• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 43
  • 41
  • 19
  • 9
  • 7
  • 7
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 152
  • 37
  • 32
  • 31
  • 30
  • 27
  • 26
  • 24
  • 24
  • 22
  • 20
  • 19
  • 18
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Etude de la dimérisation des récepteurs aux chimiokines CCR2, CCR5 et CXCR4

Sohy, Denis 18 January 2008 (has links)
La dimérisation des récepteurs couplés aux protéines G est un nouveau concept apparu dans la littérature au cours des quelques années qui ont précédé le début de notre travail. Bien qu’il soit clairement établi que les récepteurs sont capables de former des homo et des hétérodimères, les conséquences fonctionnelles de telles interactions demeurent souvent peu claires. Dans une étude précédente, le laboratoire d’accueil a montré que les récepteurs aux chimiokines CCR2 et CCR5 forment des homo et des hétérodimères de manière constitutive et identifié une coopérativité négative de liaison de nature allostérique entre les deux sites de liaison de CCR2 et CCR5 dans des cellules co-exprimant les deux récepteurs. Dans ce travail, nous avons étendu cette étude au récepteur CXCR4, structurellement plus éloigné que CCR2 et CCR5 entre eux. Nous montrons par une méthode biophysique se basant sur le transfert d’énergie de bioluminescence (le BRET) que CCR2, CCR5 et CXCR4 forment des homodimères et des hétérodimères de manière constitutive. De plus nous démontrons une coopérativité négative de liaison de nature allostérique des deux sites de liaisons pour les hétérodimères CCR2/CXCR4 et CCR5/CXCR4. lorsque CXCR4 est co-exprimé avec CCR2 ou CCR5, la chimiokine spécifique de CXCR4 (SDF-1α) inhibe la liaison du traceur spécifique de CCR2 (MCP-1) ou du traceur spécifique de CCR5 (MIP-1β), et vice-versa. La nature allostérique de ces interactions est démontrée par des expériences mesurant la dissociation de traceurs en présence ou non de compétiteurs. La coopérativité négative de liaison de nature allostérique des deux sites de liaisons est montrée également dans des cellules primaires, excluant tout effet indésirable dû à la surexpression de récepteurs. Nous montrons également que l’antagoniste spécifique de CXCR4 (AMD3100) inhibe la liaison du traceur spécifique de CCR2 (MCP-1) ou du traceur spécifique de CCR5 (MIP-1β), et vice-versa (TAK-779 vs SDF-1α), uniquement quand CXCR4 est co-exprimé respectivement avec CCR2 ou CCR5. Il s’agit là de la première preuve montrant que les interactions allostériques au sein d’hétérodimères de récepteurs aux chimiokines impliquent aussi des antagonistes, et qu’un antagoniste de récepteur aux chimiokines influence la réponse fonctionnelle d’un autre récepteur aux chimiokines auquel il ne se lie pas. De tels effets fonctionnels ont été montré dans des expériences de mobilisation de Ca++, de chimiotactisme sur lymphoblastes et dans des expériences d’air pouch in vivo. / Doctorat en Sciences biomédicales et pharmaceutiques / info:eu-repo/semantics/nonPublished
142

Role of Chemokine Receptor, CXCR4 Mediated Signaling in Cellular Senescence

Nair, Raji R January 2016 (has links) (PDF)
Cellular senescence has been proposed to be equivalent to organismal aging and is one of the outcomes of the cell fate decision process in response to DNA damage that occurs in cells. When a cell encounters DNA damage, the cell cycle is immediately halted to evaluate which decision to take in response to genomic insult. The choices are between repairing the damage and continue division, or enter a non-replicative but viable state called senescence or to die if damage is severe (Figure 1). The signaling cascade, which detects this damage and regulates the cell fate decision, is collectively called as DNA damage response (DDR). However, the exact mechanism of how delineation for each decision happens is still not clear. Since DNA damage works as a mediator for cell fate decision, my work aimed to study senescence as a DNA damage response. In addition, the role of free radicals like ROS in cellular senescence is not very clear because though an increase in their concentrations is recorded in aged cells, it is not evident if the increase seen the cause or the effect of aging, primarily because they themselves capable of causing DNA damage. This conundrum have always led to confounding observations wrt role of free radicals in the cellular senescence process and if the senescence is caused through agents which rely on ROS to cause DNA damage, ROS becomes absolutely integral to the aging process. To understand this aspect formed the first line of investigation in my work along with identification of the sensor of DNA damage, which drives various cell fates. During organismal ageing there is an accumulation of senescent cells, which could be the major reason for functional decline of tissues and organs with age. However, to study changes associated with signaling molecules with respect to ageing, a cellular model system for senescence driven through DNA damage was needed, using which interplay between senescent / aged cells and cellular niche can be established. Studying the spatial and temporal alterations in signaling dynamics, within the cell as well as with the neighbouring niche during the senescence process in anticipated to provide us better understanding about the complex process of ageing. For this, the objectives were defined to establish and characterize the DNA damage induced senescence model using various parameters, and especially study the signaling dynamics of GPCR mediated signaling in senescence. The role of chemokine receptor, CXCR4 and its ligand, CXCL12 mediated signaling was chosen for the study. The following sections describe the findings that were obtained from the various objectives studied during the course of this study. Section 1. Development and characterization a model system to study cellular senescence as a DNA damage response. In this part of the study, I characterized genotoxic stress induced cellular senescence model using 5-Bromodeoxyrudine as the DNA damaging agent. BrdU, owing to its property of being a thymidine analogue, is incorporated in dividing cells, and this incorporation is recognized as DNA damage. This triggers ‘persistent’ DNA damage response signaling, including activation of ATM kinase, one of the primary DNA damage sensor. As anticipated, the DDR response detected was directly proportional to the dose of BrdU treatment and so was Reactive Oxygen Species (ROS) levels, a known senescence mediator. Using this model system of direct DNA damage mediated DDR activation and induction of cellular senescence, the growth-arrested cells were extensively characterized for presence and quantum of most of the senescence associated markers known in literature. BrdU treated cells, which became senescent showed presence of DNA damage, morphological changes like flat, enlarged, granule rich appearance, expression of senescence associated molecular markers like p21, IL8, showed senescence associated beta galactosidase activity, refractiveness to growth factor for division, increased ROS levels, Golgi dispersion, etc. The secretome of the treated cells also showed increased secretion of inflammatory cytokines which are attributed to a senescence phenotype, called as Senescence Associated Secretory Phenotype (SASP), which triggered proliferative and migratory effect on cancer cells. Overall, in this part of the study, it was established that BrdU can cause DNA damage and induce senescence as one of the cell fate in response to the intermediate dose of damage. The senescent cells generated in the model system was established to be akin to senescence observed by replicative exhaustion of normal cells, thereby making our model applicable to the physiological studies as well. Section 2. Insights into the role of ATM-ROS axis during senescence initiation and maintenance using DDR mediated cellular senescence model. While the BrdU model system for generating senescent cells was being developed and characterized, it was observed that there is an increase in ATM activation as well as ROS production concomitant to the a dose of BrdU. At the same time it was also observed that senescent cells showed persistent DDR signaling and high levels of ROS. Using this premise, in the second objective of my study I aimed to identify if ATM and ROS are critical during initiation of senescence, when the cells are insulted with the DNA damaging agent or during the maintenance of senescent state of the cells. By quenching ROS during the initiation state, I recorded that ROS is not critical for inducing senescence and perhaps the increase in ROS levels in senescent cells is due to their higher metabolic activity. By inhibiting ATM activation during DNA damage, it was observed that BrdU induces senescence through direct DNA damage, and active ATM and DDR signaling is absolutely critical for the senescence initiation. It was also established that ATM is not just a DNA damage sensor but also a redox regulator in the senescence model system. Prevention of ATM activation in presence of DNA damage blocked senescence initiation and also triggered increased ROS levels in the cells affecting their long term viability, suggesting ATM regulates ROS levels as well in addition to sensing DNA damage. In order to study the role of ATM-ROS axis in the maintenance of senescence state, already senescent cells were subjected to ROS quenching and/ or ATM inhibition and it was identified that both these signaling molecules are essential for maintaining the viability of senescent cells. The findings from these study thereby show that senescence can be divided into two temporally distinct stages, initiation or early senescence stage and second, maintenance stage of senescence. Overall, I was able to characterize the presence of temporally linked ROS – dependent and ROS – independent events in cellular senescence, which are independently mediated by ATM kinase (Figure 1). Dose of Genotoxic Stress damage DDR Senescence initiation Repair Cell cycle ATM arrest kinase Death Growth arrest Senescence maintenance Senescence Cell ROS viability Elevated metabolism Figure 1. Signaling cascades regulating senescence onset and maintenance mediated through DDR. Cells enter senescence state in response to DNA damage, depending on the dose of insult, through an ATM dependent and ROS independent pathway. Unlike this ATM-ROS axis is critical for the maintenance of senescent state of damaged but viable cells. Section 3. Understanding the role of CXCR4 – CXCL12 mediated signaling in senescence. Age dependent changes in cellular signaling are less explored and I was specifically interested in understanding how presence of senescent cells affects its microenvironment or vice versa i.e. how microenvironment affects senescent cells. In this premise the third objective of this study was defined towards identifying role of a GPCR, CXCR4 mediated signaling in cellular senescence and associated inflammation. CXCR4 is a ubiquitously expressed GPCR and it’s only known ligand is CXCL12/ SDF1 (stromal derived factor ), which is a homeostatic chemokine (i.e. its levels does not change under most physiological conditions). During characterization of DNA damage induced senescence model system, it was observed that this receptor expression is induced during DNA damage ells, which was also found to be so from data available from other gene expression studies as well. During the course of my work, I identified that senescent cells show CXCR4 up regulation in response to DNA damage, mediated through activation of ATM kinase - HIF1 axis and plays a critical role in enhancing the senescence associated inflammatory response in presence of its ligand, CXCL12. This CXCL12 dependent enhanced inflammatory response in damaged cells was determined to be sensitive to the pertussis toxin treatment and hence dependent on G protein activation. Further downstream analysis revealed the pro-inflammatory effect of the CXCR4 receptor activation was due to cAMP level suppression post activation by the Gi subunit. Given that cAMP levels are antagonistic to inflammatory phenotype, using a library of pharmacological compound library, I also discovered that cAMP specific PDE, phophodiesterase 4A, is also involved in regulating inflammatory response during the initiation stage of cellular senescence. The screen also confirmed the involvement of previously identified molecular components such as p38 MAPK and leukotrienes in the senescence associated inflammatory phenotype. The examination of the role of the CXCR4- CXCL12 axis in the deeply senescent cells surprisingly revealed that deeply senescent cells are refractory to CXCL12 stimulation in terms of inflammatory response, which was experimentally determined to be associated with impaired calcium release. Overall, the findings from this part of the study revealed a novel signaling cascade where CXCR4 up regulation is a part of the DDR response in cells, which utilizes the Local Excitation Global Inhibition (LEGI) mechanism to enhance the sensitivity of the damaged cells to its ligand CXCL12. This enhanced sensitivity mediates the CXCL12 dependent inflammatory response, which aids in attracting immune cells for clearance of these damaged cells. Once the cells have entered the senescent state, the axis is physiologically down modulated and the senescent cells showed refractiveness to CXCL12 stimulation, probably to prevent persistent acute inflammation, if the senescent cells are not cleared (Figure 2). Figure 2. CXCL12-CXCR4 axis in cellular senescence. During senescence initiation stage, when cells encounter DNA damage (Step 1), there is induction of CXCR4 receptor (Step 2), which enhances of CXCL12 mediated signaling for increased inflammatory response (Step 3). In the maintenance stage, where the cells are not cleared (Step 4), the axis is suppressed (Step 4), thereby bringing the levels of inflammatory secretome down, and thereby preventing damage to the cells (Step 5).
143

Analyse der Expression von Chemokinen und Chemokinrezeptoren in HNO-Tumorzellen unter Radiochemotherapie / Analysis of chemokine and chemokine receptor expression in squamous cell carcinoma of the head and neck cell lines

Holzer, Claudia Anna 13 March 2017 (has links)
No description available.
144

Molecular and cellular Mechanisms controlling Primordial Germ Cell Migration in Zebrafish / Molekulare und zelluläre Mechanismen, welche die Primordiale Keimzell-Migration im Zebrafisch kontrollieren.

Blaser, Heiko 24 May 2006 (has links)
No description available.
145

Neuartige Wirkmechanismen und Therapiestrategien von Glukokortikoiden in der Behandlung von Multipler Sklerose im Tiermodell / Novel mechanisms and therapeutic strategies of glucocorticoids in the treatment in an animal model of multiple sclerosis

Schweingruber, Nils 25 June 2014 (has links)
No description available.
146

Η λεμφαγγειογένεση στην παθοφυσιολογία της καρκινικής νόσου

Παπαναστασόπουλος, Παναγιώτης 03 August 2009 (has links)
Το λεμφαγγειακό σύστημα διαδραματίζει σημαντικό ρόλο στη διατήρηση της ομοιόστασης των ιστών, στην ανοσολογική απόκριση του οργανισμού, στην απορρόφηση των λιπών από τον πεπτικό σωλήνα, και στη διασπορά των καρκινικών κυττάρων. Η πρόσφατη ανακάλυψη ειδικών για τα λεμφαγγειακά ενδοθηλιακά κύτταρα δεικτών και αναπτυξιακών παραγόντων, όπως επίσης και η δημιουργία γενετικών μοντέλων ποντικιών με διαταραγμένη τη λειτουργία του λεμφαγγειακού συστήματος, παρείχαν σημαντικότατες πληροφορίες για τη μοριακή ρύθμιση της εμβρυικής ανάπτυξης του λεμφαγγειακού συστήματος και της φυσιολογίας του. Τα σχετικά πρόσφατα αναγνωρισμένα μοριακά σηματοδοτικά μονοπάτια από τα οποία ρυθμίζεται η λεμφαγγειογένεση επέτρεψαν τη μελέτη της σχετιζόμενης με όγκους λεμφαγγειογένεσης. Οι μελέτες αυτές κατέδειξαν ότι η σχετιζόμενη με τους όγκους λεμφαγγειογένεση αποτελεί σημαντικό στοιχείο της μεταστατικής διαδικασίας, ενώ παράλληλα αναδεικνύουν συνεχώς καινούρια μόρια/σηματοδοτικά μονοπάτια-ρυθμιστές της εν λόγω διαδικασίας. / The lymphatic vascular system plays an important role in the maintenance of fluid homeostasis, in the afferent immune response, in the intestinal lipid uptake and in the metastatic spread of malignant cells. The recent discovery of specific markers and growth factors for lymphatic endothelium and the establishment of genetic mouse models with impairment of lymphatic function have provided novel insights into the molecular control of the lymphatic system in physiology and in embryonic development. Recently, molecular pathways that signal for lymphangiogenesis have been described allowing analyses of tumor lymphangiogenesis to be performed. These studies demonstrate that tumor lymphangiogenesis is a major component of the metastatic process, while at the same time new molecules and transduction pathways are discovered to regulate tumor lymphatics growth.
147

Exploration des mécanismes responsables de la dichotomie entre la chimiotaxie et la division cellulaire

Rhainds, David 10 1900 (has links)
No description available.
148

Eicosanoid Regulation of Hematopoietic Stem and Progenitor Cell Function

Hoggatt, Jonathan G. 21 July 2010 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Adult hematopoietic stem cells (HSC) are routinely used to reconstitute hematopoiesis after myeloablation; however, transplantation efficacy and multilineage reconstitution can be limited by inadequate HSC number, or poor homing, engraftment or self-renewal. We have demonstrated that mouse and human HSC express prostaglandin E2 (PGE2) receptors, and that short-term ex vivo exposure of HSC to PGE2 enhances their homing, survival and proliferation, resulting in increased long-term repopulating cell and competitive repopulating unit (CRU) frequency. HSC pulsed with PGE2 are more competitive, as determined by head-to-head comparison in a competitive transplantation model. Enhanced HSC frequency and competitive advantage is stable and maintained upon multiple serial transplantations, with full multi-lineage reconstitution. PGE2 increases HSC CXCR4 mRNA and surface expression and enhances their migration to SDF-1α in vitro and homing to bone marrow in vivo and stimulates HSC entry into and progression through cell cycle. In addition, PGE2 enhances HSC survival, associated with an increase in Survivin mRNA and protein expression and reduction in intracellular active caspase-3. While PGE2 pulse of HSC promotes HSC self-renewal, blockade of PGE2 biosynthesis with non-steroidal anti-inflammatory drugs (NSAIDs) results in expansion of bone marrow hematopoietic progenitor cells (HPC). We co-administered NSAIDs along with the mobilizing agent granulocyte-colony stimulating factor (G-CSF) and evaluations of limiting dilution transplants, assays monitoring neutrophil and platelet recoveries, and secondary transplantations, clearly indicate that NSAIDs facilitate mobilization of a hematopoietic graft with superior functional activity compared to the graft mobilized by G-CSF alone. Enhanced mobilization has also been confirmed in baboons mobilized with G-CSF and a NSAID. Increases in mobilization are the result of a reduction of signaling through the PGE2 receptor EP4, which results in marrow expansion and reduction in the osteoblastic HSC niche. We also identify a new role for cannabinoids, an eicosanoid with opposing functions to PGE2, in hematopoietic mobilization. Additionally, we demonstrate increased survival in lethally irradiated mice treated with PGE2, NSAIDs, or the hypoxia mimetic cobalt chloride. Our results define novel mechanisms of action whereby eicosanoids regulate HSC and HPC function, and characterize novel translational strategies for hematopoietic therapies.
149

Expressão de CXCR7 e CXCR4 em em astrocitomas iniltrativos em relação ao tecido cerebral não neoplásico e sua interação com HIF1alfa e IDH1 / CXCR7 and CXCR4 expressions in infiltrative astrocytomas and their interactions with HIF1alfa and IDH

Bianco, André de Macedo 12 September 2013 (has links)
Introdução: Existem dados suficientes disponíveis demonstrando a importância da quimiocina CXCL12 e seu receptor CXCR4 na progressão tumoral e angiogênese dos gliomas. O CXCR4 é regulado positivamente pelo HIF1alfa. Recentemente um novo receptor com maior afinidade à CXCL12 foi identificado, o receptor órfão RDC1, agora denominado CXCR7. O objetivo deste estudo é investigar a expressão de mRNA CXCR7 em tecidos astrocitomas difusos e avaliar suas interações com expressão CXCR4 e HIF1alfa, bem como analisar sua relação com mutação do IDH1. Métodos: A expressão do CXCR7, CXCR4, IDH1 e HIF1alfa foram avaliadas por PCR quantitativo em tempo real (qRT-PCR) em 129 amostras congeladas de astrocitomas (25 astrocitoma difuso - AGII, 18 de astrocitoma anaplásico - AGIII e 86 glioblastoma - GBM) e 22 amostras de tecido cerebral não neoplásico (NN) obtidos de cirurgia de epilepsia. A mutação do IDH1 previamente determinada foi analisada em relação aos níveis de expressões de mRNA do CXCR7, CXCR4 e HIF1alfa, combinado com os parâmetros clínico-patológicos e sobrevida global. Adicionalmente, a expressão proteica do CXCR7 foi analisada por imuno-histoquímica em astrocitomas de diferentes graus e em linhagem celular de glioma (U87MG) por microscopia confocal. Resultados: Houve diferença significativa nos níveis de expressão dos genes estudados entre astrocitomas e NN (p < 0,001). Na análise da expressão gênica associada nos AGII não se observou correlação entre os níveis de expressão de CXCR7/HIF1alfa (p = 0,548); observou-se correlação significativa entre CXCR7/IDH1 (p < 0,001) e CXCR7/CXCR4 (p = 0,042). Nos GBM houve correlação significativa entre CXCR7/CXCR4 (p = 0,002), CXCR7/IDH1 (p < 0,001) e CXCR7/HIF1alfa (p = 0,008). Hiperexpressão do HIF1alfa foi associado com maior expressão do CXCR7 e CXCR4 (p = 0,001), enquanto a presença de IDH1 mutado foi associada a menor expressão de mRNA do CXCR7 e CXCR4 (p = 0,009). A expressão proteica de CXCR7 foi identificada em todas as amostras estudadas, e aumentou com malignidade. A proteína CXCR7, na linha celular U87MG, foi localizada principalmente na membrana celular. Conclusão: O CXCR7 é um gene diferencialmente expresso em astrocitomas difusamente infiltrativos em relação tecido cerebral não neoplásico. O nível de expressão do CXCR7 correlacionou-se significativamente com os níveis de expressão do CXCR4 e IDH1 nos AGII e com CXCR4, IDH1 e HIF-1alfa nos GBM. O nível de expressão elevado do CXCR7 e CXCR4 correlacionou-se com nível elevado de expressão de HIF-1a, enquanto a presença da mutação do IDH1 associou-se a níveis reduzidos de CXCR7 e CXCR4. Não se observou associação significativa entre os níveis de expressão de CXCR7 e CXCR4 com os dados de sobrevida / Introduction: There is abundant evidence showing that chemokine CXCL12 and its receptor CXCR4 are involved in glioma progression and angiogenesis. CXCR4 is upregulated by HIF1alfa. The CXCR7, a recent additional receptor for CXCL12 with higher affinity than CXCR4 has raised key issues on glioma cell migration. The aim of this study is to investigate the CXCR7 mRNA expression in diffuse astrocytoma tissues and to evaluate its interactions with CXCR4 and HIF1alfa expression and IDH1 mutation. Methods: CXCR7, CXCR4, IDH1 and HIF1alfa expressions were evaluated by quantitative real-time PCR (qRT-PCR) in 129 frozen samples of astrocytoma (25 diffuse astrocytomas - AGII, 18 anaplastic astrocytomas - AGIII and 86 glioblastomas - GBM) and 22 samples of non-neoplastic tissue cerebral (NN) from epilepsy surgery. IDH1 mutation status was analyzed with CXCR7, CXCR4 e HIF1alfa mRNA expressions, matched with clinicopathological parameters and overall survival time. Furthermore, CXCR7 protein expression was analyzed by immunohistochemistry in different grades of astrocytoma and in glioma cell line (U87MG) by confocal microscopy. Results: There was significant difference in the expression levels of the genes studied between astrocytomas and NN (p < 0.001). The analysis of associated gene expressions in AGII showed no significant correlation between CXCR7/HIF1alfa (p = 0.548); there was significant correlation between CXCR7/CXCR4 (p = 0.042) and CXCR7/IDH1 (p = 0.008). In GBM, there were significant correlations between CXCR7/CXCR4 (p = 0.002), CXCR7/IDH1 (p < 0.001) and CXCR7/HIF1alfa (p = 0.008). HIF1alfa overexpression was associated with higher expressions of CXCR7 and CXCR4 (p = 0.001), while presence of IDH1 mutation was associated with lower CXCR7 and CXCR4 mRNA expressions (p = 0.009). Protein expression was identified in all samples studied, and it increased with malignancy. CXCR7 protein, in U87MG cell line, was mainly localized in the cellular membrane. Conclusion: CXCR7 was overexpressed in astrocytoma of different grades of malignancy compared to non-neoplastic brain tissue. CXCR7 expression levels correlates with CXCR4 and IDH1 in AGII and CXCR4, IDH1 and HIF1alfa in GBM. Overexpression HIF1alfa was related with higher expressions of CXCR7 and CXCR4, otherwise presence of IDH1 mutation related with lower expression of both genes. Protein expression level was associated with the degree of malignancy. The results revealed no significant association between CXCR7 and CXCR4 expression and survival data
150

Expressão de CXCR7 e CXCR4 em em astrocitomas iniltrativos em relação ao tecido cerebral não neoplásico e sua interação com HIF1alfa e IDH1 / CXCR7 and CXCR4 expressions in infiltrative astrocytomas and their interactions with HIF1alfa and IDH

André de Macedo Bianco 12 September 2013 (has links)
Introdução: Existem dados suficientes disponíveis demonstrando a importância da quimiocina CXCL12 e seu receptor CXCR4 na progressão tumoral e angiogênese dos gliomas. O CXCR4 é regulado positivamente pelo HIF1alfa. Recentemente um novo receptor com maior afinidade à CXCL12 foi identificado, o receptor órfão RDC1, agora denominado CXCR7. O objetivo deste estudo é investigar a expressão de mRNA CXCR7 em tecidos astrocitomas difusos e avaliar suas interações com expressão CXCR4 e HIF1alfa, bem como analisar sua relação com mutação do IDH1. Métodos: A expressão do CXCR7, CXCR4, IDH1 e HIF1alfa foram avaliadas por PCR quantitativo em tempo real (qRT-PCR) em 129 amostras congeladas de astrocitomas (25 astrocitoma difuso - AGII, 18 de astrocitoma anaplásico - AGIII e 86 glioblastoma - GBM) e 22 amostras de tecido cerebral não neoplásico (NN) obtidos de cirurgia de epilepsia. A mutação do IDH1 previamente determinada foi analisada em relação aos níveis de expressões de mRNA do CXCR7, CXCR4 e HIF1alfa, combinado com os parâmetros clínico-patológicos e sobrevida global. Adicionalmente, a expressão proteica do CXCR7 foi analisada por imuno-histoquímica em astrocitomas de diferentes graus e em linhagem celular de glioma (U87MG) por microscopia confocal. Resultados: Houve diferença significativa nos níveis de expressão dos genes estudados entre astrocitomas e NN (p < 0,001). Na análise da expressão gênica associada nos AGII não se observou correlação entre os níveis de expressão de CXCR7/HIF1alfa (p = 0,548); observou-se correlação significativa entre CXCR7/IDH1 (p < 0,001) e CXCR7/CXCR4 (p = 0,042). Nos GBM houve correlação significativa entre CXCR7/CXCR4 (p = 0,002), CXCR7/IDH1 (p < 0,001) e CXCR7/HIF1alfa (p = 0,008). Hiperexpressão do HIF1alfa foi associado com maior expressão do CXCR7 e CXCR4 (p = 0,001), enquanto a presença de IDH1 mutado foi associada a menor expressão de mRNA do CXCR7 e CXCR4 (p = 0,009). A expressão proteica de CXCR7 foi identificada em todas as amostras estudadas, e aumentou com malignidade. A proteína CXCR7, na linha celular U87MG, foi localizada principalmente na membrana celular. Conclusão: O CXCR7 é um gene diferencialmente expresso em astrocitomas difusamente infiltrativos em relação tecido cerebral não neoplásico. O nível de expressão do CXCR7 correlacionou-se significativamente com os níveis de expressão do CXCR4 e IDH1 nos AGII e com CXCR4, IDH1 e HIF-1alfa nos GBM. O nível de expressão elevado do CXCR7 e CXCR4 correlacionou-se com nível elevado de expressão de HIF-1a, enquanto a presença da mutação do IDH1 associou-se a níveis reduzidos de CXCR7 e CXCR4. Não se observou associação significativa entre os níveis de expressão de CXCR7 e CXCR4 com os dados de sobrevida / Introduction: There is abundant evidence showing that chemokine CXCL12 and its receptor CXCR4 are involved in glioma progression and angiogenesis. CXCR4 is upregulated by HIF1alfa. The CXCR7, a recent additional receptor for CXCL12 with higher affinity than CXCR4 has raised key issues on glioma cell migration. The aim of this study is to investigate the CXCR7 mRNA expression in diffuse astrocytoma tissues and to evaluate its interactions with CXCR4 and HIF1alfa expression and IDH1 mutation. Methods: CXCR7, CXCR4, IDH1 and HIF1alfa expressions were evaluated by quantitative real-time PCR (qRT-PCR) in 129 frozen samples of astrocytoma (25 diffuse astrocytomas - AGII, 18 anaplastic astrocytomas - AGIII and 86 glioblastomas - GBM) and 22 samples of non-neoplastic tissue cerebral (NN) from epilepsy surgery. IDH1 mutation status was analyzed with CXCR7, CXCR4 e HIF1alfa mRNA expressions, matched with clinicopathological parameters and overall survival time. Furthermore, CXCR7 protein expression was analyzed by immunohistochemistry in different grades of astrocytoma and in glioma cell line (U87MG) by confocal microscopy. Results: There was significant difference in the expression levels of the genes studied between astrocytomas and NN (p < 0.001). The analysis of associated gene expressions in AGII showed no significant correlation between CXCR7/HIF1alfa (p = 0.548); there was significant correlation between CXCR7/CXCR4 (p = 0.042) and CXCR7/IDH1 (p = 0.008). In GBM, there were significant correlations between CXCR7/CXCR4 (p = 0.002), CXCR7/IDH1 (p < 0.001) and CXCR7/HIF1alfa (p = 0.008). HIF1alfa overexpression was associated with higher expressions of CXCR7 and CXCR4 (p = 0.001), while presence of IDH1 mutation was associated with lower CXCR7 and CXCR4 mRNA expressions (p = 0.009). Protein expression was identified in all samples studied, and it increased with malignancy. CXCR7 protein, in U87MG cell line, was mainly localized in the cellular membrane. Conclusion: CXCR7 was overexpressed in astrocytoma of different grades of malignancy compared to non-neoplastic brain tissue. CXCR7 expression levels correlates with CXCR4 and IDH1 in AGII and CXCR4, IDH1 and HIF1alfa in GBM. Overexpression HIF1alfa was related with higher expressions of CXCR7 and CXCR4, otherwise presence of IDH1 mutation related with lower expression of both genes. Protein expression level was associated with the degree of malignancy. The results revealed no significant association between CXCR7 and CXCR4 expression and survival data

Page generated in 0.0647 seconds