• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 49
  • 41
  • 15
  • 10
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 136
  • 35
  • 32
  • 28
  • 22
  • 21
  • 21
  • 18
  • 17
  • 16
  • 15
  • 15
  • 15
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Solitons de Ricci e mÃtricas quasi-Einstein em variedades homogÃneas / Ricci solitons and quasi-Einstein metrics on homogeneous manifolds

JoÃo Francisco da Silva Filho 10 October 2013 (has links)
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / Este trabalho tem como objetivo principal estudar os solitons de Ricci e as mÃtricas quasi-Einstein em variedades riemannianas homogÃneas e simplesmente conexas, enfatizando problemas em dimensÃes trÃs e quatro, procurando caracterizar e descrever explicitamente tais estruturas, obtendo resultados de existÃncia, unicidade e consequentemente, construir novos exemplos sobre essas classes de variedades. A descriÃÃo mencionada, consiste basicamente em determinar condiÃÃes que garantam existÃncia e explicitar a famÃlia de campos de vetores que geram todas essas possÃveis estruturas, relacionando-os entre si e identificando quais desses campos de vetores sÃo do tipo gradiente. Devemos ressaltar que a parte do trabalho que corresponde Ãs variedades homogÃneas de dimensÃo trÃs considera a classificaÃÃo relativa à dimensÃo do grupo de isometrias, enquanto a parte que corresponde Ãs variedades homogÃneas de dimensÃo quatro, contempla apenas uma subclasse das variedades homogÃneas de dimensÃo quatro que à constituÃda pelas variedades solÃveis tipo-Lie, ou seja, grupos de Lie solÃveis, simplesmente conexos e munidos de mÃtrica invariante à esquerda. / The purpose of this work is study Ricci solitions and quasi-Einstein metrics on simply connected homogeneous Riemannian manifolds, with emphasis in problems in three and four dimensions, trying to characterize and to describe explicitly such structures, getting results of existence, uniqueness and consequently, build new examples on these class of manifolds. The quoted description consists basically in to obtain conditions that ensure the existence and show explicitly the family of vector fields that generate each of these structures, relating them identifying what of these vector fields are gradient. We should highlight that in the part of this work that corresponds to homogeneous three manifolds, we will consider the classification relative to dimension of isometry group, while in the part that corresponds to homogeneous four manifolds, we treat only the solvable geometry Lie type, namely, the simply connected solvable Lie group with left invariants metrics.
72

Métricas com curvatura de Ricci positiva via deformações conformes em variedades de dimensões 3 e 4

Gois, Alan Santos 04 March 2016 (has links)
Fundação de Apoio a Pesquisa e à Inovação Tecnológica do Estado de Sergipe - FAPITEC/SE / The main objective of this work is to show the existence of metrics with positive Ricci curvature in the class as a Riemannian metric with positive scalar curvature on compact manifolds of dimension 3 and 4. Catino-Djadli [ 3 ] and Gursky-Viaclovsky [ 13 ] showed that bends climbing and Ricci of a metric g satisfies an integral inequality in a three-dimensional compact manifold, then g is according to some metric of positive Ricci curvature. In the first article the authors work in three-dimensional manifolds and second manifolds 4 / O objetivo principal deste trabalho consiste em mostrar a existˆencia de m ́etricas com curva- tura de Ricci positiva na classe conforme de uma m ́etrica Riemanniana com curvatura escalar positiva em variedades compactas de dimens ̃ao 3 e 4. Catino-Djadli [3] e Gursky-Viaclovsky [13] mostraram que se as curvaturas escalar e de Ricci de uma métrica g satisfazem a uma desigualdade integral em uma variedade compacta tridimensional, então g é conforme a al- guma métrica de curvatura de Ricci positiva. No primeiro artigo os autores trabalham em variedades tridimensionais e no segundo em variedades de dimensão 4.
73

Construção explícita de métricas de Einstein-Finsler com curvatura flag não constante / The explicit construction of Einstein-Finsler metrics with non-constant flag curvature

Silva, Carlos Antonio Freitas da 20 February 2015 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2015-05-14T14:51:34Z No. of bitstreams: 2 Dissertação - Carlos Antônio Freitas da Silva - 2015.pdf: 659907 bytes, checksum: c43cf65b3e27833fcd6b4ab11eb79239 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2015-05-14T14:53:28Z (GMT) No. of bitstreams: 2 Dissertação - Carlos Antônio Freitas da Silva - 2015.pdf: 659907 bytes, checksum: c43cf65b3e27833fcd6b4ab11eb79239 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2015-05-14T14:53:28Z (GMT). No. of bitstreams: 2 Dissertação - Carlos Antônio Freitas da Silva - 2015.pdf: 659907 bytes, checksum: c43cf65b3e27833fcd6b4ab11eb79239 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2015-02-20 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this dissertation we will study Finsler Geometry. In particular, we will study Randers Geometry that which can be viewed as Riemannian Geometry with a pertubation. Furthermore Randers metrics are also obtained as solution to Zermelo’s Navigation Problem. We will also use classification theorems of Randers metrics of constant flag curvature and Einstein Randers metrics in terms of Zermelo’s Navigation Problem. Using Randers metrics we are going to construct a 3-parameter family of Einstein-Finsler metrics with non-constant flag curvature and to get such family we use a Killing vector field and a Riemannian metric which is the Hawking Taub-NUT metric. / Neste trabalho estudaremos a Geometria de Finsler. Em particular, estudaremos a Geometria de Randers que pode ser visto como a mais simples perturbação da Geometria Riemanniana. Além disso, veremos também que métricas de Randers podem ser obtidas como soluções do Problema Navegacional de Zermelo. Utilizaremos também resultados que caracterizam métricas de Randers com curvatura flag constante e métricas de Randers do tipo Einstein em termos do Problema Navegacional de Zermelo. Usando métricas de Randers vamos construir uma família a 3 parâmetros de métricas de Einstein-Finsler com curvatura flag não constante e para obter tal família utilizaremos um campo de Killing e uma métrica Riemanniana que é a métrica de Hawking Taub-NUT.
74

H-Quase Sóliton de Ricci

Pimentel, Soraya Bianca Souza, 92-98450-7876 01 December 2016 (has links)
Submitted by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2018-05-22T14:42:33Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) h-Quase Sóliton de Ricci.pdf: 40561599 bytes, checksum: 88a9a69eec01fab6046ed43b9b7d63b9 (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2018-05-22T14:42:51Z (GMT) No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) h-Quase Sóliton de Ricci.pdf: 40561599 bytes, checksum: 88a9a69eec01fab6046ed43b9b7d63b9 (MD5) / Made available in DSpace on 2018-05-22T14:42:51Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) h-Quase Sóliton de Ricci.pdf: 40561599 bytes, checksum: 88a9a69eec01fab6046ed43b9b7d63b9 (MD5) Previous issue date: 2016-12-01 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In this work we study the concept h-almost Ricci soliton introduced by Gomes-Wang-Xia which extends naturally the almost Ricci soliton studied by Pigola et al. In this setting, we show that a compact nontrivial h-almost Ricci soliton of dimension no less than three with h positive (or negative) and constant scalar curvature is isometric to a standard sphere with well defined potential function. Latter on, we also consider h-Ricci soliton which is a particular case of the h-almost Ricci soliton and a generalization of the traditional Ricci soliton. We prove that a particular case of compact gra-dient h-Ricci soliton steady or expanding, is trivial. Moreover, we give a characterization for a special class of gradient h-Ricci solitons. / Neste trabalho vamos estudar o conceito de h-quase sólitons de Ricci introduzido por Gomes-Wang-Xia o qual é uma extensão natural dos quase sólitons de Ricci estudados por Pigola et al. Com esta configuração, vamos mostrar que um h-quase sóliton de Ricci compacto de curvatura escalar constante não-trivial de dimensão maior ou igual a três e li possuindo sinal definido é isométrico a uma esfera euclidiana com função potencial explicita-mente definida. Logo após, também vamos considerar h-sólitons de Ricci os quais são casos particulares dos h-quase sólitons de Ricci e uma generalização dos tradicionais sólitons de Ricci. Vamos provar que um caso particular de h-sóliton de Ricci gradiente compacto estacionário ou expansivo, é trivial. Além disso, exibiremos uma caracterização para uma classe especial de h-sólitons de Ricci gradiente.
75

Heat kernel estimates based on Ricci curvature integral bounds / Wärmeleitungskernabschätzungen unter Ricci-Krümmungsintegralschranken

Rose, Christian 09 October 2017 (has links) (PDF)
Any Riemannian manifold possesses a minimal solution of the heat equation for the Dirichlet Laplacian, called the heat kernel. During the last decades many authors investigated geometric properties of the manifold such that its heat kernel fulfills a so-called Gaussian upper bound. Especially compact and non-compact manifolds with lower bounded Ricci curvature have been examined and provide such Gaussian estimates. In the compact case it ended even with integral Ricci curvature assumptions. The important techniques to obtain Gaussian bounds are the symmetrization procedure for compact manifolds and relative Faber-Krahn estimates or gradient estimates for the heat equation, where the first two base on isoperimetric properties of certain sets. In this thesis, we generalize the existing results to the following. Locally uniform integral bounds on the negative part of Ricci curvature lead to Gaussian upper bounds for the heat kernel, no matter whether the manifold is compact or not. Therefore, we show local isoperimetric inequalities under this condition and use relative Faber-Krahn estimates to derive explicit Gaussian upper bounds. If the manifold is compact, we can even generalize the integral curvature condition to the case that the negative part of Ricci curvature is in the so-called Kato class. We even obtain uniform Gaussian upper bounds using gradient estimate techniques. Apart from the geometric generalizations for obtaining Gaussian upper bounds we use those estimates to generalize Bochner’s theorem. More precisely, the estimates for the heat kernel obtained above lead to ultracontractive estimates for the heat semigroup and the semigroup generated by the Hodge Laplacian. In turn, we can formulate rigidity results for the triviality of the first cohomology group if the amount of curvature going below a certain positive threshold is small in a suitable sense. If we can only assume such smallness of the negative part of the Ricci curvature, we can bound the Betti number by explicit terms depending on the generalized curvature assumptions in a uniform manner, generalizing certain existing results from the cited literature. / Jede Riemannsche Mannigfaltigkeit besitzt eine minimale Lösung für die Wärmeleitungsgleichung des zur Mannigfaltigkeit gehörigen Dirichlet-Laplaceoperators, den Wärmeleitungskern. Während der letzten Jahrzehnte fanden viele Autoren geometrische Eigenschaften der Mannigfaltigkeiten unter welchen der Wärmeleitungskern eine sogenannte Gaußsche obere Abschätzung besitzt. Insbesondere bestizen sowohl kompakte als auch nichtkompakte Mannigfaltigkeiten mit nach unten beschränkter Ricci-Krümmung solche Gaußschen Abschätzungen. Im kompakten Fall reichten bisher sogar Integralbedingungen an die Ricci-Krümmung aus. Die wichtigen Techniken, um Gaußsche Abschätzungen zu erhalten, sind die Symmetrisierung für kompakte Mannigfaltigkeiten und relative Faber-Krahn- und Gradientenabschätzungen für die Wärmeleitungsgleichung, wobei die ersten beiden auf isoperimetrischen Eigenschaften gewisser Mengen beruhen. In dieser Arbeit verallgemeinern wir die bestehenden Resultate im folgenden Sinne. Lokal gleichmäßig beschränkte Integralschranken an den Negativteil der Ricci-Krümmung ergeben Gaußsche obere Abschätzungen sowohl im kompakten als auch nichtkompakten Fall. Dafür zeigen wir lokale isoperimetrische Ungleichungen unter dieser Voraussetzung und nutzen die relativen Faber-Krahn-Abschätzungen für eine explizite Gaußsche Schranke. Für kompakte Mannigfaltigkeiten können wir sogar die Integralschranken an den Negativteil der Ricci-Krümmung durch die sogenannte Kato-Bedingung ersetzen. In diesem Fall erhalten wir gleichmäßige Gaußsche Abschätzungen mit einer Gradientenabschätzung. Neben den geometrischen Verallgemeinerungen für Gaußsche Schranken nutzen wir unsere Ergebnisse, um Bochners Theorem zu verallgemeinern. Wärmeleitungskernabschätzungen ergeben ultrakontraktive Schranken für die Wärmeleitungshalbgruppe und die Halbgruppe, die durch den Hodge-Operator erzeugt wird. Damit können wir Starrheitseigenschaften für die erste Kohomologiegruppe zeigen, wenn der Teil der Ricci-Krümmung, welcher unter einem positiven Level liegt, in einem bestimmten Sinne klein genug ist. Wenn der Negativteil der Ricci-Krümmung nicht zu groß ist, können wir die erste Betti-Zahl noch immer explizit uniform abschätzen.
76

On curvature conditions using Wasserstein spaces

Kell, Martin 22 July 2014 (has links)
This thesis is twofold. In the first part, a proof of the interpolation inequality along geodesics in p-Wasserstein spaces is given and a new curvature condition on abstract metric measure spaces is defined. In the second part of the thesis a proof of the identification of the q-heat equation with the gradient flow of the Renyi (3-p)-Renyi entropy functional in the p-Wasserstein space is given. For that, a further study of the q-heat flow is presented including a condition for its mass preservation.
77

Accommodation, <em>Decorum</em>, and <em>Disputatio</em>: Matteo Ricci's <em>The True Meaning of the Lord of Heaven</em> as a Renaissance Humanist Disputation

Leon, Roberto Sebastian 01 December 2017 (has links)
Matteo Ricci's True Meaning of the Lord of Heaven (1603) has been studied extensively by scholars of the Jesuit China Mission, especially in terms of accommodation through means of Scholastic and Humanist arguments and translation choices. Few of these studies, however, discuss the genre of this work (disputation), nor consider this genre in relation to Renaissance rhetorical teachings and how this relationship informs Ricci's accommodative strategies. The purpose of this paper is to remedy this gap in early modern Jesuit scholarship. Through a review of the history of accommodations in disputations in the Aristotelian-Scholastic and Ciceronian-Humanist traditions, this paper claims that True Meaning is a Humanist disputation, not only because Ricci translated Christian terms into Chinese and draws references from classical sources, but also because this text follows strategies taught in the Humanist, but not the Scholastic curriculum. If True Meaning is a Humanist disputation, then Ricci's teachings should be reconsidered from the perspective of Renaissance rhetoric, which sheds further light on how Ricci's work fits into Renaissance culture and the transformation of the early modern disputation genre, as well as provides further explanation of the Western accommodation paradigm Ricci brought to China, which is prior to understanding how Ricci was transformed by China.
78

Transport optimal et analyse géométrique dans le groupe de Heisenberg

Juillet, Nicolas 05 December 2008 (has links) (PDF)
On considère le groupe de Heisenberg $\He_n=\R^{2n+1}$ avec la distance de Carnot-Carathéodory $d_c$ et la mesure de Lebegue $\Lg^{2n+1}$. Dans le premier chapitre, dans le cadre du problème du voyageur de commerce géométrique de $\Hei$, on construit une courbe de longueur finie qui ne vérifie pas le critère de Ferrari, Franchi et Pajot au sujet des ensembles contenus dans une courbe rectifiable. On montre aussi une inégalité sur le déterminant jacobien des applications de contraction sur un point qui suivent les géodésiques. Cette inégalité est essentiellement équivalente à la Propriété de Contraction de Mesure $MCP(0,2n+3)$. Grâce à cette proprété on répond positivement au Chapitre 2 à une question d'Ambrosio et Rigot à propos du transport de mesure dans $\He_n$ (travail en commun avec Figalli). Il s'avère en effet que les mesures traversées par une géodésique de l'espace de Wasserstein sont absolument continues dès qu'une extrémité de la géodésique l'est. Au Chapitre 3 on démontre que la Courbure-Dimension $CD(K,N)$ définie par transport de mesure n'est pas vérifiée pour $\He_n$ et que cela vaut quels que soient les paramètres $K\in\R$ et $N\in[1,+\infty]$. On discute aussi d'autres propriétés de courbures dans le cas du groupe de Heisenberg. Le Chapitre 4 est dédié à la correspondance entre l'équation de la chaleur sous-elliptique et le flot de gradient de l'entropie de Bolzmann dans l'espace de Wassertein.
79

Modes of Power: Time, Temporality, and Calendar Reform by Jesuit Missionaries in Late Imperial China

Blasingame, Ryan S 11 May 2013 (has links)
This work explores the relationship between time, temporality, and power by utilizing interactions between Jesuit missionaries and the Ming and Qing governments of late imperial China as a case study. It outlines the complex relationship between knowledge of celestial mechanics, methods of measuring the passage of time, and the tightly controlled circumstances in which that knowledge was allowed to operate. Just as the Chinese courts exercised authority over time and the heavens, so too had the Catholic Church in Europe. So as messengers of God’s authority, the Jesuits identified the importance of astronomical and temporal authority in Chinese culture and sought to convey the supremacy of Christianity through their mastery of the stars and negotiate positions of power within both imperial governments.
80

Sur l'effondrement à l'infini des variétés asymptotiquement plates.

Minerbe, Vincent 07 December 2007 (has links) (PDF)
Cette thèse concerne la géométrie asymptotique de variétés riemanniennes complètes non compactes, dont la courbure tend vers zéro à l'infini, assez vite. Afin de compléter des travaux déjà existants, on s'attache à comprendre le cas où la croissance du volume est non maximale, c'est-à-dire strictement moins rapide que dans l'espace euclidien de même dimension. Dans ce contexte, on prouve tout d'abord une inégalité de Sobolev à poids et une inégalité de Hardy, qui permettent de généraliser nombre de résultats établis quand la croissance du volume est maximale. On obtient en particulier des résultats de rigidité et de finitude de la topologie pour des variétés Ricci plates et asymptotiquement plates. On obtient ensuite un résultat de structure asymptotique pour une classe d'instantons gravitationnels : typiquement, ceux qui ont une croissance du volume cubique sont asymptotes à des fibrations en cercles au-dessus d'une variété asymptotiquement localement euclidienne .

Page generated in 0.0427 seconds