1 |
Graphical Data Mining for Computational Estimation in Materials Science ApplicationsVarde, Aparna S 15 August 2006 (has links)
"In domains such as Materials Science experimental results are often plotted as two-dimensional graphs of a dependent versus an independent variable to aid visual analysis. Performing laboratory experiments with specified input conditions and plotting such graphs consumes significant time and resources motivating the need for computational estimation. The goals are to estimate the graph obtained in an experiment given its input conditions, and to estimate the conditions needed to obtain a desired graph. State-of-the-art estimation approaches are not found suitable for targeted applications. In this dissertation, an estimation approach called AutoDomainMine is proposed. In AutoDomainMine, graphs from existing experiments are clustered and decision tree classification is used to learn the conditions characterizing these clusters in order to build a representative pair of input conditions and graph per cluster. This forms knowledge discovered from existing experiments. Given the conditions of a new experiment, the relevant decision tree path is traced to estimate its cluster. The representative graph of that cluster is the estimated graph. Alternatively, given a desired graph, the closest matching representative graph is found. The conditions of the corresponding representative pair are the estimated conditions. One sub-problem of this dissertation is preserving semantics of graphs during clustering. This is addressed through our proposed technique, LearnMet, for learning domain-specific distance metrics for graphs by iteratively comparing actual and predicted clusters over a training set using a guessed initial metric in any fixed clustering algorithm and refining it until error between actual and predicted clusters is minimal or below a given threshold. Another sub-problem is capturing the relevant details of each cluster through its representative yet conveying concise information. This is addressed by our proposed methodology, DesRept, for designing semantics-preserving cluster representatives by capturing various levels of detail in the cluster taking into account ease of interpretation and information loss based on the interests of targeted users. The tool developed using AutoDomainMine is rigorously evaluated with real data in the Heat Treating domain that motivated this dissertation. Formal user surveys comparing the estimation with the laboratory experiments indicate that AutoDomainMine provides satisfactory estimation."
|
2 |
Streamlining Certification Management with Automation and Certification Retrieval : System development using ABP Framework, Angular, and MongoDB / Effektivisering av certifikathantering med automatisering och certifikathämtning : Systemutveckling med ABP Framework, Angular och MongoDBHassan, Nour Al Dine January 2024 (has links)
This thesis examines the certification management challenge faced by Integrity360. The decentralized approach, characterized by manual processes and disparate data sources, leads to inefficient tracking of certification status and study progress. The main objective of this project was to construct a system that automates data retrieval, ensures a complete audit, and increases security and privacy. Leveraging the ASP.NET Boilerplate (ABP) framework, Angular, and MongoDB, an efficient and scalable system was designed, developed, and built based on DDD (domain-driven design) principles for a modular and maintainable architecture. The implemented system automates data retrieval from the Credly API, tracks exam information, manages exam vouchers, and implements a credible authentication system with role-based access control. With the time limitations behind the full-scale implementation of all the planned features, such as a dashboard with aggregated charts and automatic report generation, the platform significantly increases the efficiency and precision of employee certification management. Future work will include these advanced functionalities and integrations with external platforms to improve the system and increase its impact on operations in Integrity360.
|
Page generated in 0.0669 seconds