1 |
Croissance racinaire en verger de pêchers - Influence de la disponibilité en assimilats carbonés et des contraintes du solBécel, Carole 29 June 2010 (has links) (PDF)
L'arboriculture en milieu méditerranéen nécessite un apport d'eau via l'irrigation important, notamment pendant la période estivale. Pour améliorer l'efficience d'utilisation de l'eau, il convient de mieux connaître les besoins en eau de l'arbre et les zones d'exploration et d'exploitation des racines. La croissance des racines varie dans le temps et dans l'espace en lien avec des facteurs endogènes, en particulier la disponibilité en assimilats carbonés, et des facteurs exogènes comme les propriétés du sol. Ces facteurs sont modulés par les pratiques culturales, et en particulier l'irrigation, le compactage du sol et l'éclaircissage, qui affectent la croissance racinaire, et d'une manière générale le fonctionnement global de l'arbre. La dynamique de croissance des racines est ponctuée par deux périodes de croissance intense. La première période de croissance intense se situe tôt dans la saison, en avril-mai, pendant la phase de durcissement du noyau des fruits. En début de saison la demande en carbone à l'échelle de l'arbre est importante (forte croissance des feuilles, fruits, rameaux, racines) et nécessite la mobilisation intense des réserves carbonées présentent sous forme d'amidon. La charge en fruits affecte la croissance des racines et des fruits, et la restriction hydrique affecte surtout la croissance de la partie aérienne. La deuxième période de croissance racinaire intense intervient après la récolte en juillet-août, quand les feuilles et les rameaux ont finis leur croissance. La compétition est moins forte et l'amidon s'accumule, surtout chez les arbres sous restriction hydrique. L'accumulation d'amidon résulte d'une plus grande sensibilité de la croissance au déficit hydrique que la photosynthèse. Pendant les périodes de croissances racinaires intenses, le diamètre apical et la longueur de leur zone apicale non ramifiée des racines sont augmentés, ainsi que les teneurs en sucres solubles dans les pointes racinaires. Les paramètres architecturaux racinaires et les teneurs en sucres solubles dans les pointes racinaires sont de bons indicateurs de la dynamique de croissance racinaire. La répartition des racines au verger est très variable et dépend des propriétés du sol. Les racines des arbres bien alimentés en eau ont colonisé surtout les volumes de sol sous le rang des arbres (proches des goutteurs) jusqu'à 1 m de profondeur. Au contraire les racines des arbres sous-alimentés en eau ont colonisé surtout les 50 cm en profondeur sous le rang et vers l'inter-rang. Les racines se sont réparties dans les zones les moins contraignantes pour leur croissance, qui sont plus restreintes quand l'irrigation est restrictive. En conditions non contraignantes, de par une faible densité de sol ou une forte teneur en eau, la vitesse de croissance, et notamment des grosses racines, est forte. Par contre, les fines racines ont une vitesse de pénétration des sols contraignants plus rapide. La contrainte mécanique entraîne aussi une baisse de la hiérarchisation des systèmes racinaires, les racines latérales seront davantage ramifiées
|
2 |
Etude des rôles des diacylglycérol kinases chez Arabidopsis thaliana par des approches pharmacologiques et par génétique inverse. / Roles of diacylglycerol kinases in Arabidopsis thaliana by pharmacological approaches and reverse geneticsDjafi, Nabila 23 January 2014 (has links)
Les diacylglycerol kinases catalysent la phosphorylation du diacylglycérol en acide phosphatidique. Nous avons montré que la PLC spécifique des phosphoinositide (PI-PLC) et la diacylglycérol kinase (DGK) régulent négativement l'expression basale de la plupart des gènes DREB2 dans les cellules en suspension d'Arabidopsis thaliana. Les gènes DREB2 codent pour des facteurs de transcription qui se lient aux motifs DRE (Drought Responsive Elements). Ces éléments sont également liés par les facteurs DREB1. Alors que les facteurs DREB2 sont principalement impliqués dans les réponses à la sécheresse et au stress chaud, les DREB1 sont quant à eux induits en réponse au froid. Nous avons également pu montrer que l'inhibition par des agents pharmacologiques des activités PI-PLC ou DGK conduit à l'induction de l'expression basale des gènes DREB1. Cependant, l'induction est beaucoup moins marquée chez les gènes DREB1 que DREB2A, un membre de la famille DREB2. Cela indique que les gènes DREB1 et DREB2, ne sont pas soumis à la même régulation transcriptionnelle et que la signalisation lipidique pourrait en partie expliquer les différences dans la régulation des gènes DREB. Les DGK d'Arabidopsis sont codées par une famille multigénique de 7 gènes. Parmi ces gènes, on retrouve la DGK5 dont les le transcrit peut subir un épissage alternatif, ce qui aboutit à deux transcrits, dont l'un comporte une protéine avec un domaine putatif de liaison à la calmoduline. Le mutant knock-out dgk5.1 à une racine plus courte lorsqu'il est cultivé à 12°C comparé au sauvage. Ce phénotype racinaire est corrélé avec une zone méristématique et des cellules plus petites. La croissance des racines du mutant n'est n'est pas modifiée en présence de la plupart des hormones testées. Pourtant, elle est moins sensible à l'auxine exogène à 12°C par rapport au WT. Le mutant dgk5.1 génère moins de racines secondaires en présence d'auxine exogène que le WT. Le promoteur DR5 n'est pas activé dans le mutant à 12°C par l'IAA exogène dans la zone méristématique, alors qu'il est dans le WT. Nos résultats montrent que le mutant dgk5.1 est altéré dans sa réponse à l'auxine à 12°C, suggérant un rôle de perception/transduction de l’auxine dans les racines courtes. / Diacylglycerol kinases catalyse the phosphorylation of diacylglycerol into phosphatidic acid. We show that phosphoinositide dependent-phospholipase C (PI-PLC) and diacylglycerol kinase (DGK) in Arabidopsis thaliana suspension cells negatively regulated the basal expression of most DREB2 genes. DREB2 genes encode transcription factors that bind to Drought Responsive Elements (DRE). Those elements are also bound by DREB1 factors. While DREB2 factors are mostly involved in drought and heat responses, DREB1s are induced in the response to chilling. We show also that the pharmacological inhibition of PI-PLC or DGK leads to the basal induction of DREB1 genes. However, the induction is much less marked for the DREB1 genes than that of DREB2A, a member of the DREB2 family. This illustrates that DREB1 and DREB2 genes, while having the same targets, are not submitted to the same transcription regulation, and that lipid signalling might in part explain these differences in the regulation of the DREB genes. In Arabidopsis, DGKs are encoded by a multigenic family of 7 members. In this thesis, we focus on DGK5. The transcripts can have differential splicing, leading to two mature transcript, one of which leading to a protein with a putative calmodulin binding domain. A dgk5 knocked-out mutant is comparable to the WT, except for shorter root when grown at 12°C. This short root phenotype is correlated with to shorter meristematic zone and smaller cells. The short root phenotype is not altered in presence of most hormones. Yet, the root growth is less sensitive to exogenous auxin at 12°C compared to the WT. Accordingly the mutant produces less secondary roots in presence of exogenous IAA than the WT at 12°C. The DR5 promoter is not activated in the mutant at 12°C by exogenous IAA, in the meristematic zone, while it is in the WT. Our results show that the dgk5.1 mutant is impaired in auxin response at 12°C, suggesting a role of auxin perception /transduction in the short root phenotype.
|
3 |
Croissance racinaire en verger de pêchers - Influence de la disponibilité en assimilats carbonés et des contraintes du sol / Root growth in peach orchard - Effects of carbohydrates availability and of soil propertiesBécel, Carole 29 June 2010 (has links)
L’arboriculture en milieu méditerranéen nécessite un apport d’eau via l’irrigation important, notamment pendant la période estivale. Pour améliorer l’efficience d’utilisation de l’eau, il convient de mieux connaître les besoins en eau de l’arbre et les zones d’exploration et d’exploitation des racines. La croissance des racines varie dans le temps et dans l’espace en lien avec des facteurs endogènes, en particulier la disponibilité en assimilats carbonés, et des facteurs exogènes comme les propriétés du sol. Ces facteurs sont modulés par les pratiques culturales, et en particulier l’irrigation, le compactage du sol et l’éclaircissage, qui affectent la croissance racinaire, et d’une manière générale le fonctionnement global de l’arbre. La dynamique de croissance des racines est ponctuée par deux périodes de croissance intense. La première période de croissance intense se situe tôt dans la saison, en avril-mai, pendant la phase de durcissement du noyau des fruits. En début de saison la demande en carbone à l’échelle de l’arbre est importante (forte croissance des feuilles, fruits, rameaux, racines) et nécessite la mobilisation intense des réserves carbonées présentent sous forme d’amidon. La charge en fruits affecte la croissance des racines et des fruits, et la restriction hydrique affecte surtout la croissance de la partie aérienne. La deuxième période de croissance racinaire intense intervient après la récolte en juillet-août, quand les feuilles et les rameaux ont finis leur croissance. La compétition est moins forte et l’amidon s’accumule, surtout chez les arbres sous restriction hydrique. L’accumulation d’amidon résulte d’une plus grande sensibilité de la croissance au déficit hydrique que la photosynthèse. Pendant les périodes de croissances racinaires intenses, le diamètre apical et la longueur de leur zone apicale non ramifiée des racines sont augmentés, ainsi que les teneurs en sucres solubles dans les pointes racinaires. Les paramètres architecturaux racinaires et les teneurs en sucres solubles dans les pointes racinaires sont de bons indicateurs de la dynamique de croissance racinaire. La répartition des racines au verger est très variable et dépend des propriétés du sol. Les racines des arbres bien alimentés en eau ont colonisé surtout les volumes de sol sous le rang des arbres (proches des goutteurs) jusqu’à 1 m de profondeur. Au contraire les racines des arbres sous-alimentés en eau ont colonisé surtout les 50 cm en profondeur sous le rang et vers l’inter-rang. Les racines se sont réparties dans les zones les moins contraignantes pour leur croissance, qui sont plus restreintes quand l’irrigation est restrictive. En conditions non contraignantes, de par une faible densité de sol ou une forte teneur en eau, la vitesse de croissance, et notamment des grosses racines, est forte. Par contre, les fines racines ont une vitesse de pénétration des sols contraignants plus rapide. La contrainte mécanique entraîne aussi une baisse de la hiérarchisation des systèmes racinaires, les racines latérales seront davantage ramifiées / Fruit tree production in Mediterranean climate needs water supply via irrigation, particularly during summer. To improve water use efficiency, it is necessary to better understand the water need of tree and to localize soil volumes colonized by roots. Root growth varies in time and space following endogenous factors, like carbohydrate availability, and exogenous factors like soil properties. These factors are affected by cultural practices and particularly by irrigation, soil compaction and thinning. Root growth dynamics is marked by two intensive root growth periods. The first period of intensive root growth occurs early in the season, in April-May, during the phase of stone hardening of fruit. Early in the season, carbohydrates demand at tree scale is high (leaves, fruits, shoots, roots are growing) and leads to an intense mobilization of starch reserve. Crop load affects root and fruit growth, and the deficit irrigation affects principally the aerial growth. The second period of intensive root growth occurs after the fruit harvest in July-August, when leaves and shoot stopped their growth. Competition for carbohydrates is reduced and starch contents rise, particularly in trees submitted to deficit irrigation. Starch accumulation traduces a higher sensibility of growth than photosynthesis under deficit irrigation. During intensive root growth periods, apical diameter and the length of apical unbranched zone are increased, and water soluble carbohydrates contents in root tips too. Root architectural parameters and water soluble carbohydrates contents are good indicators of root growth dynamics. Root distribution in orchard is variable and depends of soil properties. Roots of wellirrigated trees colonized especially soil volumes in the row (under drippers) until 1 m in depth. On the opposite, root of trees submitted to deficit irrigation colonized the first 50 cm in depth, both in the row and the inter-row. Root colonized soil volumes where soil mechanical resistance was the lowest, and these soil volumes are more reduced in deficit irrigation. Low soil mechanical resistance, with low bulk density and high water content, allows a higher root elongation and particularly for thick roots. On the opposite, fine roots have a higher elongation in strength soil than thick roots. The soil mechanical resistance leads to reduce the root system hierarchy; lateral roots were more branched
|
4 |
Recherche de marqueurs physiologiques de tolérance à l'ennoyage chez le chêne pédonculé (Quercus robur L.) et chez le chêne sessile (Quercus petraea [Matt] Liebl.)Gérard, Bastien 17 June 2008 (has links) (PDF)
Ce travail a pour objectif d'améliorer la connaissance des mécanismes physiologiques qui président à la tolérance à l'ennoyage du chêne. La principale contrainte de l'ennoyage est un déficit en oxygène (hypoxie). Les réponses à ce stress sont étudiées chez le chêne pédonculé (réputé tolérant) et le chêne sessile (plus sensible), à des stades précoces de développement des semis, en présence des cotylédons. Une période de drainage est incluse pour mimer un ennoyage temporaire. La croissance des semis a été suivie, notamment au niveau de l'architecture racinaire. La contribution de la nutrition azotée (assimilation et allocation) a été évaluée en suivant au préalable le devenir des éléments minéraux azotés dans la rhizosphère. La gestion des réserves glucidiques (amidon et sucres solubles) des organes de réserve (cotylédons) et des organes en croissance lors du développement des semis a été mise en relation avec la tolérance à l'ennoyage des chênes. Il ressort des paramètres de croissance étudiés que l'ennoyage a peu d'effets sur la première vague de croissance foliaire mais inhibe la deuxième vague, alors que la croissance racinaire est particulièrement inhibée. Néanmoins, le chêne pédonculé est capable d'une forte colonisation racinaire des horizons superficiels du sol ennoyé et, après drainage, son aptitude à régénérer des racines est plus efficace que chez le chêne sessile. Dans la rhizosphère, l'ennoyage entraîne un basculement réversible des formes azotées nitrates / ammonium. Les modifications du métabolisme azoté sont globalement similaires entre les deux espèces. L'assimilation de l'azote, via la nitrate réductase et la glutamine synthétase, n'est pas réellement perturbée mais, les deux espèces présentent une carence azotée au niveau foliaire. L'assimilation et l'allocation azotée n'apparaissent pas comme des traits discriminants de la tolérance à l'ennoyage chez ces espèces. Sous ennoyage, l'accumulation totale d'amidon est réduite mais elle reste active dans la partie basale du pivot et dans la tige des deux espèces. Elle est cependant plus élevée chez le chêne pédonculé. L'ennoyage restreint la mobilisation des réserves cotylédonaires d'amidon, notamment chez le chêne pédonculé. L'activité des α amylases cotylédonaires corrobore le taux de mobilisation de l'amidon. La tolérance à l'ennoyage des semis de chêne n'est pas associée à une stimulation de la mobilisation des réserves glucidiques cotylédonaires. Le chêne pédonculé serrait plus économe en glucide que le chêne sessile (faible mobilisation cotylédonaire / stockage d'amidon élevé / meilleure croissance). Cette particularité pourrait constituer un marqueur physiologique important de la tolérance à l'ennoyage chez les chênes.
|
5 |
Progression de la racine primaire d'Arabidopsis thaliana en réponse à des variations de contraintes mécaniques de son substrat / Penetration of the Arabidopsis thaliana primary root in response to variations in growth medium strengthRoué, Juliette 19 December 2018 (has links)
Le comportement mécanique d’un sol constitue un des facteurs prépondérants affectant la croissance et le développement racinaire. L’augmentation de la résistance mécanique d’un sol affecte l’architecture du système racinaire, la croissance axiale et radiale des racines, et l’orientation de la croissance. Bien que ces réponses soient décrites sur diverses espèces végétales dans la littérature, leur mise en place et les mécanismes de signalisation sous-jacents restent à ce jour méconnus. L’objectif principal de cette thèse est d’étudier la mise en place des réponses des racines primaires d’Arabidopsis thaliana à des variations de contraintes mécaniques de son substrat. La littérature fait état jusqu’ici de deux voies de signalisation mécanique possibles, l’une impliquant une mécanoperception au niveau de la coiffe racinaire, et l’autre faisant intervenir entres autres l’activation de canaux mécano-sensibles au niveau de l’apex racinaire. Pour étudier leur implication respective, nous avons caractérisé les réponses à une augmentation des contraintes mécaniques de racines primaires issues de la lignée Arabidopsis thaliana sauvage et de lignées mutantes affectées au niveau de l’organisation de la coiffe (fez-2, smb-3, brn1-1 brn2-1) ou au niveau de canaux ioniques mécanosensibles (mca1-null, mslΔ5). Nous avons développé un système expérimental original basé sur le suivi de croissance et d’orientation des racines dans des milieux de culture à base de Phytagel. Ces milieux de culture permettent de mimer d’une part une augmentation à long terme et simultanée des contraintes mécaniques axiales, radiales et des frottements et d’autre part une augmentation à court terme des contraintes mécaniques axiales. Tout d’abord, nous avons observé que la mise en place des réponses de croissance des racines primaires d’Arabidopsis thaliana à ces augmentations de contraintes mécaniques reposait sur une interaction entre des processus mécaniques (flambement) et biologiques (régulations de la zone de croissance). Ensuite, nous avons mis en évidence que la coiffe racinaire participait à la mise en place des réponses des racines d’Arabidopsis thaliana face à une augmentation des contraintes mécaniques. Nos résultats suggèrent que la coiffe pourrait constituer un siège de la mécanoperception. Par ailleurs, nos résultats sur les lignées mca1-null et mslΔ5 suggèrent que les canaux ioniques MCA1 et MSLs participeraient également à la mise en place des réponses racinaires à l’augmentation des contraintes mécaniques. / Root growth and development are highly modulated by soil mechanical properties such as texture, structure and bulk density. Increases in soil penetration resistance affect root system architecture, root cell production and elongation, root diameter, and root tip orientation. Although root responses to changes in mechanical stresses are well described in several plant species, their establishment and the signaling pathways underlying these responses remains misunderstood. The main objective of this thesis is to study the establishment of Arabidopsis thaliana primary root responses to changes in mechanical stresses. So far, studies reported two distinct putative mechanical signaling pathways involving either (i) the root cap as a main mechanosensing site or (ii) the activity of stretch-activated ion channels localized on the cell plasma membranes along the root apex. According to previous studies, we studied the implication of the root cap and of the stretch-activated channels of the MCA and MSL families in the root responses to increases in mechanical stresses. We developed an original experimental set-up based on the monitoring of growth and orientation of Arabidopsis thaliana primary roots in one-layer and two-layer Phytagel based growth media. The one-layer growth media mimicked a long-term increase in frictions and in radial and axial mechanical stresses whereas the two-layer growth media mimicked a short-term increase in axial mechanical stresses. We characterized penetration abilities, growth rate and tip orientation of Arabidopsis thaliana wild type roots (Col-0) and mutant roots showing defects in root cap organization (fez-2, smb-3, brn1-1 brn2-1) or in stretch-activated ion channels activity (mca1-null, mslΔ5) in one-layer and two-layer media. Firstly, we observed that the establishment of root growth responses to increases in mechanical stresses involved both mechanical (buckling) and biological (growth zone modulations) mechanisms. Then, our experiments demonstrated that alterations in root cap organization led to altered root growth responses to increases in mechanical stresses. Our results suggest that the root cap acts as a mechanosensing site. Moreover, the results obtained with the mca1-null and mslΔ5 Arabidopsis lines suggest that the MCA1 and MSLs ion channels also participate in the establishment of root responses to increases in mechanical stresses.
|
6 |
Contrôle de l'auxine dans les modifications du développement racinaire du peuplier en réponse au champignon ectomycorhizien Laccaria bicolor / Auxin control in poplar root development in response to the ectomycorrhizal fungus Laccaria bicolorVayssières, Alice 13 January 2014 (has links)
Le système racinaire des arbres peut établir des symbioses ectomycorhiziennes (ECM) avec des champignons rhizosphériques. La mise en place de la symbiose est accompagnée d'une stimulation de la formation des racines latérales (RLs), et d'une modification de la croissance racinaire. Ces processus développementaux conduisent à la formation de racines courtes typiques des ECMs. Il a été montré que l'auxine est une phytohormone clef dans la formation des RLs ainsi que dans la croissance racinaire. Notre projet s'est focalisé sur l'étude de la régulation des voies de l'auxine dans la racine de peuplier en réponse à L. bicolor. Dans cette étude, nous avons mis en évidence un arrêt de croissance des RLs et des racines adventives du peuplier Populus tremula x P. alba, après deux semaines de co-culture avec L. bicolor. De plus, nous avons aussi montré que cet arrêt n'est pas conditionné par la présence du réseau de Hartig. Une analyse de l'expression globale des gènes de peuplier dans la mycorhize a été réalisée au cours de la formation de la mycorhize. Cette analyse, couplée à des observations du gradient auxinique via le patron d'expression du promoteur DR5, montre que la signalisation auxinique est affectée dans l'organe symbiotique. La quantification de l'auxine (acide indole 3-acétique, AIA) et des métabolites associés a permis de mettre en évidence un environnement symbiotique riche en auxine dans la mycorhize, qui pourrait expliquer les modifications de la signalisation auxinique. De plus, un changement de la conjugaison et de la dégradation de l'AIA est détecté dans la racine, ainsi qu'une dégradation de l'AIA dans les hyphes de L. bicolor. En parallèle, une analyse fonctionnelle de PtaPIN9, un orthologue de AtPIN2, responsable du transport basipète de l'auxine à l'apex racinaire chez Arabidopsis thaliana, a été réalisée au cours de la mycorhization avec L. bicolor. L'immunolocalisation de PtPIN9 dans les racines de peuplier a montré une localisation similaire à AtPIN2, dans les cellules épidermiques. Les lignées transgéniques ayant une modification de l'expression de ce gène ne répondent pas à L. bicolor en terme de stimulation de RLs. Dans les racines mycorhizées, PtaPIN9 n'est plus observée, mais les modifications de l'expression de PtaPIN9 ne modifient ni l'arrêt de croissance racinaire, ni la formation du réseau de Hartig. Ces résultats montrent des modifications majeures des voies de l'auxine du peuplier par le champignon symbiotique L. bicolor. Cette étude ouvre des perspectives sur la compréhension du rôle de l'auxine dans le développement racinaire ainsi que dans le contexte des interactions plantes-microorganismes / Root systems of host trees are known to establish the ectomycorrhizal (ECM) symbiosis with rhizospheric fungi. This mutualistic association leads to modifications of root development that including a stimulation of lateral host roots, and a modification in root growth. The phytohormone auxin (Indole-3-acetic acid, IAA) is known to regulate LRs formation and root growth. Our research focussed on auxin pathways in poplar root in response to L. bicolor. In this study, our data showed that the poplar-Laccaria bicolor interaction leads to the arrest of LRs and adventitious root growth after two weeks of interaction. We also showed that this arrest is not regulated by the Hartig net. Differential auxin responses were analyzed by using an auxin-responsive DR5::GUS marker line and revealed a loss of auxin response in ECM roots. An oligoarray-based transcript profiling of poplar roots in contact with L. bicolor highlights a differential expression of auxin asociated genes in ECM. Measurement of auxin metabolite in ECM and in the free living partners revealed an IAA accumulation, an activation of the IPyA (Indol-3-Pyruvic Acid) dependant IAA biosynthesis pathway in both partners, as well as changes in IAA conjugation pathways in poplar and in IAA degradation pathways in L. bicolor. Our findings illustrate the impact of L. bicolor colonization on root auxin metabolism and response, and also suggest a role of auxin as a signal in the formation of ECM and in the regulation of ECM function. In parallel, PtaPIN9 function analysis in response to L. bicolor has been performed. PtaPIN9 immunolocalization in poplar roots showed similar localization to AtPIN2 in epidermis cells. Transgenic lines having a modification in PtaPIN9 expression, did not formed new LRs in respond to L. bicolor. In ECM roots, the loss of PtaPIN9 signal is observed but modifications of PtaPIN9 expression did not modify the root growth arrest and the Hartig net formation. These results show major changes in auxin associate pathways in poplar root by the symbiotic fungus L. bicolor, during the formation of the mycorrhiza root. Our results offer perspectives on the role of auxin in root development and in the context plants-microbes interactions
|
7 |
La glutarédoxine GRXS17, une chaperonne redox-dépendante impliquée dans le développement des racines et dans la thermotolérance chez Arabidopsis thaliana / The glutaredoxine GRXS17, a redox-dependant chaperone involved in root development and thermotolerance in Arabidopsis thalianaMartins, Laura 14 December 2018 (has links)
L'adaptation des plantes face au stress thermique est cruciale pour leur survie et implique des réponses spécifiques telles que l’induction de protéines chaperonnes et la production d'espèces réactives de l'oxygène (ROS). Les glutaredoxines (GRX), une famille de protéines thiol anti- oxydantes, jouent un rôle important dans la régulation redox et la réponse au stress oxydatif. Mes études se concentrent sur GRXS17, une protéine multi-domaine à cœur fer-soufre. Malgré un phénotype de développement sévère du mutant grxs17 à des températures normales et plus élevées, peu est connu sur les fonctions biochimiques et les rôles intracellulaires précis de GRXS17. J’ai montré au cours de ma thèse que GRXS17 fonctionne comme une chaperonnedépendante de l’oxydation de la cellule. Elle présente à la fois une activité de type foldase mais également holdase. L'exposition aux stress oxydatif et thermique provoque le passage d'une forme dimérique à des complexes à poids moléculaires élevés ce qui est consistant avec une activité holdase. J’ai également montré que GRXS17 est requis pour la tolérance à des hausses de température de manière dépendante de ses cystéines catalytiques. Des approches de transcriptomique, métabolomique et protéomique montrent une réponse au stress thermique retardée dans le mutant grxs17, des défauts dans l’accumulation de certains métabolites clés, et ont permis d'identifier de potentiels nouveaux interactants de GRXS17 dans des conditions de stress thermique. Ces éléments soutiennent la fonction chaperonne de GRXS17 dans desconditions normales et de stress thermiques. / Adaption of plants to heat stress is crucial for their survival and involves dedicated response such as chaperones proteins induction and production of reactive oxygen species (ROS). Glutaredoxins (GRX), a family of thiol redox proteins, play an important role in redox regulation and response to oxidative stress. The focus of our studies is on GRXS17 which is a multi-subunit iron-sulfur glutaredoxin. Despite the severe developmental phenotype of the grxs17 mutant at normal and elevated temperatures, relatively little is known about the biochemical functions and precise intracellular roles of GRXS17. I show during my thesis that GRXS17 function as a foldase and holdase redox-dependent chaperone. Oxidative and heat stress exposure cause a shift from a dimeric form to high MW complexes which is concordant with a holdase activity. I show that GRXS17 is required for the tolerance to moderated heatstress in a Cys-dependent manner. Transcriptomic, metabolomic and proteomic approaches show heat stress response delayed in grxs17, key-metabolites defects and allowed to identifynew potential GRXS17-interactor under heat stress conditions, supporting a potential protecting function of GRXS17 against stress damage.
|
8 |
Grapevine root growth under water stress and its relationship to root water uptake / La croissance racinaire de la vigne en conditions de sécheresse et sa relation avec l’absorption d’eau racinaireZhang, Li 12 December 2017 (has links)
Le sujet de l’adaptation aux changements climatiques est devenu l’un des sujets contemporains les plus importants dans la vigne. Une grande focalisation a été mise sur la compréhension des effets du porte-greffe sur la croissance du scion, l’absorption des nutriments, et la tolérance au stress, dans l’objectif final de développer de nouveaux porte-greffes qui facilitent l’adaptation au changement climatique. L’objectif de cette thèse est d’examiner comment les différences dans la résistance à la sécheresse entre les génotypes peut résulter en de grandes différences dans leur capacité à maintenir leur croissance racinaire en situation de stress. Une meilleure compréhension sur la manière dont la structure, la croissance racinaire et l’absorption d’eau répondent au stress nous permettra de mieux comprendre quels sont les aspects de la physiologie racinaire qui contribuent à la tolérance face à la sécheresse. Des recherches précédentes qui s’étaient focalisées sur l’absorption d’eau racinaire chez la vigne ont suggéré que l’absorption d’eau racinaire pouvait être fortement liée à la vitesse de croissance racinaire instantanée (voir Gambetta et al. 2013). Cette observation implique que des différences entre les génotypes dans la résistance face à la sécheresse pourrait largement résulter de leur capacité à maintenir la croissance racinaire en conditions de stress. Deux porte-greffes de vigne avec des capacités contrastées en matière de résistance à la sécheresse, le Riparia Gloire de Montpellier (RGM) et le 110 Richter (110R) ont été sélectionnés pour étudier dans cette thèse. RGM est considéré comme sensible à la sécheresse, tandis que 110R est fortement résistant à la sécheresse (Carbonneau 1985). La thèse a examiné la relation entre la croissance racinaire et la capacité de résistance à la sécheresse en évaluant la vitesse de croissance racinaire, la conductivité hydraulique à travers deux variétés de porte-greffe en conditions de déficit en eau. Le niveau de l’expression des gènes d’aquaporines (via la qPCR et l’ARNseq) et leur contribution à la conductivité hydraulique racinaire ont été analysés dans les radicelles afin d’obtenir une meilleure compréhension sur les mécanismes impliqués dans la régulation de l’absorption de l’eau racinaire et la conductivité hydraulique au cours du développement et en réponse à un manque d’eau.Le traitement de stress d’eau prolongé a diminué le potentiel hydraulique de la plante. La croissance racinaire individuelle est très hétérogène : bien que le traitement de sécheresse réduise l’élongation racinaire en moyenne, la vitesse de croissance racinaire varie tout de même énormément. Un haut niveau de stress hydrique a réduit significativement la vitesse de croissance racinaire moyenne à la fois pour RGM et 110R. Globalement, la vitesse de croissance racinaire moyenne a montré une tendance réduite au cours du développement de la plante. La température du sol est aussi un facteur qui affecte la croissance racinaire. Pour RGM et 110R, en conditionsIIde bon arrosage et de stress hydrique, la vitesse de croissance quotidienne moyenne a été positivement corrélée avec la température du sol quotidienne moyenne. En conditions de bon arrosage, des vitesses de croissance racinaires plus importantes ont été constamment observées chez 110R par rapport à RGM, ce qui pourrait être une explication possible de sa meilleure résistance à la sécheresse par rapport à 110R. [...] / The subject of adaptation to climate change has become one of the most important contemporary topics in grapevine. Much focus has been placed on the understanding of rootstocks effects on scion growth, nutrient uptake, and tolerance to stress, with the ultimate goal of developing novel rootstocks that facilitate adaptation to a changing climate. The purpose of this thesis is to examine how differences in drought resistance between genotypes could result largely from differences in their ability to maintain root growth under stress. A better understanding of how root structure, growth, and water uptake respond to stress will allow us to better understand what aspects of root physiology contribute to drought tolerance. Previous research focused on root water uptake in grapevine suggested that root water uptake could be tightly coupled to a root’s instantaneous rate of growth (see Gambetta et al. 2013). This observation implies that differences in drought resistance between genotypes could result largely from their ability to maintain root growth under stress. Two grapevine rootstocks with contrasting drought resistance capacity, Riparia Gloire de Montpellier (RGM) and 110 Richter (110R), were selected to study in this thesis. RGM is considered as sensitive to drought, while 110R is highly resistant to drought (Carbonneau 1985). The thesis examined the relationship between root growth and drought resistant capacity by assessing root growth rate, hydraulic conductivity across two rootstock varieties subjected to water deficit. The role of aquaporin gene expression (via qPCR and RNAseq) and their contribution to root hydraulic conductivity were analyzed in fine roots in order to obtain a better understanding on the mechanisms involved in the regulation of root water uptake and hydraulic conductivity across development and in response to water deficit.Prolonged water stress treatment decreased plant water potential. Individual root growth is very heterogeneous, although drought treatment reduces root elongation on average, individual root growth rate still varies enormously. High level of water stress significantly reduced average root growth rate for both RGM and 110R. Globally, average root growth rate showed a decreased trend over plant development. Soil temperature is also a factor that affects root growth. For both RGM and 110R, under both well-watered and water-stressed conditions, average daily root growth rate was positively correlated with average daily soil temperature. Under well-watered conditions, higher root growth rates were constantly observed in 110R compared to RGM, which could be one possible explanation for the higher capacity in drought resistance of 110R.Root hydraulic conductivity (Lpr) was influenced by both water stress treatment and plant developmental stage. Generally, for both RGM and 110R, Lpr was significantly reduced under water stress in early stage. In mid and late stages, no significant differences in Lpr were observedIVbetween well-watered and water-stressed plants. Changes in individual root Lpr in response to pre-dawn leaf water potential (ᴪpredawn) were investigated as well. Lpr showed a fast drop in the beginning of water stress treatment when ᴪpredawn was higher than -0.5 MPa. However, with ᴪpredawn getting more negative, e.g. from -0.4 MPa to -2.0 MPa, the range of Lpr values measured in our study maintained constant. Lpr of well-watered plants decreased as well even though their ᴪpredawn was maintained at a high level (< 0.1 MPa) during the period of the experiment. [...]
|
9 |
Division et élongation cellulaire dans l'apex de la racine : diversité de réponses au déficit hydrique / Cell division and cell elongation in the growing root apex : diversity of drought-induced responsesBizet, François 10 December 2014 (has links)
La capacité d’une plante à réguler sa croissance racinaire est une composante importante de l’acclimatation aux stress environnementaux. A l’échelle cellulaire, cette régulation est effectuée via le contrôle de la division et de l’élongation des cellules mais les rôles respectifs de chaque processus et leurs interactions sont peu connus. Notamment, l’activité de production de cellules du méristème apical racinaire (RAM) est trop souvent négligée. Dans cette thèse, l’analyse spatiale de la croissance le long de l’apex racinaire et l’analyse temporelle des trajectoires de croissance des cellules ont été couplées pour comprendre les liens existants entre division et élongation cellulaire. Pour cela, j’ai développé un système de phénotypage de la croissance à haute résolution spatio-temporelle qui a été appliqué à l’étude de racines d’un peuplier euraméricain (Populus deltoides × Populus nigra) en réponse à différents stress (stress osmotique, impédance mécanique). Une forte variabilité du taux de croissance racinaire entre individus ainsi que des variations individuelles cycliques de la croissance ont été observées malgré des conditions environnementales contrôlées. L’utilisation de cette variabilité couplée à la quantification de l’activité du RAM a mis en évidence l’importance du taux de production de cellules pour soutenir la croissance racinaire. Ces travaux analysent une nouvelle échelle de variations spatiales et temporelles de la croissance peu prise en compte jusqu’à présent. Hautement applicable à d’autres questions scientifiques, l’analyse du devenir des cellules une fois sortie du RAM est également discutée pour des conditions de croissance non stables / Regulation of root growth is a crucial capacity of plants for acclimatization to environmental stresses. At cell scale, this regulation is controlled through cell division and cell elongation but respective importance of these processes and interactions between them are still poorly known. Notably, the cell production activity of the root apical meristem (RAM) is often excluded. During this thesis, spatial analyses of growth along the root apex were coupled with temporal analyses of cell trajectories in order to decipher the links between cell division and cell elongation. This required the setup of a system for phenotyping root growth at a high spatiotemporal resolution which was applied to study the growth of roots from an euramerican poplar (Populus deltoides × Populus nigra) in response to different environmental stresses (osmotic stress or mechanical impedance). An important variability of root growth rate between individuals as well as individual cyclic variations of growth along time were observed despite tightly controlled environmental conditions. Use of this variability coupled with quantification of the RAM activity led us to a better understanding of the importance of the cell production rate for sustaining root growth. This work analyses a new spatiotemporal scale of growth variability poorly considered. Widely applicable to others scientific questioning, temporal analyses of cell fate once produced in the RAM is also discussed for non-steady growth conditions
|
10 |
Functional characterization of GPI-anchored proteins of the SKU5/SKS gene family / Caractérisation fonctionnelle des protéines à ancre GPI de la famille des gènes SKU5/SKSZhou, Ke 21 June 2013 (has links)
ABP1 (Auxin Binding Protein 1), qui peut se lier à l'auxine, est essentielle pour le développement des plantes. Il a été prouvé qu’elle a la capacité de se lier à l’auxine et de conduire le signal auxine dans les cellules. ABP1 est supposé être localisée et avoir des fonctions à la surface extérieure de la membrane plasmique à travers une composante inconnue. Au cours ma thèse, nous avons essayé d’étudier l'interaction entre ABP1 et le candidat de la composante inconnue, CBP1 (chez le maïs), qui est une protéine à ancres GPI déjà identifiée comme ayant la capacité de liaison au peptide de synthèse C-terminale d’ABP1 en 2006. L'orthologue de CBP1 chez arabidopsis appartient à une famille de gènes contenant 19 membres, dont seulement trois d'entre eux ont été prédit comme était des protéines à ancres GPI. Nous avons fait les caractérisations fonctionnelles de ces trois membres. Les données suggèrent que les protéines SKS à ancres GPI sont impliquées dans l'orientation de la cellule, le développement des gamétophytes et de l'embryon. / ABP1 (Auxin Binding Protein1), who can bind auxin, is essential for the development of plants. It was proved to have the ability to bind auxin and transduce auxin signal into the cells. It is supposed to be localized and functions at the outer surface of plasma membrane through unknown component. In my thesis, we tried to invesitgate the interaction between ABP1 and the candidate of the unknown component, CBP1 (From maize), which is GPI-acnhored and already identified as the binding ability to synthesized C-terminus peptide of ABP1 in 2006. The orthologous of CBP1 in arabidopsis belongs to a gene family with 19 members, in which only three of them were prediceted to be GPI anchored. We did the functional characterisation of these three GPI-anchored members. Data suggested that GPI-anchored SKS were involved in cell orientation, gametophyte and embryo development.
|
Page generated in 0.0834 seconds