• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 123
  • 70
  • 23
  • 11
  • 5
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 308
  • 308
  • 308
  • 87
  • 68
  • 52
  • 50
  • 49
  • 49
  • 48
  • 45
  • 40
  • 37
  • 36
  • 35
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Plastic Deformation and Ductile Fracture of Ti-6Al-4V under Various Loading Conditions

Hammer, Jeremiah Thomas 20 December 2012 (has links)
No description available.
152

Study of cone penetration in silica sands using digital image correlation (DIC) analysis and x-ray computed tomography (XCT)

Eshan Ganju (11104863) 09 July 2021 (has links)
Cone penetration in sands is a complex process: it contains several challenges that geomechanicians face, such as large displacements, large strains, strain localization, and microscale phenomena such as particle crushing and sand fabric evolution. In order to gain a deeper understanding of the penetration process and the mechanisms controlling penetration resistance, capturing these displacement and strain fields and microscale phenomena is necessary. Furthermore, as more sophisticated theoretical models become available for the simulation of the cone penetration problem, the experimental validation of those methods becomes vital.<br><div><br></div><div>This dissertation presents a multiscale study of the cone penetration process in silica sands. The penetration problem is investigated using a combinational approach consisting of calibration chamber experiments, digital image correlation (DIC) analysis, and X-ray computed Tomography (XCT) scans. Three silica sands with different particle characteristics are used in the experimental program. These three sands have similar particle size distributions; however, they differ in particle morphologies and particle strengths. These differences allow a study of the effect of microscale sand properties on the macroscale response of the sands to the cone penetration process. The three silica sands used in this research are fully characterized using laboratory experiments to obtain particle size distributions, particle morphologies, particle crushing strengths, minimum and maximum packing densities, and critical-state friction angles. Subsequently, both dense and medium-dense samples of the three sands are compressed in a uniaxial loading device placed inside an X-ray microscope (XRM) and scanned at multiple stress levels during uniaxial compression. Results from uniaxial compression experiments indicate that: (1) the compressibility of the sands is closely tied to particle morphology and strength, and (2) the anisotropy in the orientations of interparticle contact normals generally increases with axial stress; however, this increase is limited by the occurrence of particle crushing in the sample.<br></div><div><br></div><div>Subsequently, cone penetration experiments are performed under different confinement levels on dense samples of the three sands in aspecial half-cylindrical calibration chamber equipped with DIC capabilities. For each penetration experiment, incremental displacement fields around the cone penetrometer are obtained using DIC analysis, and these incremental displacement fields are further analyzed to compute the incremental strain fields. A novel methodology is developed to obtain the shear-band patterns that develop around the penetrometer automatically. Furthermore, differences in the shear-band patterns in deep and shallow penetration environments are also investigated. Results show that strain fields tend to localize intensely near the penetrometer tip, and the shear bands tend to develop along the inclined face and near the shoulder of the penetrometer. Significant differences in the shear band patterns in deep and shallow penetration environments are also observed.<br></div><div><br></div><div>After each cone penetration experiment, a specially developed agar-impregnation technique is used to collect minimally disturbedsand samples from around the penetrometertip. These agar-impregnated sand samples are scanned in the XRM to obtain 3D tomography data, which are further analyzed to quantify particle crushing around the penetrometer tip. The results show that: (1) for a given sample density, the amount of crushing around the cone penetrometer depends on the confinement and the sand particle characteristics, (2) the level of crushing is not uniform around the penetrometer tip, with more severe crushing observed near the shoulder of the penetrometer, and (3) the regions with more severe particle crushing around the penetrometer approximately overlap with regions of high shear strain and volumetric contraction. A framework is also proposed to obtain the ratio of penetration resistance in more crushable sands to penetration resistance in less crushable sands. Furthermore, a novel resin-impregnation technique is also developed to collect undisturbedsand samples from around the penetrometer tip. The resin-impregnated sand sample collected after one of the penetration experiments is scanned in the XRM to obtain the 3D tomography data, which is then analyzed to obtain the distribution of interparticle contact normal orientations at multiple locations around the penetrometer tip. These analyses indicate that the interparticle contact normals tend to orient themselves with the incremental principal strains around the penetrometer: below the penetrometer tip, the interparticle contact normals orient vertically upwards, while closer to the shoulder of the penetrometer, the interparticle contact normals become more radially inclined.<br></div><div><br></div><div>Data presented in this dissertation on penetration resistance, incremental displacement fields, incremental strain fields, particle crushing, and interparticle contact normal orientations around the cone penetrometer are aimed to be useful to researchers working on the multiscale modeling of penetration processes in granular materials and aid in the further development of our understanding of penetration processes in sands.<br></div>
153

Tearing of Vaginal Tissue under Biaxial Loading: Implications for Women's Health

McGuire, Jeffrey Allen 22 June 2020 (has links)
Around 80% of women experience vaginal tears during labor when the diameter of the vagina must increase from ~2.5 cm to ~9.5 cm to allow the passage of a full-term baby. Vaginal tears vary from superficial cuts of the mucosal lining to tears propagating through the entire vaginal wall and into the surrounding tissues and organs. Complications associated with vaginal tears include postpartum hemorrhaging, fecal incontinence, urinary incontinence, and dyspareunia. Beyond the agonizing pain, these complications are emotionally and psychologically traumatic for women. Prevention, evaluation, and treatment of vaginal tears and subsequent conditions are limited due to the lack of studies examining the mechanical behavior of the pelvic floor tissues. Therefore, the mechanical response of healthy and torn vaginal tissue is investigated here to establish quantitative metrics for maternal healthcare. Toward this end, swine and rat vaginal tissue is subjected to biaxial loads until tearing to reveal its mechanical properties. The resulting large inhomogeneous deformations are measured by the digital image correlation optical method to calculate material strain. The influence of these strains near to and far from the immediate vicinity of the tears on the tearing behavior is studied. Coupling mechanisms of the mechanical properties in the circumferential and axial directions as well as their effect on the nature of tear resistance is studied. Collagen fibers, the component within tissue responsible for its strength under tension, are imaged using a multiphoton microscopy technique known as second-harmonic generation imaging to investigate the change in organization with mechanical loading. Furthermore, imaging is performed in the near-regions of tears to reveal the relationship between collagen fibers and tearing resistance. The data collected through these studies provide new knowledge on the nonlinear elastic behavior of vaginal tissue, the geometrical and micro-structural characteristics of tears, and the mechanisms that contribute to the formation and propagation of tears. The mechanical properties and tearing mechanisms of vaginal tissue will be crucial in developing new prevention and treatment methods for maternal trauma following childbirth. Episiotomy, late-term stretching, surgical treatment with graft materials and other protocols will all benefit from a mechanically-informed perspective. It is our hope that this work will raise awareness to the serious complexities of pelvic floor trauma and encourage a more refined and systematic approach to the inspection, imaging, and treatment of all vaginal tears following delivery. This work was supported in part by the National Science Foundation fund #1511603 and the Institute for Critical Technology and Sciences at Virginia Tech. / Doctor of Philosophy / Every year nearly three million women give birth vaginally with 80% experiencing vaginal tears. These injuries sustained during delivery vary with severity and are associated with several conditions, including pelvic floor disorders. These disorders are a set of long-term conditions of the pelvic region presently affecting one-fourth of adult women in the United States. Pelvic floor disorders are: pelvic organ prolapse - a pelvic organ such as the uterus "falls" from its natural position, urinary incontinence - difficulty controlling urination, and fecal incontinence - difficulty controlling bowel movements. Pelvic floor disorders lower the quality of life for women not only physically due to pain and daily discomfort, but also mentally as the disorders are generally perceived as an embarassing and private matter. The pelvic floor represents a complex system of muscles, organs, and support structures that work together to ensure everything stays in place and is functioning properly. Injury to any of these structures poses the risk of developing a disorder. As a central supporting organ, injuries to the vagina may be particularly worrisome. Surprisingly, little is known about the magnitude of forces and/or stretching that is placed on the pelvic floor during delivery, how much force and/or stretching is required for an injury, or how various injuries relate to future complications. The goal of this research is to describe how much the normal, healthy vagina stretches to various forces including forces that will result in injuries. The research further examines the stretching of injured vaginas to quantify any observable differences due to this injury. Finally, the relationships between the biological components of the vagina, such as collagen, and the forces placed on the vagina are examined. The result of this work will provide doctors and engineers with guidelines for understanding the conditions that produce vaginal injuries. The relationships examined between the tissue makeup and forces exerted onto the tissue may also aid in identifying any irregularities that would place a woman at risk for injury. Many of the medical procedures surrounding childbirth as well as surgical treatment for pelvic floor disorders will benefit from knowing how far the vagina can stretch before being injured. It is our hope that this work will raise awareness to the serious complexities of pelvic floor injuries and encourage a more refined and systematic approach to the inspection, imaging, and treatment of all vaginal tears following delivery. This work was supported in part by the National Science Foundation fund #1511603 and the Institute for Critical Technology and Sciences at Virginia Tech.
154

Experimental and Numerical Analysis of Damage in Notched Composites

Aidi, Bilel 30 September 2016 (has links)
This dissertation contains the results from an experimental study, numerical, and analytical study conducted on quasi-isotropic carbon fiber laminates containing a center hole (notch) subjected to constant amplitude tension-tension fatigue loading in order to investigate the effect of fatigue damage development on the residual properties. Quasi-static tests were initially performed on notched composites using digital image correlation (DIC) to determine the strain profiles at selected transverse sections of the outer ply of the laminates and the static strength of the laminates. Subsequently, tension-tension fatigue tests were carried out at 70%, 75% and 80% of the nominal static failure load. A finite element model was developed using Abaqus and Digimat in which Digimat was used to implement the damage evolution model via a user-defined material subroutine. Damage initiation has been assessed using Hashin's failure criteria and the Matzenmiller model was adopted for damage evolution. A second finite element model was developed using Abaqus and Autodesk Simulation Composite Analysis (ASCA) in which ASCA was used to implement the user-material subroutine. The subroutine includes a failure initiation criterion based upon multi-continuum theory (MCT) and an energy-based damage evolution law. Numerical and experimental strain results were presented and compared for different section lines on the outer surface of the laminate at different loading stages. Additionally, the experimentally measured notched composite strength was compared with the predictions from the finite element solutions. These results are used as baseline for subsequent comparison with strain profiles obtained using DIC for specimens fatigued at different stress levels and fatigue lifetime fractions. The results showed a significant effect of fatigue damage development on strain redistribution even at early stages of fatigue. The results also showed the capability of DIC technique to identify damage initiation and its location. Furthermore, X-ray computed tomography (CT) was used to examine the sequence of damage development throughout the fatigue lifetime and to connect the observed damage mechanisms with the occurred change of strain profiles. Experimental vibrational modal analysis tests were also conducted to assess the effect of fatigue damage on the residual frequency responses (RFRs). Vibrational measurements were initially performed on pristine notched composites. The results are used as baseline for subsequent comparison with strain profiles obtained with DIC. Finite element models based on the classical plate theory (Kirchhoff) and the shear deformable theory (Mindlin) within the framework of equivalent single-layer and layer-wise concepts as well as the three-dimensional theory of elasticity are developed to predict the natural frequencies of non-fatigued specimen. These models are implemented using the finite element software, Abaqus, to determine the natural frequencies and the corresponding mode shapes. In addition, an analytical model based on Kirchhoff plate theory is developed. Using this approach, an equivalent bending-torsion beam model for cantilever laminated plates is extracted taking into account the reduction in local stiffness and mass induced by the center hole. Numerical and analytical natural frequency values are then compared with those obtained through experimental vibrational tests, and the accuracy of each finite element (FE) and analytical model type is assessed. It is shown that the natural frequencies obtained using the analytical and FE models are within 8% of the experimentally determined values. / Ph. D.
155

Understanding and Exploiting Wind Tunnels with Porous Flexible Walls for Aerodynamic Measurement

Brown, Kenneth Alexander 01 November 2016 (has links)
The aerodynamic behavior of wind tunnels with porous, flexible walls formed from tensioned Kevlar has been characterized and new measurement techniques in such wind tunnels explored. The objective is to bring the aerodynamic capabilities of so-called Kevlar-wall test sections in-line with those of traditional solid-wall test sections. The primary facility used for this purpose is the 1.85-m by 1.85-m Stability Wind Tunnel at Virginia Tech, and supporting data is provided by the 2-m by 2-m Low Speed Wind Tunnel at the Japanese Aerospace Exploration Agency, both of which employ Kevlar-wall test sections that can be replaced by solid-wall test sections. The behavior of Kevlar fabric, both aerodynamically and mechanically, is first investigated to provide a foundation for calculations involving wall interference correction and determination of the boundary conditions at the Kevlar wall. Building upon previous advancements in wall interference corrections for Kevlar-wall test sections, panel method codes are then employed to simulate the wind tunnel flow in the presence of porous, flexible Kevlar walls. An existing two-dimensional panel method is refined by examining the dependency of correction performance on key test section modeling assumptions, and a novel three-dimensional method is presented. Validation of the interference corrections, and thus validation of the Kevlar-wall aerodynamic performance, is accomplished by comparing aerodynamic coefficients between back-to-back tests of models carried out in the solid- and Kevlar-wall test sections. Analysis of the test results identified the existence of three new mechanisms by which Kevlar walls cause wall-interference. Additionally, novel measurements of the boundary conditions are made during the Kevlar-wall tests to characterize the flow at the boundary. Specifically, digital image correlation is used to measure the global deformation of the Kevlar walls under wind loading. Such data, when used in conjunction with knowledge of the pre-tension in the Kevlar wall and the material properties of the Kevlar, yields the pressure loading experienced by the wall. The pressure loading problem constitutes an inverse problem, and significant effort is made towards overcoming the ill-posedness of the problem to yield accurate wall pressure distributions, as well as lift measurements from the walls. Taken as a whole, this document offers a comprehensive view of the aerodynamic performance of Kevlar-wall test sections. / Ph. D.
156

Measuring Material Properties of Proton Exchange Membranes using Pressure Loaded Blister Testing and Digital Image Correlation

Siuta, Chase Michael 08 September 2011 (has links)
The strength and durability of proton exchange membranes for use in fuel cells has received much attention recently due to the increased push for sustainable alternatives to the internal combustion engine. To be viable, these alternatives must have comparable lifetimes and power outputs to the internal combustion engines they replace. Chemical degradation was once viewed as the most common culprit of early fuel cell failure, but as membranes and catalysts improved, mechanical failure became an important factor. As a result, fundamental research on the mechanically-induced failure mechanisms of fuel cell membranes, coupled with development and processing of less expensive membranes, has become an important topic. The use of the blister test geometry, along with digital image correlation of the deformed shape, creates a self-contained analysis tool useful for measuring the biaxial strength of membranes. In this work, blister tests are used to measure biaxial stress and strain for fuel cell membranes subjected to ramped pressure loading to form stress-strain curves that indicate the onset of yielding under biaxial stress conditions. Stress-life curves are developed experimentally for Gore-Selec? series 57 members using data collected under constant pressure conditions. These results are used to predict blister failure under ramped and fatigue loadings. A newly implemented hydrocarbon membrane system is evaluated with constant-pressure-to-leak blister testing. Improved strength following an isothermal hold at 100°C (pretreatment) is shown to occur. Ramped pressure testing indicates that the material after the pretreatment is stiffer and has a higher yield stress than the material before treatment. Morphological and constitutive characterization indicated differences in the materials that are consistent with the improved performance. / Master of Science
157

Small-scale Experiments for Blast-induced Damage: Exploring crack propagation through Digital Image Correlation

Rodriguez San Miguel, Carlota January 2024 (has links)
Blasting plays a crucial role in several engineering applications, from mining and tunneling to demolition projects. One of the remaining challenges of this process is that it can significantly affect the integrity of the rock mass by inducing damage in the form of cracks. Broadening the understanding of the behavior of the blast-induced cracks is essential for predicting the damage. One way of investigating this issue is through small-scale blasting experiments focused on crack propagation behavior. Controlled blasting experiments were conducted on rock-like cylindrical samples charged with Pentaerythritol tetranitrate (PETN) cords. Different blast designs were tested and a method for integrating a Digital Image Correlation (DIC) technique in the analysis was developed. The DIC system was composed of an Ultra High-Speed Camera (UHSC), a light system, and a data acquisition system. The setup was tested in a laboratory and underwent different calibrations before implementing it in the mine, where using explosives during the tests is allowed. The UHSC captured the blasting process regarding crack propagation. To analyze the development of the cracks, DIC technique was employed and results in terms of displacement versus time were measured from the sample surface. The described experiments integrate a novel analysis approach to the results from the DIC technique and propose a way of interpreting the outcomes regarding crack development in terms of velocity. While developing the methodology, the pre-processing of the data (UHSC images) was shown to enhance the DIC analysis and affect the further post-processing of the results. The presented methodology proposes a human-independent procedure of analysis that can help to differentiate the displacement of the crack along its time. Nevertheless, a visual analysis of the results was performed to complement the results and try to broaden the understanding of the crack development process. The DIC results indicated a nonconstant crack propagation velocity while the development patterns were interpreted to match previous literature. The experimental studies confirmed the radial propagation behavior surrounding the blasthole in the single borehole test, while the two borehole configurations show to influence the crack propagation direction and interconnection. This work describes small-scale experiments that provide meaningful insights in crack propagation and how the different blast design parameters can affect their development. The findings of this study could be useful as an input of a predictive tool to assess blast-induced crack initiation and development. / BeFo (Rock Engineering Research Foundation, Sweden) project number 427, “Experimental and Numerical modeling of blast-induced damage around rock tunnel using LS-DYNA”
158

The role of flexibility on propulsive performance of flapping fins

Kancharala, Ashok Kumar 02 September 2015 (has links)
The versatility of the fish to adapt to diverse swimming requirements has attracted the attention of researchers in studying bioinspired propulsion for developing efficient underwater robotics. The tail/caudal fin is a major source of thrust generation and is believed that the fish modulates its fin stiffness to optimize the propulsive performance. Inspired by the stiffness modulation of fish fins, the objective of this research is to predict and evaluate the effect of flexibility on propulsive performance of flapping fins. The stiffness of the fins vary along their length and optimization studies have been performed to predict the stiffness profiles that maximize performance. Experiments performed on the real fish caudal fins to measure the stiffness variation along their length validate the theoretical optimal stiffness profiles and provide an insight about the evolution of fish fins for optimal performance. Along with the fin stiffness, the stiffness of the joint (caudal peduncle) connecting the fish body to the tail plays a major role in the generation of thrust. The numerical and experimental investigation has shown that there exists an optimal combination of fin and joint stiffness for each operating condition, thus providing the motivation for active stiffness control during locomotion to optimize efficiency. Inspired by nature's ability to modulate stiffness and shape for different operating conditions, an investigation has been carried out on active control of flapping foils for thrust tailoring using Macro Fiber Composites (MFCs). It has been observed that the performance can be enhanced by controlling the deformation, and distributed actuation along fin produces maximum performance through proper selection of the phase difference between heaving and voltage. Flapping fins produce forces which are oscillatory in nature causing center of mass (COM) oscillations of the attached bodies posing problems of control and maneuverability. Optimization studies have revealed that flexibility of the fin plays a major role in reducing the COM oscillations along with the other operating parameters. Based on these studies, the design principles and guidelines that control the performance have been proposed which aid in the development of aerial and underwater robotic vehicles. Additionally, these studies provide some insight in to how fish might modulate its stiffness based on the requirements. / Ph. D.
159

Multi-scale experimental characterization of the material properties and interlaminar fracture toughness of T700G/LM-PAEK thermoplastic composites and additively manufactured composite materials

Premo, Ryan Gregory 10 May 2024 (has links) (PDF)
This thesis is focused on the development of multiple experimental frameworks to characterize the material properties of composite materials for the LS-DYNA MAT213 model. The main objective is to characterize these properties based on the full-field capture of the evolution of strain and stress fields in coupon-level tests at multiple scales (i.e. macroscopic and microscopic). The experimental work characterized the full-field stress-strain curves and subsequently derived the material properties of T700G/LM-PAEK thermoplastic composites. The data was later successfully utilized to generate the deformation and damage sub-models in the LS-DYNA MAT213 model for the material. Additionally, a three-point bending test methodology was created using a size effect study and geometrically scaled coupons to investigate the Mode-II interlaminar fracture toughness of the material. The experimental frameworks developed herein were also extended to characterize other composite materials, such as those produced via additive manufacturing techniques. Future experimental work will investigate fatigue failure methods for three-point bending in T700G/LM-PAEK. The experimental methods described herein will also continue to support analytical efforts that seek to develop a simulation tool based on the LS-DYNA MAT213 model for modeling the temperature and strain rate-dependent impact damages in composites under multi-axial loading.
160

Response of asphalt matrix under multi-axial stress state

Sakib, Nazmus 12 September 2014 (has links)
The pavement system is subjected to complex stress states under vehicular loading. A combination of axial and shear stress has been identified as a potential cause of top down cracking (or more precisely near surface cracking) in asphalt surface. Therefore, in terms of modeling the material response a pertinent question is whether the typical one-dimensional viscoelastic properties of the material are affected by a multi-axial stress state. Such changes are referred to as interaction non-linearity. The objective of this study was to evaluate whether or not asphalt composites are susceptible to such interaction effects. The study was conducted using fine aggregate matrix (FAM), which comprises graded sand and asphalt binder. To provide multi-modal loading, the rectangular prismatic FAM specimens were used with the Arcan apparatus. This apparatus ensures low bending stress and offers adjustments in the setup to provide different proportions of axial and shear stress. Finite element modeling was done to evaluate the stress state for different orientations of the sample in the Arcan apparatus. For measurement of strain, the study used digital image correlation (DIC), which is an optical, non-contact measurement technology. The strain thus measured was used to compute shear compliance. Fitting parameters of the shear compliances were estimated for power-law and Prony series for different loading orientations. When compared, the measured shear compliances do not show perceivable variation with respect to different proportion of axial stress applied in conjunction. However, further testing with different temperatures and other magnitudes of shear stress is necessary. This study is the first step to allow modeling of stress and crack propagation behavior near the pavement surface where complex stress state is present. / text

Page generated in 0.1398 seconds