• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 4
  • 1
  • Tagged with
  • 37
  • 21
  • 16
  • 15
  • 13
  • 12
  • 12
  • 12
  • 11
  • 10
  • 10
  • 10
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Comparaison des mécanismes de régulation des isoformes a et b des récepteurs 5-HT4

Benmbarek, Saoussane 05 1900 (has links)
Les actions thérapeutiques des antidépresseurs, disponibles actuellement, requièrent plusieurs semaines de traitement. Ce délai est dû aux adaptations des sites pré et post-synaptiques qui, respectivement, augmentent la disponibilité synaptique des monoamines sérotonine et noradrénaline (5-HT et NA), et entraînent les changements neuroplastiques modifiant la fonction neuronales dans les régions limbiques. Il a été récemment observé, chez un modèle animal de dépression, que l’agoniste RS67333 des récepteurs sérotoninergiques de type 5-HT4 produisait des changements comportementaux, électrophysiologiques, cellulaires et biochimiques, tel qu’observé chez les antidépresseurs. Ces changements apparaissent seulement après 3 jours de traitement tandis que les antidépresseurs nécessitent souvent plusieurs semaines. De plus, l’activation des récepteurs 5-HT4 ne générait pas de tolérance, et cela pendant 21 jours de traitement. Seulement, les propriétés de signalisation et de régulation de ces récepteurs sont très loin d’êtres établies. Nous avons alors voulu mieux caractériser ces deux aspects de leur fonction, en se concentrant d’avantage sur les isoformes a et b, fortement exprimés dans le système limbique. Pour cela, nous avons voulu évaluer d’abord leur capacité de production d’AMPc dans un système hétérologue. Les essais d’accumulation d’AMPc démontrent que les deux isoformes sont capables de moduler positivement et négativement des niveaux d’AMPc en présence de 5-HT. Par contre, la stimulation au RS67333 induit seulement une augmentation du niveau d’AMPc dans les deux cas. Ensemble, ces observations indiquent que les deux isoformes sont capables de coupler à l’adénylate cyclase à travers les protéines Gαs et Gαi. La quantification des récepteurs internalisés a montré que l’isoforme b internalisait plus efficacement que l’isoforme a suite à l’incubation à la 5-HT (61 ± 3 % pour le b vs 40 ± 2 % pour le a). Les protéines kinases PKA et PKC n’étaient pas impliquées dans cette différence, toutefois, la PKC a été trouvée essentielle à l’internalisation des deux isoformes. L’internalisation de l’isoforme b par 5-HT n’a pas été affecté par la surexpression de forme inactive de GRK2 (GRK2- K220R) et a été partiellement inhibé par un mutant négative de la β-arrestine (βarr(319-418)), tandis que l’internalisation de l’isoforme a a été bloquée par les deux. Ces observations indiquent que les mécanismes d’internalisation des deux isoformes du récepteur 5-HT4 les plus abondants dans le système nerveux central sont distincts. Des comportements spécifiques à chaque isoforme ont aussi été constatés au niveau de la régulation fonctionnelle suite à l’exposition au RS67333, qui désensibilise seulement l’isoforme b. D’après nos observations, nous avons conclu que les isoformes a et b diffèrent dans leur propriétés de signalisation et de régulation. L’incapacité du RS67333 à désensibiliser l’isoforme a fournit un substrat moléculaire pour les effets antidépressifs prolongés de cet agoniste dans les études pré-cliniques. / The therapeutic actions of antidepressants, currently available, require several weeks of treatment. This delay is due to pre-and post-synaptic sites adjustments, which, respectively, increase the availability of synaptic monoamines 5-HT and NA, and induce neuroplastic changes amending neuronal function in the limbic regions. We have recently observed in animal model of depression that serotonergic 4 receptor agonist RS67333 produces behavioural, electrophysiological, cellular and biochemical changes, as seen in antidepressants. More importantly, these changes appear only after 3 days of treatment while antidepressants often require several weeks. Moreover, activation of 5-HT4 receptors does not generate tolerance and that for 21 days of treatment. However, the signalling and regulation properties of these receptors haven’t been established yet. Here, we wanted to better characterize these two aspects of their function, and in particular for isoforms a and b, strongly expressed in the limbic system. First, we assessed their ability to produce cAMP in a heterologous system. Functional assays revealed that both isoforms were capable of positive and negative modulation of cAMP levels by 5-HT. Stimulation by RS67333 induced cAMP stimulation. Together, these observations indicate that that both isoforms are able to couple adenylate cyclase through Gαs and Gαi proteins. Moreover, quantification of receptors sequestration showed that isoform b internalised more efficiently than the isoform a, following incubation with 5-HT (61 ± 3 % for b, 40 ± 2 % for a). PKA and PKC proteins, two seconds messenger kinases activated by these receptors, are not involved in producing this difference. However, PKC is essential to the internalization of both isoforms. Isoform b internalization was not affected by an inactive GRK2 mutant (GRK2-K220R) and was partially inhibited by dominant negative β-arrestin (βarr(319-418), while isoform a internalization was dependant on both. These observations indicate that internalization mechanisms of the two isoforms, most abundantly expressed in the central nervous system, are different. Functional desensitization studies showned that RS67333 selectively desensitizes the isoform b, but not isoforme a. Based on these observations, we conclude that isoform a and b differ in their signalling and regulatory properties. Isoform a incapacity to desensitization by RS67333 provides a molecular substrate for prolonged antidepressant affects of this agonist in pre-clinical studies.
32

Caractérisation des approches de stimulation tactile suite à une lésion nerveuse périphérique avec allodynie à la main : une étude de cas et une revue systématique

Quintal, Isabelle 03 1900 (has links)
Problématique : Les lésions nerveuses périphériques peuvent entraîner une allodynie mécanique (AM) qui est une douleur neuropathique provoquée par le toucher. L’AM peut limiter les activités et les habitudes de vie des patients. Les approches de stimulation tactiles sont des interventions prometteuses pour traiter l’AM. Cependant, aucune étude n’a encore investigué l’intégration d’une telle approche dans un programme de réadaptation multimodal. De plus, il n’existe aucune synthèse des connaissances sur ces approches pour le traitement de l’AM. Objectifs : 1- Décrire l’intégration d’une approche de stimulation tactile dans un programme de réadaptation multimodal; 2- Recenser les approches de stimulation tactiles et évaluer les évidences de ces approches pour traiter l’AM à la main suite à une lésion nerveuse périphérique. Méthodologie : 1- Étude de cas. 2- Recension systématique sur les approches de stimulation tactile. Résultats : L’étude de cas montre une diminution de l’AM et une amélioration des incapacités chez un patient présentant un syndrome de douleur régionale complexe qui a participé à un programme de réadaptation multimodal intégrant une approche de stimulation tactile. La recension systématique montre qu’il existe deux approches de stimulation tactiles (la désensibilisation et la rééducation sensitive de la douleur) pour traiter l’AM à la main. Ces approches ne se distinguent pas quant au niveau d’évidence de leur efficacité pour traiter l’AM suite à une lésion nerveuse périphérique. Conclusion : Les deux approches peuvent être utilisées par les cliniciens pour traiter l’AM en fonction de leur raisonnement clinique et des caractéristiques des patients. / Context: Peripheral nerve lesions can lead to mechanical allodynia (MA), that is a neuropathic pain provoked by touch. MA can limit patients’ activities and life habits. Tactile stimulations are promising approaches to treat MA. However, to our knowledge, there is no study that has investigated how such approaches can be integrated into a multimodal rehabilitation program. In addition, there is no synthesis of current knowledge on the tactile stimulation approaches for treating MA. Objectives: 1- To describe the integration of a tactile stimulation approach in a multimodal rehabilitation program; 2- To identify existing tactile stimulation approaches and to assess evidences of the use of these approaches to MA in the hand following a peripheral nerve lesion. Method: 1- Case report. 2- Systematic review on tactile stimulation approaches. Results: The case report shows an abolition of MA and an improvement of incapacities in a patient with a complex regional pain syndrome who participated in a multimodal rehabilitation program including a tactile stimulation approach. The systematic review identified two tactile stimulation approaches (desensitization and somatosensory rehabilitation of pain). Those approaches do not differ in their level of evidence in the treatment of MA following a peripheral nerve lesion. Conclusion: The two approaches can be used by clinicians to treat MA. The choice of these approaches should be based on clinical reasoning and patients’ characteristics.
33

Ligand-specific signalling at the delta opioid receptor

Mansour, Ahmed 12 1900 (has links)
La douleur chronique est une maladie fréquente et grave qui, pour de nombreuses personnes, ne peut pas être entièrement traitée avec les choix thérapeutiques actuels. Des agonistes des récepteurs opioïdes delta (DORs) ont été proposés comme interventions thérapeutiques pour ces maladies. Des recherches précliniques ont montré que l'activation des DOR produit des effets anti-hyperalgiques et antidépresseurs avec moins d'effets secondaires associés aux analgésiques opioïdes disponibles sur le plan clinique. Cependant, de nombreux agonistes DOR induisent une tolérance analgésique, entravant ainsi leur développement en tant que médicaments. Les travaux de cette thèse visent à mieux comprendre les causes cellulaires et moléculaires de la tolérance ainsi que ce qui rend certains agonistes plus résistants à la tolérance que d'autres. Dans le premier projet, nous nous sommes concentrés sur la superactivation de l'adénylyl cyclase induite par un ligand, un modèle de réponse adaptative médiée par les isoformes de l'adénylyl cyclase (AC). La superactivation de l'adénylyl cyclase (SA) a été associée à l’hyperalgésie, la tolérance analgésique et à des symptômes de sevrage. Ainsi, nous étions curieux de voir si les profils de signalisation cellulaire créés pour la découverte de médicaments pouvaient nous fournir des informations sur la capacité d'un ligand à induire la SA. Pour répondre à cette question, nous avons généré des profils de signalisation complets pour six agonistes différents du DORs (Met-enképhaline, deltorphine II, DPDPE, SNC-80, ARM390 et TIPP) tout en surveillant 12 différents résultats de signalisation avec des biocapteurs à base de BRET. L'analyse des profils de signalisation a montré une sélectivité fonctionnelle remarquable parmi les ligands étudiés. Ensuite, nous avons pu classer les agonistes DOR en fonction de la similarité de leurs profils en utilisant l'approche que nous avons adaptée de notre laboratoire. Nous avons par la suite démontré que, à l'exception de TIPP, dont la réponse SA était Ca2+-indépendante, les catégories de médicaments résultant du regroupement sont corrélées avec la capacité du ligand à provoquer une SA. Une investigation plus approfondie des mécanismes a révélé que Gαi/o était essentiel tant pour la SA déclenchée par TIPP que par Met-Enkepkaline, mais les mécanismes en aval étaient assez distincts pour ces ligands. Ensemble, nos résultats indiquent que les mécanismes sous-jacents à la tolérance cellulaire induite par les agonistes DOR sont spécifiques au ligand. Dans le deuxième projet, nous nous sommes principalement intéressés aux mécanismes de tolérance aux agonistes DOR qui peuvent être en partie expliqués par la désensibilisation et la régulation négative des récepteurs. Il a été établi que, les ligands qui induisent le recyclage du récepteur après l'internalisation ont été trouvés pour fournir une analgésie de longue durée. Par conséquent, les expériences menées dans cette étude ont été menées pour révéler davantage les déterminants moléculaires sous-jacents au recyclage du récepteur et sur la manière dont l'interaction agoniste-récepteur pourrait produire des modèles distincts de régulation des récepteurs. Nous avons évalué l'activation de l'agoniste et la désensibilisation du signal DOR-Gαi1. Nos données ont rapporté que le DPDPE était pratiquement sans effet sur la désensibilisation de l'activation de Gαi1, tandis que la désensibilisation par la deltorphine II était plus importante que celle induite par le DPDPE mais moins que celle induite par l'ARM390 et le SNC-80. Ensuite, nous avons établi que les DORs stimulés par le DPDPE se recyclaient de manière plus efficace que ceux activés par la deltorphine II. De plus, nous fournissons des preuves phénoménologiques que des interventions similaires ont des effets distincts sur le recyclage évoqué par chaque ligand. En particulier, la truncation du DOR ou la surexpression de βarr2 avaient des effets différentiels sur le recyclage par le DPDPE et la deltorphine II. Il est admis que les mécanismes sous-jacents à ces différences restent à être pleinement décrits, mais la phénoménologie de nos observations soutient l'idée que le DPDPE et la deltorphine II mettent en œuvre des processus de recyclage distincts. / Chronic pain is a common and severe disease that, for many people, cannot be fully treated with current therapeutic choices. Agonists of the delta opioid receptor (DOR) have been proposed as therapeutic interventions for this illness. Preclinical research has shown that DORs produce antihyperalgesic and antidepressant-like effects with fewer side effects than the ones associated with clinically available opioid analgesics. However, numerous DOR agonists induce analgesic tolerance, hampering their development as medications. Thus, further investigations are needed to understand the mechanisms underlying the tolerance associated with chronic opioid use. This thesis aimed to further understand the cellular and molecular mechanisms that causes tolerance as well as what makes some agonists more resistant to tolerance than others. In the first project, we focused on ligand-induced cyclase superactivation (SA), a pattern of adaptive response mediated by adenylyl cyclase (AC) isoforms. Cyclase SA has been associated with hyperalgesia, analgesic tolerance, and withdrawal symptoms. Therefore, we were curious to assess weather cell-based signalling profiles created for drug discovery could provide us with information on the ability of a ligand to induce cyclase SA. To address this question, we generated comprehensive signalling profiles for six different DOR agonists (Met-enkephalin, deltorphin II, DPDPE, SNC-80 and ARM390) while monitoring 12 different signalling outcomes with BRET-based biosensors. Analysis of the signalling profiles showed remarkable functional selectivity among the investigated ligands. Next, we were able to classify DOR agonists based on the similarity of their profiles using the approach we adapted from our lab. We subsequently demonstrated that except for TIPP, whose SA response was Ca2+-independent, the drug categories resulting from clustering are correlated with ligand capacity to cause SA. Further investigation of the mechanisms revealed that Gαi/o was essential for both TIPP and Met-Enkepkalin-driven cyclase SA. However, downstream mechanisms were quite distinct for these two ligands. Altogether, our findings indicate that mechanisms underlying cellular tolerance induced by DOR agonists are ligand-specific. In the second project, we were primarily concerned with the mechanisms of tolerance to DOR agonists that may be, in part, explained the receptor desensitization and downregulation. Obviously, ligands that induce receptor recycling after internalization have been found to provide long-lasting analgesia. Therefore, the objectives of the experiments in this project were to assess the molecular determinants affecting receptor recycling and how agonist-receptor interaction can result in different patterns of receptor regulation. We assessed agonist inducing activation and desensitization of DOR-Gαi1 signal. Our data showed that DPDPE was efficient in activating the receptor without noticeable desensitization effect. On the other hand, deltorphin II exerted a significant desensitization effect. However, this effect was low when compared to ARM390 and SNC-80. Then, we established that DORs stimulated by DPDPE recycle more efficiently than those activated by deltorphin II. We also provided phenomenological evidence on receptor recycling elicited by each ligand. In particular, DOR truncation or the overexpression of βarr2 had differential effects on receptor recycling by DPDPE and deltorphin II. While our data shed light on the mechanism underlying these differences, further investigation is needed for the mechanism to be fully elucidated. Admittedly, our observations support the notion that DPDPE and deltorphin II engage distinct recycling processes.
34

Étude du rôle de la tyrosine kinase Src dans la régulation de la signalisation des récepteurs opioïdes delta (∆OR)

Gobeil, Mélanie P. 07 1900 (has links)
Les opioïdes sont les analgésiques les plus efficaces mais leur utilisation est limitée par la tolérance, un processus lié en partie à la désensibilisation des récepteurs. Le rôle de la présente étude était de mieux caractériser le processus de désensibilisation des récepteurs et plus particulièrement, d’étudier le rôle de la tyrosine kinase Src sur la régulation de la signalisation des récepteurs delta opioïdes. Nos résultats démontrent que l’inhibition pharmacologique avec PP2 (à faible concentration : 20- 40µM) ou encore l’inhibition moléculaire de la kinase avec de faibles concentrations d’ADN d’un mutant dominant inactif de Src (0,2µg/ml) potentialise l’amplitude et la durée de l’activation de la cascade ERK lorsqu’un agoniste, DPDPE (1µM; 5 min), se lie aux récepteurs. Nous avons également démontré que de fortes concentrations d’inhibiteurs de Src (80 et 100µM de PP2 ou 1µg/ml d’ADN du mutant dominant négatif) bloquent la cascade des MAPK suivant la stimulation de DOR par l’agoniste DPDPE. Ces observations indiquent que Src a un effet biphasique sur l’activité de ERK : l’inhibition complète de Src inhibe l’activité de la cascade MAPK alors qu’une inhibition modérée potentialise cette même cascade. Nous pensons aussi que de fortes concentrations des bloqueurs de Src interfèrent avec l’activation de ERK alors que de faibles concentrations interfèrent avec la désensibilisation des récepteurs. Cette possibilité a été testée à l’aide d’essais d’accumulation d’AMPc qui visaient à évaluer l’effet des bloqueurs de Src (PP2, 20 µM; 1h) sur la désensibilisation induite par un agoniste. L'activation de DOR par DPDPE inhibe la production d’AMPc, préalablement stimulée par du forskolin, de façon dose-dépendante. Le maximum d'inhibition observé est de 61%, mais lors d’un prétraitement au DPDPE (1 µM, 30 min) l’inhibition maximale est réduite à 72% de l’inhibition initiale observée. Cependant, un prétraitement des cellules au PP2 (20µM pendant 1 heure) avant d’effectuer la désensibilisation protège contre cette désensibilisation. L’effet protecteur des bloqueurs de Src n’entraîne pas de changement au niveau de l’internalisation des DOR mais l’altération de leur internalisation via un mutant tronqué du DOR ou via un milieu sucré hypertonique (0.4M de saccharose) réduit cette protection. Ces données suggèrent alors que l’internalisation optimale du récepteur est nécessaire pour que l’effet protecteur prenne place. Nous concluons donc que Src contribue à la désensibilisation de DOR après que l’internalisation du DOR soit survenue. / Opioids are the most effective analgesics available but their use is limited by tolerance. Tolerance is related, at least in part, to receptor desensitization. Hence, the role of the present study was to better characterize the desensitization process, in particular concerning the role of the tyrosine kinase Src on regulation of delta opioid receptor signalling. Our results show that pharmacological inhibition with PP2 (administered at low concentration: 20-40µM) or molecular inhibition of the kinase with low expression levels of a dominant negative mutant of Src (0,2µg of DNA) potentiate the magnitude and duration of agonist-dependent (DPDPE; 1µM; 5 min) activation of the ERK pathway. We also showed that higher concentrations of Src inhibitors (80 and 100µM of PP2 or 1µg/ml of dominant negative mutant DNA) block the MAPK cascade following DOR stimulation by DPDPE. These observations indicate that Src has a biphasic effect on ERK activity, respectively potentiating or inhibiting agonist stimulation of the MAPK cascade at low and high levels of Src inhibition. We reasoned that high levels of Src blockers were interfering with ERK activation mechanism while low levels of inhibition were interfering with receptor desensitization. This possibility was tested by using cAMP accumulation assays to evaluate the effect of Src blockers (PP2, 20 µM; 1h) on agonist-induced desensitization. DOR stimulation by DPDPE inhibited forskolin stimulated cAMP production in a dose dependent manner with a maximal reduction of 61%. This inhibitory response was reduced by 72% following pre-exposure to DPDPE (1 µM, 30 min), an effect that was blocked by pre-treating cells with PP2 (PP2, 20 µM; 1 h) before desensitization. The protective effect of Src blockers did not involve changes in DOR internalization but interfering with internalization by using an internalization-deficient DOR mutant or hypertonic medium (0.4M sucrose) reduced this protection, indicating the need for optimal internalization in order for the protective effect of Src blockers to take place. Based on the latter observation it was possible to conclude that Src contribution to DOR desensitization is post-endocytic.
35

Mécanismes de régulation du trafic et de l’activité du récepteur GABAB

Lahaie, Nicolas 04 1900 (has links)
L’acide γ-aminobutyrique (GABA) est le principal neurotransmetteur inhibiteur du système nerveux central et est impliqué dans diverses pathologies incluant l’épilepsie, l’anxiété, la dépression et la dépendance aux drogues. Le GABA agit sur l’activité neuronale par l’activation de deux types de récepteurs; le canal chlorique pentamérique GABAA et l’hétérodimère obligatoire de récepteurs couplés aux protéines G (RCPG) GABAB. Chacun des récepteurs est responsable de phases distinctes de la réponse cellulaire au GABA. Lors d’une stimulation par le GABA, il est essentiel pour la cellule de pouvoir contrôler le niveau d’activité des récepteurs et au besoin, de limiter leur activation par des mécanismes de désensibilisation et de régulation négative. La désensibilisation nécessite le découplage du récepteur de ses effecteurs, ainsi que sa compartimentation hors de la membrane plasmique dans le but de diminuer la réponse cellulaire à l’agoniste. Les mécanismes de contrôle de l’activité de GABAB semblent anormaux pour un RCPG et sont encore mal moléculairement caractérisés. L’objet de cette thèse est d’étudier la régulation du récepteur GABAB et de sa signalisation par la caractérisation de nouvelles protéines d’interactions étant impliquées dans la désensibilisation, l’internalisation et la dégradation du récepteur. Une première étude nous a permis d’identifier la protéine NSF (N-ethylmaleimide sensitive factor) comme interagissant avec le récepteur hétérodimérique. Nous avons caractérisé le site d’interaction au niveau du domaine coiled-coil de chacune des deux sous-unités de GABAB et constaté la dépendance de cette interaction au statut de l’activité ATPasique de NSF. Nous avons observé que cette interaction pouvait être dissociée par l’activation de GABAB, induisant la phosphorylation du récepteur par la protéine kinase C (PKC) parallèlement à la désensibilisation du récepteur. L’activation de PKC par le récepteur est dépendante de l’interaction NSF-GABAB, ce qui suggère une boucle de rétroaction entre NSF et PKC. Nous proposons donc un modèle où, à l’état basal, le récepteur interagit avec NSF, lui permettant d’activer PKC en réponse à la stimulation par un agoniste, et où cette activation permet à PKC de phosphoryler le récepteur, induisant sa dissociation de NSF et sa désensibilisation. Nous avons par la suite étudié la dégradation et l’ubiquitination constitutive de GABAB et la régulation de celles-ci par PKC et l’enzyme de déubiquitination USP14 (ubiquitin-specific protease 14). Au niveau basal, le récepteur est ubiquitiné, et présente une internalisation et une dégradation rapide. L’activation de PKC augmente l’ubiquitination à la surface cellulaire et l’internalisation, et accélère la dégradation du récepteur. USP14 est en mesure de déubiquitiner le récepteur suite à l’internalisation, mais accélère aussi la dégradation par un mécanisme indépendant de son activité enzymatique. Nos résultats suggèrent un mécanisme où l’ubiquitination promeut l’internalisation et où USP14 cible le récepteur ubiquitiné vers un processus de dégradation lysosomale. La troisième étude porte sur la régulation de la densité de récepteurs à la membrane plasmique par la protéine Grb2 (growth factor receptor-bound protein 2). Nous avons déterminé que Grb2 interagit avec GABAB1 au niveau de la séquence PEST (riche en proline, glutamate, sérine et thréonine) du domaine carboxyl-terminal, et que cette interaction module l’expression à la surface du récepteur hétérodimérique en diminuant l’internalisation constitutive par un mécanisme encore inconnu. Cette inhibition de l’internalisation pourrait provenir d’une compétition pour le site de liaison de Grb2 à GABAB1, ce site étant dans une région interagissant avec plusieurs protéines impliquées dans le trafic du récepteur, tels le complexe COPI et la sous-unité γ2S du récepteur GABAA (1, 2). En proposant de nouveaux mécanismes moléculaires contrôlant l’activité et l’expression à la membrane du récepteur GABAB par les protéines NSF, PKC, USP14 et Grb2, les études présentées dans cette thèse permettent de mieux comprendre les processus d’internalisation et de dégradation, ainsi que du contrôle de l’activité de GABAB par la désensibilisation, ouvrant la porte à une meilleure compréhension de la signalisation GABAergique. / γ-aminobutyric acid (GABA) is the principal inhibitory neurotransmitter of the central nervous system and is involved in diverse pathologies such as epilepsy, anxiety, depression and drug addiction. GABAergic modulation of neuronal activity involves two different subsets of receptors: the GABAA receptor chlorine channel and the heterodimer of G protein coupled receptors (GPCR) GABAB. Each of these receptors is responsible for mediating distinct parts of the GABA-induced signaling. Upon stimulation, it is vital for the cell to control the signaling input and prevent overstimulation, using mechanisms such as functional desensitization and down-regulation to achieve this. The processes controlling GABAB receptor activity are atypical for a GPCR and have yet to be fully characterized. The aim of this thesis is to elucidate the mechanisms controlling GABAB activity by discovering novel proteins interactions mediating receptor desensitization, internalization and ubiquitination. In the first study, we identified the N-ethylmaleimide sensitive factor (NSF) as a GABAB interacting protein and characterized its interaction site as the coiled-coil structure on both GABAB sub-units. We also showed that this interaction is sensitive to the ATPase state of NSF and that agonist treatment of GABAB led to dissociation of NSF from the receptor in a protein kinase C (PKC) dependent manner. Interestingly, GABA-induced PKC activation was dependent on the NSF-GABAB interaction, suggesting a feedback mechanism for PKC. Both PKC and NSF were involved in mediating receptor desensitization, suggesting a novel role of NSF in receptor signaling regulation. In the proposed model, NSF interacts with GABAB at the basal state, and upon agonist stimulation, PKC is activated and can phosphorylate the receptor, promoting NSF dissociation and GABAB desensitization. We then studied constitutive GABAB ubiquitination and degradation and its regulation by PKC and the deubiquitinating enzyme USP14 (Ubiquitin-specific protease 14). GABAB shows a high constitutive ubiquitination and internalization level. Activation of PKC promotes both phenomena and accelerates the rate of lysosomal receptor degradation. In contrast, USP14 promotes post-endocytic deubiquitination of the receptor, but also accelerates receptor degradation in a catalytically-independent manner. Our results suggest a mechanism where PKC-induced cell surface ubiquitination promotes GABAB endocytosis and USP14 interaction promotes endosomal sorting toward lysosomal degradation. In the third study, we identified the growth factor receptor-bound protein 2 (Grb2) as a protein interacting with the PEST (proline, glutamate, serine, threonine rich) sequence of GABAB1 through a SH3-domain interaction and forming a ternary complex with the functional GABAB heterodimer. We showed that Grb2 can regulate cell surface density of GABAB by decreasing constitutive endocytosis, suggesting that this interaction can compete for binding of the PEST sequence with proteins such as the GABAA γ2S sub-unit or the COPI complex (1, 2), promoting higher cell surface stability. In proposing novel molecular mechanisms controlling GABAB signaling and cell surface expression through NSF, PKC, USP14 and Grb2, this thesis highlights the complex regulation of GABAB activity by its functional desensitization, ubiquitination, endocytosis and degradation.
36

Contribution à l'étude des addictions: La Cotinine, du tabagisme aux gènes

Riah, Victor Omar 17 May 2003 (has links) (PDF)
Le tabagisme est reconnu comme une dépendance comparable aux autres dépendances : alcool, opiacées et autres psycho-stimulants. Les mécanismes responsables de l'initiation et du maintien de l'addiction sont également impliqués dans les déviations comportementales en général, comme les déviations nutritionnelles, les compulsions.... La nicotine de la feuille de tabac est très toxique, dès son absorption, elle atteint le cerveau et tout l'organisme, active ses récepteurs et produit des effets toxiques et des adaptations homéostatiques. L'importance de ses effets va dépendre de la dose, du mode d'administration, de la chronicité, de l'effet considéré, du génome considéré et des interactions avec son principal dérivé, la cotinine. La cotinine résulte de l'addition d'un atome d'oxygène en position α du noyau pyrrolidine. Les conséquences de cette métabolisation ont été évaluées, dans l'étude présente, en partant des structures chimiques de ces deux alcaloïdes jusqu'à l'isolement des mécanismes biochimiques, neurochimiques, moléculaires et comportementaux de leurs actions. Ces différents mécanismes ont été validés par une étude intégrative en pointant le monoxyde d'azote NO comme un médiateur de la dépendance tabagique, en accord avec les données de l'étude bibliographique qui impliquent ce même médiateur dans toutes les dépendances. Les mécanismes à la base des prédispositions, le début et les raisons de l'évolution vers un état dépendant et les raisons des rechutes font l'objet d'intenses investigations. Les travaux dans ce domaine suggèrent que certaines modifications des protéines transmettent un signal de longue durée et que les espèces réactives de l'oxygène et du nitrogène sont à la base des mécanismes de potentialisation et de dépression à long terme. Notre travail montre une absence de toxicité pour la cotinine [422,423], une activité psychostimulante pure [414], une pharmacologie nouvelle non nicotinique [416,417,419,422,423], un passage actif [415] dans le cerveau régulé par le système nicotinique périphérique [412,421], la forme endogène et exogène de la cotinine [424], la médiation d'activité anti stress du récepteur p40 de la cotinine [420] et son homologie avec les protéines humaines impliquées dans les réactions inflammatoires [36,161], stimulatrice paracrine de la croissance cellulaire [55], un rôle dans la libération de dopamine, la production d'un stress oxydant par l'administration de la cotinine [418], un renforcement dans le contexte des approches flexibles, la participation forte des états émotionnels et d'anxiété à l'action anxiolytique de l'administration et anxiogène du retrait de la cotinine. Ils permettent de proposer que la nicotine agit directement et indirectement par sa conversion en cotinine. Cette dernière agit par ses récepteurs, au niveau central par la p40, pour moduler les taux de dopamine avec des conséquences sur l'apprentissage, la récompense, le stress oxydatif, l'anxiété et les réponses potentialisées et déprimées à long terme. Comme conclusion, nos travaux permettent de proposer de nouvelles cibles pharmacologiques, méthodes et concepts permettant de comprendre à l'échelle biochimique, neurochimique, moléculaire et comportemental l'addiction tabagique. L'espoir est d'utiliser ces connaissances pour différencier les susceptibilités et développer de nouvelles approches préventives et thérapeutiques.
37

Mécanismes de régulation du trafic et de l’activité du récepteur GABAB

Lahaie, Nicolas 04 1900 (has links)
L’acide γ-aminobutyrique (GABA) est le principal neurotransmetteur inhibiteur du système nerveux central et est impliqué dans diverses pathologies incluant l’épilepsie, l’anxiété, la dépression et la dépendance aux drogues. Le GABA agit sur l’activité neuronale par l’activation de deux types de récepteurs; le canal chlorique pentamérique GABAA et l’hétérodimère obligatoire de récepteurs couplés aux protéines G (RCPG) GABAB. Chacun des récepteurs est responsable de phases distinctes de la réponse cellulaire au GABA. Lors d’une stimulation par le GABA, il est essentiel pour la cellule de pouvoir contrôler le niveau d’activité des récepteurs et au besoin, de limiter leur activation par des mécanismes de désensibilisation et de régulation négative. La désensibilisation nécessite le découplage du récepteur de ses effecteurs, ainsi que sa compartimentation hors de la membrane plasmique dans le but de diminuer la réponse cellulaire à l’agoniste. Les mécanismes de contrôle de l’activité de GABAB semblent anormaux pour un RCPG et sont encore mal moléculairement caractérisés. L’objet de cette thèse est d’étudier la régulation du récepteur GABAB et de sa signalisation par la caractérisation de nouvelles protéines d’interactions étant impliquées dans la désensibilisation, l’internalisation et la dégradation du récepteur. Une première étude nous a permis d’identifier la protéine NSF (N-ethylmaleimide sensitive factor) comme interagissant avec le récepteur hétérodimérique. Nous avons caractérisé le site d’interaction au niveau du domaine coiled-coil de chacune des deux sous-unités de GABAB et constaté la dépendance de cette interaction au statut de l’activité ATPasique de NSF. Nous avons observé que cette interaction pouvait être dissociée par l’activation de GABAB, induisant la phosphorylation du récepteur par la protéine kinase C (PKC) parallèlement à la désensibilisation du récepteur. L’activation de PKC par le récepteur est dépendante de l’interaction NSF-GABAB, ce qui suggère une boucle de rétroaction entre NSF et PKC. Nous proposons donc un modèle où, à l’état basal, le récepteur interagit avec NSF, lui permettant d’activer PKC en réponse à la stimulation par un agoniste, et où cette activation permet à PKC de phosphoryler le récepteur, induisant sa dissociation de NSF et sa désensibilisation. Nous avons par la suite étudié la dégradation et l’ubiquitination constitutive de GABAB et la régulation de celles-ci par PKC et l’enzyme de déubiquitination USP14 (ubiquitin-specific protease 14). Au niveau basal, le récepteur est ubiquitiné, et présente une internalisation et une dégradation rapide. L’activation de PKC augmente l’ubiquitination à la surface cellulaire et l’internalisation, et accélère la dégradation du récepteur. USP14 est en mesure de déubiquitiner le récepteur suite à l’internalisation, mais accélère aussi la dégradation par un mécanisme indépendant de son activité enzymatique. Nos résultats suggèrent un mécanisme où l’ubiquitination promeut l’internalisation et où USP14 cible le récepteur ubiquitiné vers un processus de dégradation lysosomale. La troisième étude porte sur la régulation de la densité de récepteurs à la membrane plasmique par la protéine Grb2 (growth factor receptor-bound protein 2). Nous avons déterminé que Grb2 interagit avec GABAB1 au niveau de la séquence PEST (riche en proline, glutamate, sérine et thréonine) du domaine carboxyl-terminal, et que cette interaction module l’expression à la surface du récepteur hétérodimérique en diminuant l’internalisation constitutive par un mécanisme encore inconnu. Cette inhibition de l’internalisation pourrait provenir d’une compétition pour le site de liaison de Grb2 à GABAB1, ce site étant dans une région interagissant avec plusieurs protéines impliquées dans le trafic du récepteur, tels le complexe COPI et la sous-unité γ2S du récepteur GABAA (1, 2). En proposant de nouveaux mécanismes moléculaires contrôlant l’activité et l’expression à la membrane du récepteur GABAB par les protéines NSF, PKC, USP14 et Grb2, les études présentées dans cette thèse permettent de mieux comprendre les processus d’internalisation et de dégradation, ainsi que du contrôle de l’activité de GABAB par la désensibilisation, ouvrant la porte à une meilleure compréhension de la signalisation GABAergique. / γ-aminobutyric acid (GABA) is the principal inhibitory neurotransmitter of the central nervous system and is involved in diverse pathologies such as epilepsy, anxiety, depression and drug addiction. GABAergic modulation of neuronal activity involves two different subsets of receptors: the GABAA receptor chlorine channel and the heterodimer of G protein coupled receptors (GPCR) GABAB. Each of these receptors is responsible for mediating distinct parts of the GABA-induced signaling. Upon stimulation, it is vital for the cell to control the signaling input and prevent overstimulation, using mechanisms such as functional desensitization and down-regulation to achieve this. The processes controlling GABAB receptor activity are atypical for a GPCR and have yet to be fully characterized. The aim of this thesis is to elucidate the mechanisms controlling GABAB activity by discovering novel proteins interactions mediating receptor desensitization, internalization and ubiquitination. In the first study, we identified the N-ethylmaleimide sensitive factor (NSF) as a GABAB interacting protein and characterized its interaction site as the coiled-coil structure on both GABAB sub-units. We also showed that this interaction is sensitive to the ATPase state of NSF and that agonist treatment of GABAB led to dissociation of NSF from the receptor in a protein kinase C (PKC) dependent manner. Interestingly, GABA-induced PKC activation was dependent on the NSF-GABAB interaction, suggesting a feedback mechanism for PKC. Both PKC and NSF were involved in mediating receptor desensitization, suggesting a novel role of NSF in receptor signaling regulation. In the proposed model, NSF interacts with GABAB at the basal state, and upon agonist stimulation, PKC is activated and can phosphorylate the receptor, promoting NSF dissociation and GABAB desensitization. We then studied constitutive GABAB ubiquitination and degradation and its regulation by PKC and the deubiquitinating enzyme USP14 (Ubiquitin-specific protease 14). GABAB shows a high constitutive ubiquitination and internalization level. Activation of PKC promotes both phenomena and accelerates the rate of lysosomal receptor degradation. In contrast, USP14 promotes post-endocytic deubiquitination of the receptor, but also accelerates receptor degradation in a catalytically-independent manner. Our results suggest a mechanism where PKC-induced cell surface ubiquitination promotes GABAB endocytosis and USP14 interaction promotes endosomal sorting toward lysosomal degradation. In the third study, we identified the growth factor receptor-bound protein 2 (Grb2) as a protein interacting with the PEST (proline, glutamate, serine, threonine rich) sequence of GABAB1 through a SH3-domain interaction and forming a ternary complex with the functional GABAB heterodimer. We showed that Grb2 can regulate cell surface density of GABAB by decreasing constitutive endocytosis, suggesting that this interaction can compete for binding of the PEST sequence with proteins such as the GABAA γ2S sub-unit or the COPI complex (1, 2), promoting higher cell surface stability. In proposing novel molecular mechanisms controlling GABAB signaling and cell surface expression through NSF, PKC, USP14 and Grb2, this thesis highlights the complex regulation of GABAB activity by its functional desensitization, ubiquitination, endocytosis and degradation.

Page generated in 0.1615 seconds