationen an den Relays garantiert ist. Außerdem diskutieren wir den Einfluss von räumlicher Korrelation auf das Optimierungsproblem.
Wir kombinieren die Netzwerkcodierung mit dem Konzept von Sicherheit auf der Übertragungsschicht, um ein Übertragungsschema zu entwickeln, welches es ermöglicht, mit Hilfe nicht-vertrauenswürdiger Relays zu kommunizieren. Wir zeigen, dass Compute-and-Forward ein wesentlicher Baustein ist, um solch eine sichere und simultane Übertragung mehrerer Nutzer zu gewährleisten. Wir starten mit dem einfachen Fall eines Relay-Kanals mit zwei Nutzern und erweitern dieses Szenario auf einen Relay-Kanal mit mehreren Nutzern und mehreren Antennen.
Die Arbeit wird abgerundet, indem wir eine Implementierung des Compute-and-Forward Frameworks mit Software-Defined Radio demonstrieren. Wir zeigen am Beispiel von zwei Nutzern und einem Relay, dass sich das Framework eignet, um in realen Szenarien eingesetzt zu werden. Wir diskutieren mögliche Verbesserungen und zeigen Richtungen für weitere Forschungsarbeit auf.
|
39 |
Compute-and-Forward in Multi-User Relay Networks: Optimization, Implementation, and SecrecyRichter, Johannes 26 April 2017 (has links)
In this thesis, we investigate physical-layer network coding in an L × M × K relay network, where L source nodes want to transmit messages to K sink nodes via M relay nodes. We focus on the information processing at the relay nodes and the compute-and-forward framework. Nested lattice codes are used, which have the property that every linear combination of codewords is a valid codeword. This property is essential for physical-layer network coding.
Because the actual network coding occurs on the physical layer, the network coding coefficients are determined by the channel realizations. Finding the optimal network coding coefficients for given channel realizations is a non-trivial optimization problem. In this thesis, we provide an algorithm to find network coding coefficients that result in the highest data rate at a chosen relay. The solution of this optimization problem is only locally optimal, i.e., it is optimal for a particular relay. If we consider a multi-hop network, each potential receiver must get enough linear independent combinations to be able to decode the individual messages. If this is not the case, outage occurs, which results in data loss. In this thesis, we propose a new strategy for choosing the network coding coefficients locally at the relays without solving the optimization problem globally.
We thereby reduce the solution space for the relays such that linear independence between their decoded linear combinations is guaranteed. Further, we discuss the influence of spatial correlation on the optimization problem. Having solved the optimization problem, we combine physical-layer network coding with physical-layer secrecy. This allows us to propose a coding scheme to exploit untrusted relays in multi-user relay networks. We show that physical-layer network coding, especially compute-and-forward, is a key technology for simultaneous and secure communication of several users over an untrusted relay. First, we derive the achievable secrecy rate for the two-way relay channel. Then, we enhance this scenario to a multi-way relay channel with multiple antennas.
We describe our implementation of the compute-and-forward framework with software-defined radio and demonstrate the practical feasibility. We show that it is possible to use the framework in real-life scenarios and demonstrate a transmission from two users to a relay. We gain valuable insights into a real transmission using the compute-and-forward framework. We discuss possible improvements of the current implementation and point out further work. / In dieser Arbeit untersuchen wir Netzwerkcodierung auf der Übertragungsschicht in einem Relay-Netzwerk, in dem L Quellen-Knoten Nachrichten zu K Senken-Knoten über M Relay-Knoten senden wollen. Der Fokus dieser Arbeit liegt auf der Informationsverarbeitung an den Relay-Knoten und dem Compute-and-Forward Framework. Es werden Nested Lattice Codes eingesetzt, welche die Eigenschaft besitzen, dass jede Linearkombination zweier Codewörter wieder ein gültiges Codewort ergibt. Dies ist eine Eigenschaft, die für die Netzwerkcodierung von entscheidender Bedeutung ist.
Da die eigentliche Netzwerkcodierung auf der Übertragungsschicht stattfindet, werden die Netzwerkcodierungskoeffizienten von den Kanalrealisierungen bestimmt. Das Finden der optimalen Koeffizienten für gegebene Kanalrealisierungen ist ein nicht-triviales Optimierungsproblem. Wir schlagen in dieser Arbeit einen Algorithmus vor, welcher Netzwerkcodierungskoeffizienten findet, die in der höchsten Übertragungsrate an einem gewählten Relay resultieren. Die Lösung dieses Optimierungsproblems ist zunächst nur lokal, d. h. für dieses Relay, optimal. An jedem potentiellen Empfänger müssen ausreichend unabhängige Linearkombinationen vorhanden sein, um die einzelnen Nachrichten decodieren zu können. Ist dies nicht der Fall, kommt es zu Datenverlusten. Um dieses Problem zu umgehen, ohne dabei das Optimierungsproblem global lösen zu müssen, schlagen wir eine neue Strategie vor, welche den Lösungsraum an einem Relay soweit einschränkt, dass lineare Unabhängigkeit zwischen den decodierten Linearkombinationen an den Relays garantiert ist. Außerdem diskutieren wir den Einfluss von räumlicher Korrelation auf das Optimierungsproblem.
Wir kombinieren die Netzwerkcodierung mit dem Konzept von Sicherheit auf der Übertragungsschicht, um ein Übertragungsschema zu entwickeln, welches es ermöglicht, mit Hilfe nicht-vertrauenswürdiger Relays zu kommunizieren. Wir zeigen, dass Compute-and-Forward ein wesentlicher Baustein ist, um solch eine sichere und simultane Übertragung mehrerer Nutzer zu gewährleisten. Wir starten mit dem einfachen Fall eines Relay-Kanals mit zwei Nutzern und erweitern dieses Szenario auf einen Relay-Kanal mit mehreren Nutzern und mehreren Antennen.
Die Arbeit wird abgerundet, indem wir eine Implementierung des Compute-and-Forward Frameworks mit Software-Defined Radio demonstrieren. Wir zeigen am Beispiel von zwei Nutzern und einem Relay, dass sich das Framework eignet, um in realen Szenarien eingesetzt zu werden. Wir diskutieren mögliche Verbesserungen und zeigen Richtungen für weitere Forschungsarbeit auf.
|
40 |
Application interference analysis: Towards energy-efficient workload management on heterogeneous micro-server architecturesHähnel, Markus, Arega, Frehiwot Melak, Dargie, Waltenegus, Khasanov, Robert, Castrillo, Jeronimo 11 May 2023 (has links)
The ever increasing demand for Internet traffic, storage and processing requires an ever increasing amount of hardware resources. In addition to this, infrastructure providers over-provision system architectures to serve users at peak times without performance delays. Over-provisioning leads to underutilization and thus to unnecessary power consumption. Therefore, there is a need for workload management strategies to map and schedule different services simultaneously in an energy-efficient manner without compromising performance, specially for heterogeneous micro-server architectures. This requires statistical models of how services interfere with each other, thereby affecting both performance and energy consumption. Indeed, the performance-energy behavior when mixing workloads is not well understood. This paper presents an interference analysis for heterogeneous workloads (i.e., CPU- and memory-intensive) on a big.LITTLE MPSoC architecture. We employ state-of-the-art tools to generate multiple single-application mappings and characterize the interference among two different services. We observed a performance degradation factor between 1.1 and 2.5. For some configurations, executing on different clusters resulted in reduced energy consumption with no performance penalty. This kind of detailed analysis give us first insights towards more general models for future workload management systems.
|
Page generated in 0.0671 seconds