Spelling suggestions: "subject:"complète""
1 |
Une Méthode Numérique Probabiliste pour les Équations aux Dérivées Partielles Paraboliques et complètement non-linéairesFahim, Arash 06 April 2010 (has links) (PDF)
Cette thèse est divisée en deux parties. La première partie introduit une méthode probabiliste numérique pour les EDPs parabolique et complètement non-linéaire, puis on considère ses propriétés asymptotiques (convergence et taux de convergence) et aussi l'analyse de l'erreur due à l'approximation de l'espérance conditionnelle par une méthode de type Monte Carlo. Les EDPs complètement non- linaires apparaissent dans plusieurs applications en ingénierie, économie et finance. Citons par exemple le problème de propagation de front par courbure moyenne, ou le problème de sélection de portefeuille. Une classe importante d'EDP complètement non-linéaire est constituée par les équations de HJB découlant du contrôle optimal stochastique. Dans la plupart des cas, il n'existe pas de solution dans le sens classique. Par conséquent, la notion de solution de viscosité est utilisé pour les EDP complètement non-linéaires. En raison de manque de de solution explicite dans de nombreuses applications, les schémas d'approximation sont devenus très importants. Pour montrer la convergence, la méthode utilisée dans cette thèse a été introduite par Barles et Souganidis. Leurs travaux fournissent le résultat de convergence vers des solutions de viscosité pour une solution approchée obtenue à partir cohérente, monotone et stable régime. An d'obtenir le taux de convergence, nous avons supposé que le EDP a non-linéarité concave de type HJB. En d'autres termes, la non-linéarité est une borne inférieure des opérateurs linéaires. La thèse a utilisé la méthode de Krylov des coefficients secoué et d'approximation par un système d'équations HJB couplées pour obtenir des bornes sur les taux de convergence. La mise en œuvre du schéma requiert d'introduire une approximation des espérances conditionnelles. Pour une classe d'estimateurs, nous avons obtenu une borne inférieure sur le nombre de chemins échantillon qui préserve la vitesse de convergence obtenue avant. La généralisation de la méthode à des équations intégro-diférentielles est simple et on peut utiliser les mÃa mes arguments que dans le cas local pour obtenir la convergence et le taux de convergence. Notons cependant que le cas non local introduit la difficulté supplémentaire d'approximation des termes non locaux. La première partie sera terminée est illustrée par quelques expériences numériques. La méthode est utilisée pour résoudre le problème géométrique des taux de courbure moyenne, le problème de la sélection sur un portefeuille d'actifs avec volatilité stochastique dans le modèle de Heston, et le problème de sélection de portefeuille de deux actifs à la fois avec une volatilité stochastique, on satisfait modèle de Heston et l'autre CEV modèle. La deuxième partie de la thèse traite de la politique de production optimale dans le marché des allocations des permis d'émission de carbone. Le marché des permis d'émissions de carbone est une approche de marché pour mettre en œuvre le protocole de Kyoto. Nous avons calculé la production optimale dans 4 cas: quand il n'y a pas un tel marché, quand il y a un tel marché, mais sans grand producteur de carbone, quand il y a un gros producteur qui n'est pas teneur de marché, et quand il existe un marché avec un grande producteur. Nous avons montré que dans les premiers, la production optimale est toujours diminuée. Cependant, dans le dernier cas, nous avons montré que le gros producteur peut bénéficier du marché en changeant la prime de risque de l'allocation de carbone en raison de sa production d'appoint. Cette partie est illustrée par quelques expériences numériques qui montre des cas que le grand producteur peut bénéficier d'une production d'appoint.
|
2 |
Sur les déformations des systèmes complètement intégrables classiques et semi-classiquesROY, Nicolas 16 September 2003 (has links) (PDF)
Dans un premier temps, on considère un hamiltonien complètement intégrable régulier sur une variété symplectique et on cherche à caractériser les perturbations de ce hamiltonien qui sont des déformations, i.e qui restent complètement intégrables après l'ajout de la perturbation. Après avoir explicité la classe d'hamiltoniens non-dégénérés considérée et conjecturé la forme générale des déformations régulières, on donne les conditions formelles dans le paramètre de perturbation pour que le hamiltonien reste complètement intégrable régulier ou singulier. Dans un deuxième temps, on considère un système complètement intégrable semi-classique décrit par un opérateur pseudo-différentiel sur le tore et on étudie le spectre d'une perturbation de cet opérateur. On utilise pour cela une méthode de forme normale qui met l'opérateur sous une forme simple près de chaque résonance. Cette forme normale est ensuite utilisée pour construire des quasimodes de l'opérateur perturbé
|
3 |
Hybrid fully homomorphic framework / Chiffrement complètement homomorphe hybrideMéaux, Pierrick 08 December 2017 (has links)
Le chiffrement complètement homomorphe est une classe de chiffrement permettant de calculer n’importe quelle fonction sur des données chiffrées et de produire une version chiffrée du résultat. Il permet de déléguer des données à un cloud de façon sécurisée, faire effectuer des calculs, tout en gardant le caractère privé de ces données. Cependant, l’innéficacité actuelle des schémas de chiffrement complètement homomorphes, et leur inadéquation au contexte de délégation de calculs, rend son usage seul insuffisant pour cette application. Ces deux problèmes peuvent être résolus, en utilisant ce chiffrement dans un cadre plus large, en le combinant avec un schéma de chiffrement symétrique. Cette combinaison donne naissance au chiffrement complètement homomorphe hybride, conçu dans le but d’une délégation de calculs efficace, garantissant des notions de sécurité et de vie privée. Dans cette thèse, nous étudions le chiffrement complètement homomorphe hybride et ses composantes, à travers la conception de primitives cryptographiques symétriques rendant efficace cette construction hybride. En examinant les schémas de chiffrement complètement homomorphes, nous developpons des outils pour utiliser efficacement leurs propriétés homomorphiques dans un cadre plus complexe. En analysant différents schémas symétriques, et leurs composantes, nous déterminons de bons candidats pour le contexte hybride. En étudiant la sécurité des constructions optimisant l’évaluation homomorphique, nous contribuons au domaine des fonctions booléennes utilisées en cryptologie. Plus particulièrement, nous introduisons une nouvelle famille de schémas de chiffrement symétriques, avec une nouvelle construction, adaptée au contexte hybride. Ensuite, nous nous intéressons à son comportement homomorphique, et nous étudions la sécurité de cette construction. Finalement, les particularités de cette famille de schémas de chiffrement motivant des cryptanalyses spécifiques, nous développons et analysons de nouveaux critères cryptographiques booléens. / Fully homomorphic encryption, firstly built in 2009, is a very powerful kind of encryption, allowing to compute any function on encrypted data, and to get an encrypted version of the result. Such encryption enables to securely delegate data to a cloud, ask for computations, recover the result, while keeping private the data during the whole process. However, today’s inefficiency of fully homomorphic encryption, and its inadequateness to the outsourcing computation context, makes its use alone insufficient for this application. Both of these issues can be circumvented, using fully homomorphic encryption in a larger framework, by combining it with a symmetric encryption scheme. This combination gives a hybrid fully homomorphic framework, designed towards efficient outsourcing computation, providing both security and privacy. In this thesis, we contribute to the study of hybridfully homomorphic framework, through the analysis, and the design of symmetric primitives making efficient this hybrid construction. Through the examination of fully homomorphic encryption schemes, we develop tools to efficiently use the homomorphic properties in a more complex framework. By investigating various symmetric encryption schemes, and buildingblocks up to the circuit level, we determine good candidates for a hybrid context. Through evaluating the security of constructions optimizing the homomorphic evaluation, we contribute to a wide study within the cryptographic Boolean functions area. More particularly, we introduce a new family of symmetric encryption schemes, with a new design, adapted to the hybrid fully homomorphic framework. We then investigate its behavior relatively to homomorphic evaluation, and we address the security of such design. Finally, particularities of this family of ciphers motivate specific cryptanalyses, therefore we develop and analyze new cryptographic Boolean criteria.
|
4 |
Contributions to design and analysis of Fully Homomorphic Encryption schemes / Contributions à la conception et analyse des schémas de chiffrement complètement homomorpheVial prado, Francisco 12 June 2017 (has links)
Les schémas de Chiffrement Complètement Homomorphe (FHE) permettent de manipuler des données chiffrées avec grande flexibilité : ils rendent possible l'évaluation de fonctions à travers les couches de chiffrement. Depuis la découverte du premier schéma FHE en 2009 par Craig Gentry, maintes recherches ont été effectuées pour améliorer l'efficacité, atteindre des nouveaux niveaux de sécurité, et trouver des applications et liens avec d'autres domaines de la cryptographie. Dans cette thèse, nous avons étudié en détail ce type de schémas. Nos contributions font état d'une nouvelle attaque de récuperation des clés au premier schéma FHE, et d'une nouvelle notion de sécurité en structures hierarchiques, évitant une forme de trahison entre les usagers tout en gardant la flexibilité FHE. Enfin, on décrit aussi des implémentations informatiques. Cette recherche a été effectuée au sein du Laboratoire de Mathématiques de Versailles avec le Prof. Louis Goubin. / Fully Homomorphic Encryption schemes allow public processing of encrypted data. Since the groundbreaking discovery of the first FHE scheme in 2009 by Craig Gentry, an impressive amount of research has been conducted to improve efficiency, achieve new levels of security, and describe real applications and connections to other areas of cryptography. In this Dissertation, we first give a detailed account on research these past years. Our contributions include a key-recovery attack on the ideal lattices FHE scheme and a new conception of hierarchic encryption, avoiding at some extent betrayal between users while maintaining the flexibility of FHE. We also describe some implementations. This research was done in the Laboratoire de Mathématiques de Versailles, under supervision of Prof. Louis Goubin.
|
5 |
Systèmes intégrables semi-classiques: du local au globalVU NGOC, San 10 December 2003 (has links) (PDF)
Ce mémoire a pour but de présenter un panorama des recherches que j'ai effectuées depuis la soutenance de ma thèse en 1998. J'en ai également profité pour réordonner mes résultats et émailler le texte de réflexions parfois nouvelles afin de tenter de combiner l'introduction au sujet avec la synthèse de mes recherches. Il sera question de systèmes hamiltoniens complètement intégrables, de leur étude locale, de leurs singularités, de leurs aspects globaux et de certains liens qu'il entretiennent avec les variétés toriques, tout ceci du point de vue de la mécanique classique ainsi que de celui de leur quantification semi-classique. Une étude détaillée des singularités dites non-dégénérées sera présentée.
|
6 |
Espaces de Hardy en probabilités et analyse harmonique quantiquesYin, Zhi 07 June 2012 (has links) (PDF)
Cette thèse présente quelques résultats de la théorie des probabilités quantiques et de l'analyse harmonique à valeurs operateurs. La thèse est composée des trois parties.Dans la première partie, on démontre la décomposition atomique des espaces de Hardy de martingales non commutatives. On identifie aussi les interpolés complexes et réels entre les versions conditionnelles des espaces de Hardy et BMO de martingales non commutatives.La seconde partie est consacrée à l'étude des espaces de Hardy à valeurs opérateursvia la méthode d'ondellettes. Cette approche est similaire à celle du cas des martingales non commutatives. On démontre que ces espaces de Hardy sont équivalents à ceux étudiés par Tao Mei. Par conséquent, on donne une base explicite complètement inconditionnelle pour l'espace de Hardy H1(R), muni d'une structure d'espace d'opérateurs naturelle. La troisième partie porte sur l'analyse harmonique sur le tore quantique. On établit les inégalités maximales pour diverses moyennes de sommation des séries de Fourier définies sur le tore quantique et obtient les théorèmes de convergence ponctuelle correspondant. En particulier, on obtient un analogue non commutative du théorème classique de Stein sur les moyennes de Bochner-Riesz. Ensuite, on démontre que les multiplicateurs de Fourier complètement bornés sur le tore quantique coïncident à ceux définis sur le tore classique. Finalement, on présente la théorie des espaces de Hardy et montre que ces espaces possèdent les propriétés des espaces de Hardy usuels. En particulier, on établit la dualité entre H1 et BMO.
|
7 |
Définition combinatoire des polynômes de Kazhdan-LusztigDelanoy, Ewan 09 November 2006 (has links) (PDF)
La théorie des groupes de Coxeter, qui a pour origine l'étude des groupes<br /> d'isométries, permet de relier entre eux divers domaines d'algèbre et de<br /> géométrie, allant de la théorie des representations (des groupes de Coxeter<br /> et de Lie, des algèbres de Lie et de Hecke) et de la géométrie algébrique<br /> (variétés de Schubert) à la combinatoire (ordre de Bruhat). Les polynômes<br /> de Kazhdan-Lusztig apparaissent sous des formes assez différentes dans plusieurs<br /> de ces domaines : ces polynômes <br /> peuvent être définis comme coordonnées d'une base<br /> remarquable de l'algèbre de Hecke (ce qui donne une représentation non triviale<br /> de cette algèbre), leur valeur au point 1 intervient dans la décomposition de certains<br /> modules de Verma, et leur coefficients peuvent être interprétés comme des dimensions<br /> de certains espaces d'homologie locale. La définition originale de ces polynômes<br /> se traduit par une formule de récurrence compliquée qui conduit naturellement à<br /> s'interroger sur une éventuelle définition purement combinatoire. Ce rapport essaye<br /> de montrer quelques développements récents dans les tentatives de réponse à cette<br /> question. Notre résultat principal est le suivant : un isomorphisme entre<br /> deux intervalles initiaux préserve les polynômes de Kazhdan-Lusztig. Nous explicitons <br /> également des arguments (théoriques et calculatoires)<br /> tendant à confirmer la conjecture que cela reste vrai pour un isomorphisme entre des intervalles<br /> complètement compressibles dans des groupes de Coxeter finis.\newline<br /><br /> Mots-clés : groupe de Coxeter, polynôme de Kazhdan-Lusztig,<br /> sous-groupe de réflections, intervalle de Bruhat, couplage distingué,<br /> intervalle complètement compressible
|
8 |
Multipliers and approximation properties of groups / Multiplicateurs et propriétés d'approximation de groupesVergara Soto, Ignacio 03 October 2018 (has links)
Cette thèse porte sur des propriétés d'approximation généralisant la moyennabilité pour les groupes localement compacts. Ces propriétés sont définies à partir des multiplicateurs de certaines algèbres associés aux groupes. La première partie est consacrée à l'étude de la propriété p-AP, qui est une extension de la AP de Haagerup et Kraus au cadre des opérateurs sur les espaces Lp. Le résultat principal dit que les groupes de Lie simples de rang supérieur et de centre fini ne satisfont p-AP pour aucun p entre 1 et l'infini. La deuxième partie se concentre sur les multiplicateurs de Schur radiaux sur les graphes. L'étude de ces objets est motivée par les liens avec les actions de groupes discrets et la moyennabilité faible. Les trois résultats principaux donnent des conditions nécessaires et suffisantes pour qu'une fonction sur les nombres naturels définisse un multiplicateur radial sur des différentes classes de graphes généralisant les arbres. Plus précisément, les classes de graphes étudiées sont les produits d'arbres, les produits de graphes hyperboliques et les complexes cubiques CAT(0) de dimension finie. / This thesis focusses on some approximation properties which generalise amenability for locally compact groups. These properties are defined by means of multipliers of certain algebras associated to the groups. The first part is devoted to the study of the p-AP, which is an extension of the AP of Haagerup and Kraus to the context of operators on Lp spaces. The main result asserts that simple Lie groups of higher rank and finite centre do not satisfy p-AP for any p between 1 and infinity. The second part concentrates on radial Schur multipliers on graphs. The study of these objects is motivated by some connections with actions of discrete groups and weak amenability. The three main results give necessary and sufficient conditions for a function of the natural numbers to define a radial multiplier on different classes of graphs generalising trees. More precisely, the classes of graphs considered here are products of trees, products hyperbolic graphs and finite dimensional CAT(0) cube complexes.
|
9 |
Autour de la dynamique semi-classique de certains systèmes complètement intégrablesLablée, Olivier 04 December 2009 (has links) (PDF)
La dynamique semi-classique d'un opérateur pseudo-différentiel sur une variété est l'analogue quantique du flot classique de son symbole principal sur la variété . Cette dynamique semi-classique est décrite par l'équation de Schrödinger de l'opérateur ; alors que le flot classique hamiltonien est, lui, donné par les équations d'Hamilton associées a la fonction . Le spectre de l'opérateur pseudo-différentiel permet donc de pouvoir décrire les solutions générales en fonction du temps de l'équation de Schrödinger associée. Le comportement en temps long de la dynamique semi-classique donnée par ces solutions reste cependant sur bien des points mystérieux. La dynamique semi-classique dépend donc directement du spectre de l'opérateur et aussi par conséquent de la géométrie sous jacente dans induite par la fonction symbole classique . Dans cette thèse, on décrit d'abord la dynamique semi-classique en temps long dans le cas de la dimension 1 avec une fonction symbole n'ayant pas de singularité ou bien avec une singularité non-dégénérée de type elliptique : le feuilletage dans de est alors elliptique. Les règles de Bohr-Sommerfeld régulières fournissent alors le spectre d'un tel opérateur. On traite aussi le cas de la dimension 2 qui nous amène à quelques discussions de théorie de nombres. Pour finir, on s'intéresse au cas d'un opérateur pseudo-différentiel avec une singularité non-dégénérée de type hyperbolique : le feuilletage dans de est alors un ”huit hyperbolique ” (modèle difféomorphe au Schrödinger avec un potentiel double puits).
|
10 |
Systèmes intégrables intervenant en géométrie différentielle et en physique mathématiqueKhemar, Idrisse 01 March 2006 (has links) (PDF)
Notre thèse est divisée en 2 chapitres indépendants correspondant chacun à un article. Dans le premier chapitre, nous définissons une notion de surfaces isotropes dans les octonions, i.e. sur lesquelles certaines formes symplectiques canoniques s'annulent. En utilisant le produit vectoriel dans O, nous définissons une application rho de la grassmanienne des plans de O dans la sphère de dimension 6. Cela nous permet d'associer à chaque surface Sigma de O une fonction rho_Sigma de la surface sur la sphère. Alors, nous montrons que les surfaces isotropes de O telles que cette fonction est harmonique sont solutions d'un système complètement intégrable. En utilisant les groupes de lacets, nous construisons une représentation de type Weierstrass de ces surfaces. Par restriction au corps des quaternions, nous retrouvons comme cas particulier les surfaces lagrangiennes hamiltoniennes stationnaires de R^4. Par restriction à Im(H), nous retrouvons les surfaces CMC de R^3. Dans le second chapitre, nous étudions les applications supersymétriques harmoniques définies sur R^{2|2} et à valeurs dans un espace symétrique, du point de vue des systèmes intégrables. Il est bien connu que les applications harmoniques de R^2 à valeurs dans un espace symétrique sont solutions d'un système intégrable. Nous montrons que les applications superharmoniques de R^{2|2} dans un espace symétrique sont solutions d'un système intégrable, et que l'on a une représentation de type Weierstrass en termes de potentiels holomorphes (ainsi qu'en termes de potentiels méromorphes). Nous montrons également que les applications supersymétriques primitives de R^{2|2} dans un espace 4-symétrique donnent lieu, par restriction à R^2, à des solutions du système elliptique du second ordre associé à l'espace 4-symétrique considéré (au sens de C.L. Terng).Ceci nous permet d'obtenir, de manière conceptuelle, une sorte d'interprétation supersymétrique de tous les systèmes elliptiques du second ordre associés à un espace 4-symétrique, en particulier du système intégrable construit au chapitre 1 (et plus particulièrement des surfaces lagrangiennes hamiltoniennes stationnaires dans un espace symétrique).
|
Page generated in 0.1132 seconds