71 |
Quantification of Radiation Induced DNA Damage Response in Normal Skin Exposed in Clinical SettingsSimonsson, Martin January 2011 (has links)
The structure, function and accessibility of epidermal skin provide aunique opportunity to study the DNA damage response (DDR) of a normaltissue. The in vivo response can be examined in detail, at a molecularlevel, and further associated to the structural changes, observed at atissue level. We collected an extensive skin biopsy material frompatients undergoing fractionated radiotherapy for 5 to 7 weeks. Several end-points inthe DDR pathways were examined before, during and after the treatment. Quantification of DNA double strand break (DSB) signalling focirevealed a hypersensitivity to doses below 0.3Gy. Furthermore, aconsiderable amount of foci persisted between fractions. The low dosehypersensitivity was observed throughout the treatment and was alsoobserved for several key parameters further downstream in the DDR-pathway, such as p21-associated checkpoint activation, apoptosisinduction and reduction in basal keratinocyte density (BKD).Furthermore, for dose fractions above 1.0 Gy, a distinct acceleration inDDR was observed half way into treatment. This was manifested as anaccelerated loss of basal keratinocytes, mirrored by a simultaneousincrease in DSBs and p21 expression. Quantifications of mitotic events revealed a pronounced suppression ofmitosis throughout the treatment which was clearly low dosehypersensitive. Thus, no evidence of accelerated repopulation could beobserved for fraction doses ranging from 0.05 to 2Gy. Our results suggest that the keratinocyte response primarily isdetermined by checkpoints, which leads to pre-mitotic cell elimination by permanent growth arrest and apoptosis. A comparison between the epidermal and dermal sub-compartments revealsa consistent up-regulation of the DDR response during treatment. Adifference was however observed in the recovery phase after treatment,where miR-34a and p21 remain up-regulated in dermis more persistentlythan in epidermis. Our observations suggest that the recovery phaseafter treatment can provide important clues to understand clinicalobservations such as the early and late effects observed in normaltissues during fractionated radiotherapy.
|
72 |
The Role of Saccharomyces Cerevisiae MRX Complex and Sae2 in Maintenance of Genome StabilityGhodke, Indrajeet Laxman January 2015 (has links) (PDF)
In eukaryotes, the repair of DSBs is accomplished through two broadly defined processes: Non-Homologous End Joining (NHEJ) and Homologous Recombination (HR). The central step of HR is pairing and exchange of strands between two homologous DNA molecules, which is catalyzed by the conserved Rad51/RecA family of proteins. Prior to this step, an essential step in all HR pathways i.e. 5'→3' resection of broken DNA ends to generate 3' single stranded DNA tails. At the molecular level, initiation of DNA end resection is accomplished through the concerted action of MRX complex (Mre11, Rad50 and Xrs2) and Sae2 protein.
To elucidate the molecular basis underlying DSB end resection in S. cerevisiae mre11 nuclease deficient mutants, we have performed a comprehensive analysis of the role of S. cerevisiae Mre11 (henceforth called as ScMre11) in the processing of DSB ends using a variety of DNA substrates. We observed that S. cerevisiae Mre11(ScMre11) exhibits higher binding affinity for single- over double-stranded DNA and intermediates of recombination and repair and catalyzes robust unwinding of substrates possessing a3' single-stranded DNA overhang but not of 5' overhangs or blunt-ended DNA fragments. Furthermore, reconstitution of DSB end resection network in-vitro revealed that Rad50, Xrs2, and Sae2 potentiated the DNA unwinding activity of Mre11. Since the exonuclease activity of Mre11 is of the opposite polarity to that expected for resection of DSBs, unwinding activity of Mre11 in conjunction with Rad50, Xrs2, and Sae2 might provide an alternate mechanism for the generation of ssDNA intermediates for DSB end repair and HR. Additionally, ScMre11 displays strong homotypic as well as heterotypic interaction with Sae2. In summary, our results revealed important insights into the mechanism of DSB end processing and support a model in which Sae2, Rad50, and Xrs2 positively regulate the ScMre11-mediated DNA unwinding activity via their direct interactions or through allosteric effects on the DNA or cofactors.
Prompted by the closer association of MRX and Sae2 during DSB end processing, we asked whether Sae2 and its endonuclease activity is required for cellular response to replication stress caused by DNA damage. Toward this end, we examined the sensitivity of S. cerevisiae wild type, sae2Δ and various SAE2 mutant strains defective in phosphorylation and nuclease activity in the presence of different genotoxic agents, which directly or indirectly generate DSBs during replication. We found that S. cerevisiae lacking SAE2 show decreased cell viability, altered cell cycle dynamics after DNA damage, and more specifically, that Sae2 endonuclease activity is essential for these biological functions. To corroborate the genetic evidences for role of SAE2 during replicative stress, we investigated SAE2 functions in-vitro. For this, we purified native Sae2 protein and nuclease dead mutant of Sae2 i.e. sae2G270D. Our studies revealed dimeric forms of both the wild type and mutant forms of Sae2. Furthermore, Sae2 displays higher binding affinity and catalytic activity with branched DNA structures, such as Holliday junction and replication forks. By using nuclease dead Sae2 protein i.e. sae2G270D, we confirmed that the endonuclease activity is not fortuitous and is intrinsic to Sae2 polypeptide. Furthermore, nuclease-defective Mre11 stimulates Sae2endonuclease activity. Mapping of the cleavage sites of Sae2 revealed a distinct preference for cleavage on the 5' end of the Holliday junction, suggesting the importance of Sae2 nuclease during recombination mediated restart of the reversed replication fork. In summary, our data clearly demonstrate a previously uncharacterized role for Sae2 nuclease activity in resection of DSB ends, processing of intermediates of DNA replication/repair and attenuation of DNA replication stress-related defects in S. cerevisiae.
|
73 |
Chromatin structure and DNA repair / Etude de la structure de la chromatine dans la réparation de I'ADNHoffbeck, Anne-Sophie 25 October 2013 (has links)
Notre génome est continuellement endommagé par des agents provoquant des lésions de l’ADN. Les cassures doubles brins de l’ADN (CDBs) sont les lésions les plus dangereuses. En effet, une CDB mal réparée peut mener à des aberrations de l’ADN pouvant conduire à l’apparition d’un cancer. Dans le but d’éviter les effets délétères des CDBs, nos cellules ont développé une voie de signalisation, nommée réponse aux dommages de l’ADN (RDA), permettant la détection des cassures et l’activation des points de contrôle du cycle cellulaire afin d’arrêter le cycle pendant la réparation des CDBs. Une des caractéristiques principales de la RDA est l’accumulation d’un grand nombre de facteurs sur l’ADN autour de la cassure, formant un foyer visible en microscopie. Cependant, l’efficacité de réparation de l’ADN est entravée par la structure condensée de la chromatine environnante. Les mécanismes de réparation de l’ADN surmontent ce problème en recrutant de nombreuses protéines permettant le réarrangement de la chromatine afin de faciliter la réparation. Le but de mon travail de thèse est d’identifier de nouvelles protéines impliquées dans le remodelage de la chromatine autour des CDBs. D’une part nous avons pour but d’identifier le protéome complet d’un foyer de réparation de l’ADN grâce à la technique PICh (Proteomics of Isolated Chromatin loci). D’autre part, nous étudions le rôle de l’oncoprotéine SET/TAF-1β, que nous avons identifié lors d’un criblage siRNA réalisé dans le but de découvrir de nouveaux facteurs chromatiniens impliqués dans la réparation des CDBs. / Various DNA damaging agents, that can cause DNA lesions, assault constantly our genome. The most deleterious DNA lesions are the breaks occurring in both strands of DNA (Double stand breaks: DSBs). Inefficient repair of DSBs can lead to aberrations that may induce cancer. To avoid these deleterious effects of DSBs, cells have developed signalling cascades which entail detection of the lesions and spreading of the signal that leads to arrest in cell cycle progression and efficient repair. A major characteristic of DNA damage response (DDR) is the accumulation of a vast amount of proteins around the DSBs that are visible in the cell as DNA damage foci. However, efficient DNA repair is hampered by the fact that genomic DNA is packaged into chromatin. The DNA repair machinery overcomes this condensed structure to access damaged DNA by recruiting many proteins that remodel chromatin to facilitate efficient repair. The aim of my PhD work is to identify novel proteinsinvolved in the DDR and/or the remodelling of chromatin surrounding DSBs. On one hand, we take advantage of the PICh (Proteomics of Isolated Chromatin loci) technique and we aim to identify the entire proteome of DNA repair foci. On the other hand, we study the role of the oncogene SET/TAFIβ, a major hit of a siRNA screen performed to identify novel chromatin related proteins that play role in repair of DSBs.
|
74 |
The Role of DNA Damage in Skin Stem CellsKarambela, Andriana 01 June 2017 (has links)
The accurate maintenance of genomic integrity in stem cells (SCs) is essential for tissue homeostasis and its deregulation leads to developmental defects, cancer and ageing. We have shown that Brca1, key homologous recombination (HR) gene and critical regulator of the choice of the DNA double strand break (DSB) repair pathway, is specifically required for hair follicle formation and the establishment and maintenance of adult hair follicle SC pool in a conditional knock-out (CKO) mouse model. Brca1 loss leads to DNA damage-induced cell death in the hair follicle (HF), particularly in the matrix transient amplifying progenitors and moderately so in prospective quiescent adult HF SCs. This cell loss causes compensatory hyper-proliferation of the prospective HF SCs and their subsequent depletion. In striking contrast, the interfollicular epidermis (IFE) and its resident SCs remain unaffected by Brca1 deletion. I uncovered two mechanisms underlying the ability of the SCs and progenitors of the IFE to survive the deletion of Brca1. Collectively, this data reveals how distinct SCs and progenitors respond differently to Brca1 loss. Furthermore we show how the IFE can survive Brca1 loss through the use of two particular mechanisms as to sustain tissue homeostasis. The mechanisms uncovered here are likely to be relevant in other tissue-specific SCs and will have important implications in understanding cancer initiation and ageing. / Doctorat en Sciences biomédicales et pharmaceutiques (Médecine) / info:eu-repo/semantics/nonPublished
|
75 |
Etude moléculaire de mécanismes de résistance acquise aux dérivés du platine et évaluation pharmacologique de nouveaux dérivés du platine à activité antitumorale / Molecular assessment of acquired resistance to platinum derivates and pharmacological evaluation of new platinum complexesMoretto, Johnny 03 October 2011 (has links)
Les dérivés du platine (i.e. cisplatine et oxaliplatine) représentent une des classes pharmacologiques les plus utilisées en oncologie, notamment dans les cancers colorectaux. Cependant, leur efficacité est limitée par l’émergence de résistances acquises. Nous avons alors étudié in vitro dans différentes lignées cancéreuses coliques humaines (HCT116, LoVo, SW480, HT29) les conséquences à long terme des dérivés du platine lorsqu’ils sont utilisés dans des conditions tenant compte de la sensibilité cellulaire. Ils provoquent des cassures double-brin (objectivées par l’expression de -H2AX), dont le taux dépend du système p53/p21, du complexe MRN et du niveau de stabilité microsatellitaire. Ils induisent aux plus fortes concentrations ( IC50), une cytostase qui s’accompagne de la formation de cellules géantes macrocytaires et endopolyploïdes, dont certaines acquièrent un phénotype sénescent. Dans le même temps, l’activation des mécanismes de réparation des CDB varie en fonction du dérivé du Pt et de la lignée considérée. A plus long terme, des cellules « résistantes » se développent : elles ont une ploïdie normale, et se caractérisent par une plus grande résistance aux dérivés du platine et la présence de novo d’anomalies chromosomiques récurrentes leur conférant un avantage sélectif potentiel en terme de prolifération. Ces mécanismes pourraient contribuer à expliquer en clinique la survenue d’une résistance à une chimiothérapie pourtant initialement efficace. Parallèlement, nous avons évalué in vitro et in vivo de nouveaux complexes de platine obtenus par pharmacomodulation, et associant un noyau intercalant dérivé de la phénanthroline ou de l’acridine. Les résultats in vitro montrent globalement une amélioration significative de la cytotoxicité. Toutefois, un des composés les plus cytotoxiques in vitro, le [(5,6-diméthyl-1,10-phénanthroline) (S,S-diaminocyclohexane)platine(II)], n’exerce pas d’effet antitumoral dans un modèle syngénique de cancer colique chez le rat BD-IX, mais montre une néphrotoxicité marquée. Ces données soulignent l’insuffisance du criblage in vitro et la discordance in vitro/in vivo. / Platinum compounds (i.e. cisplatin and oxaliplatin) represent a class of DNA-damaging agents widely used in clinic especially in the treatment of colorectal cancer. However, their effectiveness is restricted because of emergence of acquired resistance. Therefore, long-term effects of platinum compounds, used at conditions reflecting the in vitro cellular sensibility, were assessed in vitro in several human colon cancer cell lines (HCT116, LoVo, SW480, HT29). Their cytotoxicity is related to double-strand break formation (objectived by -H2AX expression), which depends on p53/p21 status, MRN complex and microsatellite stability of the cell line. Furthermore, at the highest concentrations ( IC50), cells stopped their proliferation and exhibited phenotypic alterations resulting from progressive polyploidy and/or senescence. In the same time, DNA repair systems are activated differently according to the platinum derivate and the cell line. At later stages, cells that are more resistant to platinum compounds than their parental counterpart emerged. They have recovered their basal level of ploidy and acquired de novo recurrent chromosomal aberrations. Such mechanisms could contribute to the recurrence of clinical malignancies, even after an effective initial response to chemotherapy. On the other hand, pharmacological evaluation of new platinum compounds with phenanthroline or acridine intercalating ligand was performed in vitro and in vivo. Globally, many compounds exhibited a higher cytotoxic effect than cisplatin or oxaliplatin in all cell lines studied. Unfortunately, in vivo investigations of one of the most cytotoxic compounds ([(5,6-dimethyl-1,10-phenanthroline) (S,S-diaminocyclohexane)platinum(II)]) did not exhibit antitumor effect in BD-IX rats bearing peritoneal carcinomatosis, whatever the route of administration used (systemic or local), but it displayed nephrotoxicity. These results query the in vitro/in vivo correlation and reconsider the place of the in vivo screening.
|
76 |
Rôle du système ubiquitine protéasome dans les séparations de phase nucléairesSen Nkwe Dibondo, Nadine 04 1900 (has links)
Le système ubiquitine-protéasome représente une plateforme de signalisation cellulaire chez les eucaryotes et joue un rôle majeur dans la coordination des processus cellulaires. Des progrès récents suggèrent que l’ubiquitination joue un rôle important dans les phénomènes de séparation de phase liquide-liquide (LLPS), un processus permettant la localisation d’une quantité accrue de protéines dans un compartiment subcellulaire, afin de réaliser une fonction biologique. En effet, il a été démontré que l’ubiquitination joue un rôle central dans les mécanismes qui gouvernent la LLPS durant la formation des granules de stress dans le cytoplasme ou les foci de réparation de l’ADN dans le noyau. D’autre part, chez la levure, des travaux ont montré que le protéasome est capable de s’assembler sous forme de granules dans le cytoplasme suite à un stress métabolique. Toutefois, les mécanismes par lesquels le système ubiquitine-protéasome ainsi que ses régulateurs contrôlent les processus de LLPS restent à déterminer.
Dans la première étude de cette thèse, nous avons investigué le mécanisme d’action de la déubiquitinase USP16, qui a été suggérée comme un régulateur négatif de la LLPS, empêchant la formation des foci de réparations de dommages à l’ADN. Cependant, nos résultats démontrent que USP16 est majoritairement cytoplasmique et que seulement une entrée forcée de USP16 dans le noyau empêche la formation des foci de réparation des cassures double brin induites par des radiations ionisagntes et ce en favorisant la déubiquitination de l’histone H2A. De plus, aucune translocation nucléaire de USP16 n’a été observée durant le cycle cellulaire ou suite à des dommages à l’ADN. Nos travaux montrent que USP16 est activement exclue du noyau via son signal d’export nucléaire et régulerait indirectement la LLPS menant à la formation des foci de réparation de l’ADN.
Dans la deuxième étude, nous décrivons le comportement dynamique des protéines du protéasome lors d’une LLPS induite par un stress métabolique. Nos résultats indiquent que le protéasome forme des foci distincts dans le noyau des cellules humaines en réponse à une privation de nutriments. Nous avons constaté que ces foci sont enrichis en ubiquitine conjuguée et nous avons démontré que le récepteur d’ubiquitine Rad23B ainsi que l’absence des acides aminés non essentiels sont des éléments clés nécessaires à l’assemblage de ces foci du
iv
protéasome. De plus, des expériences de survie cellulaire montrent que la présence de ces foci est associée à la mort des cellules par apoptose.
En conclusion, nos travaux mettent en lumière l’importance du système ubiquitine-protéasome dans la formation et la régulation des foci cellulaires suite à une LLPS. De même, cette étude aidera également à approfondir notre compréhension sur les mécanismes qui gouvernent l’homéostasie des protéines, la survie cellulaire et le développement du cancer. / The ubiquitin-proteasome system represents a major cell-signaling platform in eukaryotes and plays a pivotal role in the coordination of cellular processes. Recent studies provided evidence that ubiquitination plays a role in liquid-liquid phase separation (LLPS), a process that results in the localization of highly increased levels of a protein in a defined subcellular compartment, in order to achieve a biological function. Indeed, ubiquitination has been shown to play a central role in the mechanisms that govern LLPS and subsequent formation of stress granules in the cytoplasm or the DNA repair foci in the nucleus. On the other hand, several studies have shown that the proteasome itself is able to form granules in the cytoplasm following metabolic stress in yeasts. However, the mechanisms by which the ubiquitin-proteasome system and its regulators control LLPS processes remain to be determined. In the first study of this thesis, we investigated the mechanism of action of USP16 deubiquitinase, which has been suggested as a negative regulator of LLPS preventing the formation of DNA damage repair foci. However, our results demonstrate that USP16 is predominantly cytoplasmic and that only enforced nuclear entry of USP16 prevents the formation of repair foci after double strand breaks induced by ionizing radiation, and this by promoting the deubiquitination of histone H2A. In addition, no nuclear translocation of USP16 was observed during cell cycle or following DNA damage. Our study shows that USP16 is actively excluded from the nucleus via its nuclear export signal and would indirectly regulate LLPS that lead to DNA repair foci. In the second study, we describe the dynamic behavior of proteasome proteins during metabolic stress, a process that involves LLPS. Our results indicate that the proteasome forms distinct foci in the nucleus of human cells in response to nutrients deprivation. We found that these foci are enriched with conjugated ubiquitin and demonstrated that the ubiquitin receptor Rad23B as well as the absence of nonessential amino acids are the key elements necessary for the assembly of these proteasome foci. In addition, cell survival experiments show that the presence of these foci is associated with cell death by apoptosis. In conclusion, our work has shed new light on the importance of the ubiquitin-proteasome system in the formation and regulation of cell foci following LLPS. Likewise, this
vi
study will also help deepen our understanding of the mechanisms leading to protein homeostasis, cell survival and cancer development.
|
77 |
Cascades of genetic instability resulting from compromised break-induced replicationVasan, Soumini January 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Break-induced replication (BIR) is a mechanism to repair double-strand breaks
(DSBs) that possess only a single end that can find homology in the genome. This situation can result from the collapse of replication forks or telomere erosion. BIR frequently produces various genetic instabilities including mutations, loss of heterozygosity, deletions, duplications, and template switching that can result in copy-number variations (CNVs). An important type of genomic rearrangement specifically linked to BIR is half crossovers (HCs), which result from fusions between parts of recombining chromosomes. Because HC formation produces a fused molecule as well as a broken chromosome fragment, these events could be highly destabilizing. Here I demonstrate that HC formation results from the interruption of BIR caused by a defective replisome or premature onset of mitosis. Additionally, I document the existence of half crossover instability cascades (HCC) that resemble cycles of non-reciprocal translocations (NRTs) previously described in human tumors. I postulate that HCs represent a potent source of genetic destabilization with significant consequences that mimic those observed in human diseases, including cancer.
|
78 |
Étude du rôle de la phosphorylation du complexe Mre11-Rad50-Xrs2 dans le maintien de l'intégrité génomiqueSimoneau, Antoine 11 1900 (has links)
L'ADN de chaque cellule est constamment soumis à des stress pouvant compromettre
son intégrité. Les bris double-brins sont probablement les dommages les plus nocifs pour la
cellule et peuvent être des sources de réarrangements chromosomiques majeurs et mener au
cancer s’ils sont mal réparés. La recombinaison homologue et la jonction d’extrémités non-homologues (JENH) sont deux voies fondamentalement différentes utilisées pour réparer ce
type de dommage. Or, les mécanismes régulant le choix entre ces deux voies pour la
réparation des bris double-brins demeurent nébuleux. Le complexe Mre11-Rad50-Xrs2
(MRX) est le premier acteur à être recruté à ce type de bris où il contribue à la réparation par
recombinaison homologue ou JENH. À l’intersection de ces deux voies, il est donc idéalement
placé pour orienter le choix de réparation. Ce mémoire met en lumière deux systèmes distincts
de phosphorylation du complexe MRX régulant spécifiquement le JENH. L’un dépend de la
progression du cycle cellulaire et inhibe le JENH, tandis que l’autre requiert la présence de
dommages à l’ADN et est nécessaire au JENH. Ensembles, nos résultats suggèrent que le
complexe MRX intègre différents phospho-stimuli pour réguler le choix de la voie de
réparation. / The genome of every cell is constantly subjected to stresses that could compromise its
integrity. DNA double-strand breaks (DSB) are amongst the most damaging events for a cell
and can lead to gross chromosomal rearrangements, cell death and cancer if improperly
repaired. Homologous recombination and non-homologous end joining (NHEJ) are the main
repair pathways responsible for the repair of DSBs. However, the mechanistic basis of both
pathways is fundamentally different and the regulation of the choice between both for the
repair of DSBs remains largely misunderstood. The Mre11-Rad50-Xrs2 (MRX) complex acts
as a DSB first responder and contributes to repair by both homologous recombination and
NHEJ. Being at the crossroads of both DSB repair pathways, the MRX complex is therefore in
a convenient position to influence the repair choice. This thesis unravels two distinct
phosphorylation systems modifying the MRX complex and specifically regulating repair by
NHEJ. The first relies on cell cycle progression and inhibits NHEJ, while the second requires
the presence of DNA damage and is necessary for efficient NHEJ. Together, our results
suggest a model in which the MRX complex would act as an integrator of phospho-stimuli in
order to regulate the DSB repair pathway choice.
|
79 |
Implication des remaniements géniques dans l'inactivation des gènes de prédisposition au cancer du sein / Germline large rearrangements in the inactivation of genes implied in breast cancer predispositionRouleau, Etienne 07 December 2011 (has links)
Parmi les cancers du sein, 5 à 10% serait associé à une prédisposition génétique familiale. La prise en charge des patients prédisposés nécessite une bonne définition des risques de cancer. L’identification de l’altération moléculaire causale dans chacune de ces familles est donc un enjeu essentiel dans la prise en charge médicale. Deux gènes, BRCA1 et BRCA2, sont associés à une prédisposition majeure au cancer du sein et de l’ovaire depuis le milieu des années 1990, expliquant environ 15% des formes héréditaires. L’analyse moléculaire de ces deux gènes est désormais réalisée en routine pour la recherche de variations nucléotidiques et plus récemment de remaniements géniques ce qui a permis d’améliorer le taux de détection de mutations délétères. Cependant, pour près de 85% des familles avec une agrégation familiale ou un âge anormalement jeune de cancer du sein, aucune mutation délétère n’a pu être mise en évidence. Dans ce contexte, mon travail de thèse a eu pour objectif de tester plusieurs hypothèses permettant d’expliquer les risques de cancer du sein observés chez des familles montrant l’absence de mutation des gènes BRCA1 et BRCA2. Nous avons ainsi recherché des mécanismes d’altération rarement explorés pour les gènes BRCA1 et BRCA2, et enfin analysé d’autres gènes candidats dont le gène CDH1 et huit autres gènes impliqués dans la réparation de l’ADN. Nous avons pu mieux caractériser des remaniements sur les gènes BRCA1 et BRCA2. Enfin, nous avons pu évaluer l’impact de variants de signification inconnue et des réarrangements détectés par l’étude de leurs transcrits. Dans un premier temps, nous avons mis en place et validé de nouvelles approches techniques de détection et de caractérisation : la CGH-array dédiée, la qPCR-HRM et le peignage moléculaire. Ces techniques ont ensuite été utilisées pour étudier les remaniements géniques et leur fréquence pour onze gènes candidats à la prédisposition au cancer du sein à partir de 472 familles négatives aux mutations délétères BRCA1 et BRCA2. Parmi ces 11 gènes, nous pouvons conclure que les remaniements géniques détectés concernent principalement les gènes BRCA1 et BRCA2, et à un moindre degré le gène CHEK2. En appliquant ces techniques, nous avons pu décrire de nouveaux événements, deux larges délétions et une duplication intronique, pour les gènes CDH1 et BARD1, ouvrant de nouvelles perspectives sur l’étude des transcrits alternatifs. Nous avons en particulier pu décrire la grande diversité des réarrangements délétères en 5’ du gène BRCA1. L’enjeu est ensuite l’interprétation de ces événements. Notre étude des transcrits a permis de décrire un variant exonique d’épissage entraînant une délétion de l’exon 23 au niveau du transcrit BRCA1. Nous avons aussi validé la pathogénicité d’un réarrangement en phase de l’exon 3 de BRCA2 par une étude quantitative du transcrit et une évaluation de la coségrégation. Au final, moins de 1% de nouveaux remaniements ont été mis en évidence. Ce travail est riche d’enseignement pour les nouvelles investigations à mettre en place pour les familles prédisposées. En dehors de la technique d’identification, il est nécessaire de développer des stratégies de validation basées principalement sur la quantification des effets de ces altérations au niveau de l’ARN et des protéines. Cependant, il manque encore de nombreux chaînons pour expliquer l’héritabilité des cancers du sein. Les études sur les nouveaux gènes candidats et l’avènement des techniques de séquençage pangénome à haut débit, devraient permettre d’avoir une meilleure vision des phénomènes pathobiologiques liés à la prédisposition au cancer du sein. / Five to 10% of breast cancers are linked to a genetic predisposition. The management of patients at risk requires a good definition in the risk of cancer. The identification of causal molecular alterations in each of these families is a key issue in medical care. Two genes, BRCA1 and BRCA2, are related with the greatest susceptibility to breast cancer and ovarian cancer since the mid-1990s, accounting for about 15% of hereditary forms. Molecular analysis of these two genes is now routinely performed for the detection of nucleotide variations and more recently large rearrangements which have improved the detection rate of deleterious mutations. However, for more than 85% of families, no mutation explains familial aggregation or unusual young age of breast cancer onset. In this context, my thesis aimed at testing several hypotheses to explain the risks of breast cancer observed in families without any identified mutations in the BRCA1 and BRCA2 genes. We investigated some mechanisms of genic rearrangements rarely explored for BRCA1 and BRCA2 genes, and finally investigated other candidate genes, especially CDH1 gene and eight other genes involved in double-strand DNA repair. We have better characterized some rearrangements in the BRCA1 and BRCA2 genes. Finally, we applied RNA quantitative approaches to better assess the impact from variants of unknown significance and detected rearrangements. Initially, we developed and validated new technical approaches for detection and characterization such as dedicated CGH-array, qPCR-HRM and molecular combing. Rare large germline rearrangements and their frequency in eleven candidate genes for susceptibility to breast cancer were studied among 472 families negative by routine testing for BRCA1 and BRCA2 genes. Of these 11 genes, we conclude that genic rearrangements are found then mainly in the BRCA1 and BRCA2 genes, and to a lesser extent in the CHEK2 gene. We were able to describe two large intronic deletions and one duplication for the CDH1 and BARD1 genes, opening new perspectives on the regulation of their alternative transcript. In particular, we described the wide diversity of new rearrangements involving the 5' region of the BRCA1 gene. Then, it is necessary to validate and interpret those new events. Our transcript analysis described a new exonic variant causing the splice deletion of exon 23 in BRCA1 gene. We have developed tools to validate an in-frame large rearrangement of BRCA2 exon 3 with some transcript quantitative approaches and disease cosegregation.Finally, less than 1% of new rearrangements have been identified. This work is instructive for further investigations to establish molecular etiology in those families with breast cancer predisposition. Not only by applying new technologies, it is necessary to develop other strategies based primarily on quantifying effects of these alterations on transcription and traduction. However, it still lacks many links to explain the heritability of breast cancer. The combination of new candidate genes studies and the advent of high-throughput sequencing are expected to give a better vision of pathobiological phenomena related to the breast cancer predisposition.
|
80 |
Molecular and functional characterization of ABRAXAS and PALB2 genes in hereditary breast cancer predispositionBose, M. (Muthiah) 29 October 2019 (has links)
Abstract
Hereditary mutations in DNA damage response (DDR) genes often lead to genomic instability and ultimately tumor development. However, the molecular mechanism of how these DDR deficiencies promote genomic instability and malignancy is not well understood. Thus, the specific aim of this thesis is to identify the functional and molecular framework behind the elevated breast cancer risk observed in heterozygous PALB2 and ABRAXAS mutation carriers.
The heterozygous germline alteration in PALB2 (c.1592delT) causes a haploinsufficiency phenotype in the mutation carrier cells. Due to PALB2 haploinsufficiency, elevated Cdk activity and consequently aberrant DNA replication/damage response was observed in the PALB2 mutation carrier cells. Excessive origin firing that is indicative of replication stress was also seen in the PALB2 mutation carrier cells. In addition to replication stress, PALB2 mutation carrier cells also experience G2/M checkpoint maintenance defects. The increased malignancy risk in females associated with heterozygosity for the Finnish PALB2 founder mutation is likely to be due to aberrant DNA replication, elevated genomic instability and multiple different cell cycle checkpoint defects.
The heterozygous germline alteration in ABRAXAS (c.1082G>A) causes a dominant-negative phenotype in the mutation carrier cells. Decreased BRCA1 protein levels as well as reduced nuclear localization and foci formation of BRCA1 and CtIP was observed in the ABRAXAS mutation carrier cells. This causes disturbances in basal BRCA1-A complex localization, which is reflected by a restraint in error-prone DNA double-strand break (DSB) repair pathway usage, attenuated DNA damage response, deregulated G2/M checkpoint control and apoptosis. Most importantly, mutation carrier cells display a change in their transcriptional profile, which we attribute to the reduced nuclear levels of BRCA1. Thus, the Finnish ABRAXAS founder mutation acts in a dominant-negative manner on BRCA1 to promote genome destabilization in the heterozygous carrier cells. / Tiivistelmä
Perinnölliset muutokset DNA-vauriovasteen geeneissä johtavat usein genomin epävakauteen ja lopulta syövän kehittymiseen. Molekyylitason mekanismeja, joilla vauriovasteen vajaatoiminta ajaa genomin epävakautta ja syöpää, ei kuitenkaan ymmärretä kunnolla. Tämän väitöskirjan tavoitteena on tunnistaa solutoiminnan ja molekyylitason vaikuttajat heterotsygoottisten PALB2- ja ABRAXAS-geenimuutosten kantajien kohonneen rintasyöpäriskin taustalla.
Heterotsygoottinen ituradan suomalainen perustajamuutos PALB2-geenissä (c.1592delT) aiheuttaa haploinsuffisienssin kantajahenkilöiden soluissa. PALB2:n haploinsuffisienssin seurauksena kantajasoluissa havaittiin kohonnutta Cdk-proteiinin aktiivisuutta ja siitä johtuvaa kiihtynyttä DNA:n kahdentumista. PALB2-mutaatiota kantavissa soluissa nähtiin myös liiallista replikaation aloituskohtien käyttöä, mikä viittaa replikaatiostressiin. Replikaatiostressin lisäksi PALB2-mutaation kantajasoluilla havaittiin vaikeuksia ylläpitää solusyklin G2/M-tarkastuspisteen toimintaa. Näiden solutoiminnan poikkeavuuksien takia heterotsygoottisen PALB2 c.1592delT -mutaation kantajilla todettiin genomin epävakautta ja kohonnut syöpäriski.
Heterotsygoottinen ituradan mutaatio ABRAXAS-geenissä (c.1082G>A) aiheuttaa dominantti-negatiivisen fenotyypin mutaation kantajasoluissa. ABRAXAS-mutaatiota kantavissa soluissa havaittiin BRCA1-proteiinitasojen laskua sekä BRCA1- ja CtIP-proteiinien vähentynyttä lokalisaatiota tumaan ja DNA-vauriopaikoille. Tämä aiheuttaa häiriöitä BRCA1-A-kompleksin paikallistumisessa, mikä johtaa häiriöihin virhealttiiden DNA-kaksoisjuoste¬katkoksien korjausmekanismien käytössä, DNA-vauriovasteessa, G2/M-tarkastus-pisteen säätelyssä ja ohjelmoidussa solukuolemassa. Tärkeimpänä löydöksenä havaittiin mutaation kantajasoluissa muuttunut transkriptioprofiili, joka johtunee BRCA1-proteiinitasojen laskusta tumassa. Näin ollen suomalainen ABRAXAS-perustajamutaatio toimii dominantti-negatiivisena BRCA1:n suhteen, aiheuttaen genomin epävakautta heterotsygoottisissa kantajasoluissa.
|
Page generated in 0.362 seconds