• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 49
  • 41
  • 15
  • 10
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 136
  • 35
  • 32
  • 28
  • 22
  • 21
  • 21
  • 18
  • 17
  • 16
  • 15
  • 15
  • 15
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Difeomorfismos conformes que preservam o tensor de Ricci em variedades semi-riemannianas / Conformal diffeomorphism that preserving the Ricci tensor in semi-riemannian manifolds

CARVALHO, Fernando Soares de 28 January 2011 (has links)
Made available in DSpace on 2014-07-29T16:02:18Z (GMT). No. of bitstreams: 1 Dissertacao Fernando Soares de Carvalho.pdf: 3468325 bytes, checksum: 30df6cf936483cf5aec035b1bdd9d208 (MD5) Previous issue date: 2011-01-28 / NOTE: Because some programs do not copy symbols, formulas, etc... to view the summary and the contents of the file, click on PDF - dissertation on the bottom of the screen. / OBS: Como programas não copiam certos símbolos, fórmulas... etc, para visualizar o resumo e o todo o arquivo, click em PDF - dissertação na parte de baixo da tela.
112

Analyse dans les espaces métriques mesurés / Topics on calculus in metric measure spaces

Han, Bang-Xian 23 June 2015 (has links)
Cette thèse traite de plusieurs sujets d'analyse dans les espaces métriques mesurés, en lien avec le transport optimal et des conditions de courbure-dimension. Nous considérons en particulier les équations de continuité dans ces espaces, du point de vue de fonctionnelles continues sur les espaces de Sobolev, et du point de vue de la dualité avec les courbes absolument continues dans l'espace de Wasserstein. Sous une condition de courbure-dimension, mais sans condition de doublement de mesure ou d'inégalité de Poincaré, nous montrons également l'identification des p-gradients faibles. Nous étudions ensuite les espaces de Sobolev sur le produit tordu de l'ensemble des réels et d'un espace métrique mesuré. En particulier, nous montrons la propriété Sobolev-à-Lipschitz sous une certaine condition de courbure-dimension. Enfin, sous une telle condition et dans le cadre d'une théorie non-lisse de Bakry-Emery, nous obtenons une inégalité améliorée de Bochner et proposons une définition du N-tenseur de Ricci. / This thesis concerns in some topics on calculus in metric measure spaces, in connection with optimal transport theory and curvature-dimension conditions. We study the continuity equations on metric measure spaces, in the viewpoint of continuous functionals on Sobolev spaces, and in the viewpoint of the duality with respect to absolutely continuous curves in the Wasserstein space. We study the Sobolev spaces of warped products of a real line and a metric measure space. We prove the 'Pythagoras theorem' for both cartesian products and warped products, and prove Sobolev-to-Lipschitz property for warped products under a certain curvature-dimension condition. We also prove the identification of p-weak gradients under curvature-dimension condition, without the doubling condition or local Poincaré inequality. At last, using the non-smooth Bakry-Emery theory on metric measure spaces, we obtain a Bochner inequality and propose a definition of N-Ricci tensor.
113

Heat kernel estimates based on Ricci curvature integral bounds

Rose, Christian 22 August 2017 (has links)
Any Riemannian manifold possesses a minimal solution of the heat equation for the Dirichlet Laplacian, called the heat kernel. During the last decades many authors investigated geometric properties of the manifold such that its heat kernel fulfills a so-called Gaussian upper bound. Especially compact and non-compact manifolds with lower bounded Ricci curvature have been examined and provide such Gaussian estimates. In the compact case it ended even with integral Ricci curvature assumptions. The important techniques to obtain Gaussian bounds are the symmetrization procedure for compact manifolds and relative Faber-Krahn estimates or gradient estimates for the heat equation, where the first two base on isoperimetric properties of certain sets. In this thesis, we generalize the existing results to the following. Locally uniform integral bounds on the negative part of Ricci curvature lead to Gaussian upper bounds for the heat kernel, no matter whether the manifold is compact or not. Therefore, we show local isoperimetric inequalities under this condition and use relative Faber-Krahn estimates to derive explicit Gaussian upper bounds. If the manifold is compact, we can even generalize the integral curvature condition to the case that the negative part of Ricci curvature is in the so-called Kato class. We even obtain uniform Gaussian upper bounds using gradient estimate techniques. Apart from the geometric generalizations for obtaining Gaussian upper bounds we use those estimates to generalize Bochner’s theorem. More precisely, the estimates for the heat kernel obtained above lead to ultracontractive estimates for the heat semigroup and the semigroup generated by the Hodge Laplacian. In turn, we can formulate rigidity results for the triviality of the first cohomology group if the amount of curvature going below a certain positive threshold is small in a suitable sense. If we can only assume such smallness of the negative part of the Ricci curvature, we can bound the Betti number by explicit terms depending on the generalized curvature assumptions in a uniform manner, generalizing certain existing results from the cited literature. / Jede Riemannsche Mannigfaltigkeit besitzt eine minimale Lösung für die Wärmeleitungsgleichung des zur Mannigfaltigkeit gehörigen Dirichlet-Laplaceoperators, den Wärmeleitungskern. Während der letzten Jahrzehnte fanden viele Autoren geometrische Eigenschaften der Mannigfaltigkeiten unter welchen der Wärmeleitungskern eine sogenannte Gaußsche obere Abschätzung besitzt. Insbesondere bestizen sowohl kompakte als auch nichtkompakte Mannigfaltigkeiten mit nach unten beschränkter Ricci-Krümmung solche Gaußschen Abschätzungen. Im kompakten Fall reichten bisher sogar Integralbedingungen an die Ricci-Krümmung aus. Die wichtigen Techniken, um Gaußsche Abschätzungen zu erhalten, sind die Symmetrisierung für kompakte Mannigfaltigkeiten und relative Faber-Krahn- und Gradientenabschätzungen für die Wärmeleitungsgleichung, wobei die ersten beiden auf isoperimetrischen Eigenschaften gewisser Mengen beruhen. In dieser Arbeit verallgemeinern wir die bestehenden Resultate im folgenden Sinne. Lokal gleichmäßig beschränkte Integralschranken an den Negativteil der Ricci-Krümmung ergeben Gaußsche obere Abschätzungen sowohl im kompakten als auch nichtkompakten Fall. Dafür zeigen wir lokale isoperimetrische Ungleichungen unter dieser Voraussetzung und nutzen die relativen Faber-Krahn-Abschätzungen für eine explizite Gaußsche Schranke. Für kompakte Mannigfaltigkeiten können wir sogar die Integralschranken an den Negativteil der Ricci-Krümmung durch die sogenannte Kato-Bedingung ersetzen. In diesem Fall erhalten wir gleichmäßige Gaußsche Abschätzungen mit einer Gradientenabschätzung. Neben den geometrischen Verallgemeinerungen für Gaußsche Schranken nutzen wir unsere Ergebnisse, um Bochners Theorem zu verallgemeinern. Wärmeleitungskernabschätzungen ergeben ultrakontraktive Schranken für die Wärmeleitungshalbgruppe und die Halbgruppe, die durch den Hodge-Operator erzeugt wird. Damit können wir Starrheitseigenschaften für die erste Kohomologiegruppe zeigen, wenn der Teil der Ricci-Krümmung, welcher unter einem positiven Level liegt, in einem bestimmten Sinne klein genug ist. Wenn der Negativteil der Ricci-Krümmung nicht zu groß ist, können wir die erste Betti-Zahl noch immer explizit uniform abschätzen.
114

Contributions to the geometry of Lorentzian manifolds with special holonomy

Schliebner, Daniel 02 April 2015 (has links)
In dieser Arbeit studieren wir Lorentz-Mannigfaltigkeiten mit spezieller Holonomie, d.h. ihre Holonomiedarstellung wirkt schwach-irreduzibel aber nicht irreduzibel. Aufgrund der schwachen Irreduzibilität lässt die Darstellung einen ausgearteten Unterraum invariant und damit also auch eine lichtartige Linie. Geometrisch hat dies zur Folge, dass wir zwei parallele Unterbündel (die Linie und ihr orthogonales Komplement) des Tangentialbündels erhalten. Diese Arbeit nutzt diese und weitere Objekte um zu beweisen, dass kompakte Lorentzmannigfaltigkeiten mit Abelscher Holonomie geodätisch vollständig sind. Zudem werden Lorentzmannigfaltigkeiten mit spezieller Holonomie und nicht-negativer Ricci-Krümung auf den Blättern der Blätterung, induziert durch das orthogonale Komplement der parellelen Linie, und maximaler erster Bettizahl untersucht. Schließlich werden vollständige Ricci-flache Lorentzmannigfaltigkeiten mit vorgegebener voller Holonomie konstruiert. / In the present thesis we study dimensional Lorentzian manifolds with special holonomy, i.e. such that their holonomy representation acts indecomposably but non-irreducibly. Being indecomposable, their holonomy group leaves invariant a degenerate subspace and thus a light-like line. Geometrically, this means that, since being holonomy invariant, this line gives rise to parallel subbundles of the tangent bundle. The thesis uses these and other objects to prove that Lorentian manifolds with Abelian holonomy are geodesically complete. Moreover, we study Lorentzian manifolds with special holonomy and non-negative Ricci curvature on the leaves of the foliation induced by the orthogonal complement of the parallel light-like line whose first Betti number is maximal. Finally, we provide examples of geodesically complete and Ricci-flat Lorentzian manifolds with special holonomy and prescribed full holonomy group.
115

Matteo Ricci’s Xiqin Quyi – A Jesuit’s Expert Musicking in Ming China

Wong, Tsz 20 November 2017 (has links)
No description available.
116

"Acqua di vita" ed esegesi biblica nella versione latina del Sefer Sha'are Orah / "Eau de vie" et exégèse biblique dans la version latine du Sefer Sha‘are Orah / "Water of Life" and Biblical Exegesis in the Latin Version of the Sefer Sha'are Orah

Mantovani, Margherita 24 February 2017 (has links)
Le travail vise à reconstruire l’interprétation de la Cabbale fourni par Paolo Ricci (m. 1541), en ce qui concerne la réception du Sefer Sha‘are Orah (Livre des portes de lumière [ShOr]) de Yosef Giqaṭilla (XIII siècle). Après une introduction générale et une présentation du status quaestionis, la première partie de la thèse se focalise surtout sur le milieu culturel du ShOr, sur son auteur et sur ses possibles sources. La deuxième partie offre une reconstruction de la vie intellectuelle du traducteur du ShOr, Paolo Ricci, en accordant une attention particulière aux relations (historiques et / ou culturelles) avec certains humanistes de l'époque. Un intérêt particulier est réservé au rôle de Pic de la Mirandole et de Johannes Reuchlin, ainsi qu’à la rencontre avec Ellenbog, à l’affrontement avec Johannes Eck, et aux épitres de Pirckheimer. On ce concentre donc sur la possible influence de sources du judaïsme médiéval (en particulier, du ShOr) dans l’élaboration du programme de réforme religieuse d’Agrippa de Nettesheim. Le chapitre sur la «systématisation» de la Cabbale fournie par Ricci vise à fournir une explication possible pour le choix de traduire précisément ShOr. L'analyse est ensuite reliée à l’élaboration d’un court écrit (In cabalistarum seu allegorizantium eruditionem Isagoge), conçu comme un ouvrage d’introduction à la traduction du ShOr, d’importance fondamentale pour la définition de la Cabbale de la part de Ricci. La dernière question abordée concerne l’histoire de la réception de la version latine et de la pensée de Ricci au XVIe et au XVIIe siècle. Deux annexes suivent, dont la première contient une réflexion d’Ernesto Buonaiuti sur le problème de l’unification entre l'homme et Dieu dans la pensée de Pic. La deuxième annexe inclut le premier chapitre du ShOr, selon la traduction latine préparée par Ricci : c’est principalement grâce à cette section que le texte a survécu. / The work aims to reconstruct the interpretation of the Kabbalah provided by Paolo Ricci (d. 1541), with particular focus on the Latin reception of the Sefer Sha‘are Orah (Book of the Gates of Light [ShOr]) by Yosef Giqaṭilla (13th century). After a general introduction and a presentation of the status quaestionis, the first part of the thesis focuses on the cultural milieu of ShOr, on his author and his possible sources. The second part pays particular attention to the intellectual life of Paolo Ricci, mainly to his relations with important humanists of his period. The work then focuses on the possible influence, among other sources, played by the Latin version by Ricci of ShOr on the development of the reformation of magic proposed by Agrippa from Nettesheim. The chapter on Ricci’s theorization of the Kabbalah aims to explore some aspects of his exegetical method and seeks to give a possible explanation for the choice of its translation. The analysis is then related to a short writing (In cabalistarum seu allegorizantium eruditionem Isagoge), conceived by Ricci as an introductory work to ShOr and fundamental to understand his conception of the Kabbalah. The last question concerns the history of the reception of Ricci’s thought as well as the fortune of the Latin version of ShOr between the 16th and the 17th centuries. Two annexes follow, the first of which contains a reflection of Ernesto Buonaiuti on the problem of the unification between man and God in the thought of Pico. The second appendix includes the first chapter of ShOr, according to the Latin translation offered by Ricci: it is mainly thanks to this section that the text survived.
117

Flot de Ricci sans borne supérieure sur la courbure et géométrie de certains espaces métriques

Richard, Thomas 21 September 2012 (has links) (PDF)
Le flot de Ricci, introduit par Hamilton au début des années 80, a montré sa valeur pour étudier la topologie et la géométrie des variétés riemanniennes lisses. Il a ainsi permis de démontrer la conjecture de Poincaré (Perelman, 2003) et le théorème de la sphère différentiable (Brendle et Schoen, 2008). Cette thèse s'intéresse aux applications du flot de Ricci à des espaces métriques à courbure minorée peu lisses. On définit en particulier ce que signifie pour un flot de Ricci d'avoir pour condition initiale un espace métrique. Dans le Chapitre 2, on présente certains travaux de Simon permettant de construire un flot de Ricci pour certains espaces métriques de dimension 3. On démontre aussi deux applications de cette construction : un théorème de finitude en dimension 3 et une preuve alternative d'un théorème de Cheeger et Colding en dimension 3. Dans le Chapitre 3, on s'intéresse à la dimension 2. On montre que pour les surfaces singulières à courbure minorée (au sens d'Alexandrov), on peut définir un flot de Ricci et que celui-ci est unique. Ceci permet de montrer que l'application qui à une surface associe son flot de Ricci est continue par rapport aux perturbations Gromov-Hausdorff de la condition initiale. Le Chapitre 4 généralise une partie de ces méthodes en dimension quelconque. On doit y considérer des conditions de courbure autres que les usuelles minorations de la courbure de Ricci ou de la courbure sectionnelle. Les méthodes mises en place permettent de construire un flot de Ricci pour certains espaces métriques non effondrés limites de variétés dont l'opérateur de courbure est minoré. On montre aussi que sous certaines hypothèses de non-effondrement, les variétés à opérateur de courbure presque positif portent une métrique à opérateur de courbure positif ou nul.
118

Sobre a obra de Sebastiano Ricci = "A recusa de Arquimedes", painel que pertence à Fundação Cultural Ema Gordon Klabin - SP e o ambiente do colecionismo veneziano do século XVIII / On the work of Sebastiano Ricci : "The denial of Archimedes", panel that belongs to the Cultural Foundation Ema Gordon Kablin - SP, and environment eighteenth-century venetian collectors

Accorsi, Roberto Aparecido Zaniquelli, 1972- 18 August 2018 (has links)
Orientador: Luciano Migliaccio / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Filosofia e Ciências Humanas / Made available in DSpace on 2018-08-18T07:29:18Z (GMT). No. of bitstreams: 1 Accorsi_RobertoAparecidoZaniquelli_M.pdf: 7996410 bytes, checksum: 5ec8b451dc3d6a8db56e7f8da4cacddc (MD5) Previous issue date: 2011 / Resumo: Sebastiano Ricci tornou-se um pintor de especiais e particulares ações nos mercados de artes de Veneza e da Inglaterra, durante o século XVIII. Ele soube agir como artista e negociador e conseguiu relacionar-se com os principais mecenas do período, em especial com dois dos mais importantes difusores da sua arte: Joseph Smith, Cônsul inglês, e Francesco Algarotti, Conde veneziano - ambos ligados ao processo de difusão e discussão dos princípios racionais associados ao iluminismo europeu. Em cartas enviadas e recebidas pelo artista, e por alguns de seus mecenas, nota-se uma variada abordagem dos meios de compra e venda de obras e arte. As cartas também revelam uma valorização ou redescoberta dos modos e temas da arte de Paolo Veronese, reconhecíveis na obra de Sebastiano Ricci intitulada Arquimedes se recusa a seguir o soldado, pertencente a Fundação Cultural Ema Gordon Klabin, de São Paulo / Abstract: Sebastiano Ricci became a painter of special and private actions around the market of arts from Venice and England, during the XVIII century. He has known how to act as an artist and a negotiator and could relate himself with the main Maecenas of this period, especially with two of the most importants diffusers of his art: Joseph Smith,British Consul, and Francesco Algarotti,Venetian Earl - both connected with the process of propagation and discussion of the rational principles associated with the European Enlightenment. Analyzing letters that were sent and received by the artist and for some of his maecenas, is possible to realize a variety of approach about sorts of arts marketing. These letters show a recovery or a rediscovery about modes and themes of Paolo Veronese's art which can be recognized in the work of Sebastiano Ricci entitled Arquimedes se recusa a seguir o soldado, that belongs to Fundação Cultural Ema Gordon Klabin / Mestrado / Historia da Arte / Mestre em História
119

On the Stability of Certain Riemannian Functionals

Maity, Soma January 2012 (has links) (PDF)
Given a compact smooth manifold Mn without boundary and n ≥ 3, the Lp-norm of the curvature tensor, defines a Riemannian functional on the space of Riemannian metrics with unit volume M1. Consider C2,α-topology on M1 Rp remains invariant under the action of the group of diffeomorphisms D of M. So, Rp is defined on M1/ D. Our first result is that Rp restricted to the space M1/D has strict local minima at Riemannian metrics with constant sectional curvature for certain values of p. The product of spherical space forms and the product of compact hyperbolic manifolds are also critical point for Rp if they are product of same dimensional manifolds. We prove that these spaces are strict local minima for Rp restricted to M1/D. Compact locally symmetric isotropy irreducible metrics are critical points for Rp. We give a criteria for the local minima of Rp restricted to the conformal class of metrics of a given irreducible symmetric metric. We also prove that the metrics with constant bisectional curvature are strict local minima for Rp restricted to the space of Kahlar metrics with unite volume quotient by D. Next we consider the Riemannian functional given by In [GV], M. J. Gursky and J. A. Viaclovsky studied the local properties of the moduli space of critical metrics for the functional Ric2.We generalize their results for any p > 0.
120

Topological and Geometric Methods with a View Towards Data Analysis

Eidi, Marzieh 12 April 2022 (has links)
In geometry, various tools have been developed to explore the topology and other features of a manifold from its geometrical structure. Among the two most powerful ones are the analysis of the critical points of a function, or more generally, the closed orbits of a dynamical system defined on the manifold, and the evaluation of curvature inequalities. When any (nondegenerate) function has to have many critical points and with different indices, then the topology must be rich, and when certain curvature inequalities hold throughout the manifold, that constrains the topology. It has been observed that these principles also hold for metric spaces more general than Riemannian manifolds, and for instance also for graphs. This thesis represents a contribution to this program. We study the relation between the closed orbits of a dynamical system and the topology of a manifold or a simplicial complex via the approach of Floer. And we develop notions of Ricci curvature not only for graphs, but more generally for, possibly directed, hypergraphs, and we draw structural consequences from curvature inequalities. It includes methods that besides their theoretical importance can be used as powerful tools for data analysis. This thesis has two main parts; in the first part we have developed topological methods based on the dynamic of vector fields defined on smooth as well as discrete structures. In the second part, we concentrate on some curvature notions which already proved themselves as powerful measures for determining the local (and global) structures of smooth objects. Our main motivation here is to develop methods that are helpful for the analysis of complex networks. Many empirical networks incorporate higher-order relations between elements and therefore are naturally modeled as, possibly directed and/or weighted, hypergraphs, rather than merely as graphs. In order to develop a systematic tool for the statistical analysis of such hypergraphs, we propose a general definition of Ricci curvature on directed hypergraphs and explore the consequences of that definition. The definition generalizes Ollivier’s definition for graphs. It involves a carefully designed optimal transport problem between sets of vertices. We can then characterize various classes of hypergraphs by their curvature. In the last chapter, we show that our curvature notion is a powerful tool for determining complex local structures in a variety of real and random networks modeled as (directed) hypergraphs. Furthermore, it can nicely detect hyperloop structures; hyperloops are fundamental in some real networks such as chemical reactions as catalysts in such reactions are faithfully modeled as vertices of directed hyperloops. We see that the distribution of our curvature notion in real networks deviates from random models.

Page generated in 0.0556 seconds