Spelling suggestions: "subject:"truck"" "subject:"drugs""
141 |
3D bioprinting in plastic and reconstructive surgeryAlawi, Seyed Arash, Matschke, Jan, Muallah, David, Gelinsky, Michael, Dragu, Adrian 14 August 2024 (has links)
Background: Bioprinting is one of the most rapidly developing fields in medicine. Plastic and reconstructive surgery will be affected enormously by bioprinting, due to its original purpose of restoring injured or lost tissue. This article in particular has the purpose to analyze the current state of bioprinted tissues as well as research engagement for its application in plastic and reconstructive surgery.
Material and methods: A systematic search for the time span between 2000 and 2022 was performed on EMBASE, Pub-Med, Scopus, and Web of Science databases according to the PRISMA Guidelines. Criteria for the selection of publications were in vitro, animal in vivo, and human in vivo studies where three-dimensional bioprinting of tissue was performed. We extracted data such as (a) author’s country of origin, (b) in vitro study, (c) animal in vivo study, and (d) human in vivo study and categorized the publications by topics such as (1) neural tissue, (2) vascularization, (3) skin, (4) cartilage, (5) bone, and (6) muscle. Additionally, recent discoveries of in vivo animal trials were summarized. -
Results: Out of a pool of 1.629 articles, only 29 publications met our criteria. Of these publications, 97% were published by university institutions. Publications from China (28%, n=8), the USA (28%, n=8), and Germany (10%, n=3) led the publication list on 3D bioprinting. Concerning the publications, 45% (n=13) were in vitro studies, 52% (n=15) in vivo studies on animal models, and 3% (n=1) pilot clinical studies on humans as reported by Zhou et al. (EBioMedicine 28: 287–302, 2018). Regarding the classification of topics, our study revealed that publications were mainly in the field of 3D printing of cartilage (n=13, 39%), skin (n=7, 21%), bone (n=6, 18%), and vascularization (n=5, 15%). -
Conclusions: To this date, it has not been yet possible to bioprint whole tissue systems. However, the progress in threedimensional bioprinting is rapid. There are still some challenges, which need to be overcome regarding cell survival before and during the printing process, continuation of architecture of bioprinted multilinear cells, and long-term stabilization and survival of complex tissues. Level of evidence: Not ratable.
|
142 |
Distributed fiber optic sensors for measuring strains of concrete, steel, and textile reinforcementZdanowicz, Katarzyna, Gebauer, Daniel, Speck, Kerstin, Steinbock, Oliver, Beckmann, Birgit, Marx, Steffen, Koschemann, Marc 22 April 2024 (has links)
The article describes measurements of strains of concrete, steel and textile reinforcement with distributed fiber optic sensors (DFOS). The technology of distributed strain measurements gains currently increasing attention within the civil engineering field and indeed the DFOS can be applied in various measurement scenarios providing results and insights which were not possible before. Within this article, the fibers and adhesives that are most commonly used are compared and several measurement scenarios and their results are described, including precise strain measurements with high resolution as well as measurements on large-scale specimens. Concrete strains were measured in a multiaxial compression stress state and also during setting and hardening and in flexural tests. Strains of the steel and textile reinforcement were monitored along the bond zone and also in flexural tests. Finally, cracking patterns were observed and compared with digital image correlation methods. Validated examples of applications of DFOS in laboratory work are described.
|
143 |
Distribution of transpulmonary pressure during one-lung ventilation in pigs at different body positionsWittenstein, Jakob, Scharffenberg, Martin, Yang, Xiuli, Bluth, Thomas, Kiss, Thomas, Schultz, Marcus J., Rocco, Patricia R. M., Pelosi, Paolo, De Abreu, Marcelo Gama, Huhle, Robert 05 August 2024 (has links)
Background: Global and regional transpulmonary pressure (PL) during one-lung ventilation (OLV) is poorly characterized. We hypothesized that global and regional PL and driving PL (ΔPL) increase during protective low tidal volume OLV compared to two-lung ventilation (TLV), and vary with body position.
Methods: In sixteen anesthetized juvenile pigs, intra-pleural pressure sensors were placed in ventral, dorsal, and caudal zones of the left hemithorax by video-assisted thoracoscopy. A right thoracotomy was performed and lipopolysaccharide administered intravenously to mimic the inflammatory response due to thoracic surgery. Animals were ventilated in a volume-controlled mode with a tidal volume (VT) of 6 mL kg⁻¹ during TLV and of 5 mL kg⁻¹ during OLV and a positive end-expiratory pressure (PEEP) of 5 cmH₂O. Global and local transpulmonary pressures were calculated. Lung instability was defined as end-expiratory PL<2.9 cmH₂O according to previous investigations. Variables were acquired during TLV (TLVsupine), left lung ventilation in supine (OLVsupine), semilateral (OLVsemilateral), lateral (OLVlateral) and prone (OLVprone) positions randomized according to Latin-square sequence. Effects of position were tested using repeated measures ANOVA.
Results: End-expiratory PL and ΔPL were higher during OLVsupine than TLVsupine. During OLV, regional end-inspiratory PL and ΔPL did not differ significantly among body positions. Yet, end-expiratory PL was lower in semilateral (ventral: 4.8 ± 2.9 cmH₂O; caudal: 3.1 ± 2.6 cmH₂O) and lateral (ventral: 1.9 ± 3.3 cmH₂O; caudal: 2.7 ± 1.7 cmH₂O) compared to supine (ventral: 4.8 ± 2.9 cmH₂O; caudal: 3.1 ± 2.6 cmH2O) and prone position (ventral: 1.7 ± 2.5 cmH₂O; caudal: 3.3 ± 1.6 cmH₂O), mainly in ventral (p ≤ 0.001) and caudal (p = 0.007) regions. Lung instability was detected more often in semilateral (26 out of 48 measurements; p = 0.012) and lateral (29 out of 48 measurements, p < 0.001) as compared to supine position (15 out of 48 measurements), and more often in lateral as compared to prone position (19 out of 48 measurements, p = 0.027).
Conclusion: Compared to TLV, OLV increased lung stress. Body position did not affect stress of the ventilated lung during OLV, but lung stability was lowest in semilateral and lateral decubitus position.
|
144 |
Phase Stability of Iron Nitride Fe4N at High Pressure—Pressure-Dependent Evolution of Phase Equilibria in the Fe–N SystemWetzel, Marius Holger, Rabending, Tina Trixy, Friák, Martin, Všianská, Monika, Šob, Mojmír, Leineweber, Andreas 10 July 2024 (has links)
Although the general instability of the iron nitride γ′-Fe4N with respect to other phases at high pressure is well established, the actual type of phase transitions and equilibrium conditions of their occurrence are, as of yet, poorly investigated. In the present study, samples of γ′-Fe4N and mixtures of α Fe and γ′-Fe4N powders have been heat-treated at temperatures between 250 and 1000 °C and pressures between 2 and 8 GPa in a multi-anvil press, in order to investigate phase equilibria involving the γ′ phase. Samples heat-treated at high-pressure conditions, were quenched, subsequently decompressed, and then analysed ex situ. Microstructure analysis is used to derive implications on the phase transformations during the heat treatments. Further, it is confirmed that the Fe–N phases in the target composition range are quenchable. Thus, phase proportions and chemical composition of the phases, determined from ex situ X-ray diffraction data, allowed conclusions about the phase equilibria at high-pressure conditions. Further, evidence for the low-temperature eutectoid decomposition γ′→α+ε′ is presented for the first time. From the observed equilibria, a P–T projection of the univariant equilibria in the Fe-rich portion of the Fe–N system is derived, which features a quadruple point at 5 GPa and 375 °C, above which γ′-Fe4N is thermodynamically unstable. The experimental work is supplemented by ab initio calculations in order to discuss the relative phase stability and energy landscape in the Fe–N system, from the ground state to conditions accessible in the multi-anvil experiments. It is concluded that γ′-Fe4N, which is unstable with respect to other phases at 0 K (at any pressure), has to be entropically stabilised in order to occur as stable phase in the system. In view of the frequently reported metastable retention of the γ′ phase during room temperature compression experiments, energetic and kinetic aspects of the polymorphic transition γ′⇌ε′ are discussed.
|
145 |
Functional interfaces / polymer brushes and their response to temperature and hydrostatic pressureReinhardt, Matthias 28 March 2014 (has links)
Verankerte Polymere können die Funktionalität einer Oberfläche beeinflussen. Der Schwerpunkt dieser Arbeit liegt auf der Untersuchung von Polymerbürsten aus Polyacrylsäure (PAA) und Poly(N,N-dimethylaminoethyl methacrylat) (PDMAEMA). Auf Oberflächen, die mit PAA Bürsten beschichtet sind, können Proteine im nativen Zustand immobilisiert werden. Für PDMAEMA ist eine Reaktion auf externe Reize bekannt. So kann dessen untere kritische Lösungstemperatur (LCST) zur Einstellung der Hydrophobizität von Oberflächen verwendet werden. Erstmalig im Rahmen dieser Arbeit wurde untersucht, wie sich hydrostatischer Druck von bis zu 1000 bar auf die Funktionalität der verwendeten Polymerbürsten auswirkt. Aus Diblock-Kopolymeren wurden Langmuir-Filme unterschiedlicher Ankerdichte mit der Langmuir-Schäfer Technik auf feste Substrate übertragen. Die Funktionalität der PAA Bürsten wurde vor und nach der Adsorption von Rinderserumalbumin (BSA) in gepufferter D2O-Lösung mit Hilfe der Neutronenreflektometrie (NR) bei 1 bar und 900 bar an der fest-flüssig Grenzfläche untersucht. Es wurden Volumenfraktionsprofile der PAA Bürste und adsorbierten BSA extrahiert, woraus sich eine lineare Abhängigkeit zwischen Ankerdichte und Menge an adsorbiertem Protein feststellen ließ. Erhöhung des hydrostatischen Druckes auf 900 bar veränderte weder die PAA Volumenprofile noch die Immobilisierung von BSA. Die PDMAEMA Bürsten wurden mittels NR bei Temperaturen von 20-60 °C und Drücken von 1-1000 bar untersucht. Zur Analyse der Daten wurde ein neuartiges Dichteprofil-Modell verwendet. Temperaturerhöhung führt zur stetigen Abnahme der Bürstendicke. Dies lässt sich durch den LCST induzierten Phasenübergang der Polymere vom hydrophilen in einen hydrophoben Zustand erklären. Es wurde gefunden, dass eine Erhöhung des hydrostatischen Druckes diesem Prozess entgegenwirkt. Strukturänderungen der Polymerbürsten bei Erhöhung der Temperatur um 10 K ließen sich durch Erhöhung des Druckes um 1000 bar rückgängig machen. / The functionality of an interface can be modified by polymer brushes. The focus of this work is on brushes of either polyacrylic acid (PAA) or poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA). PAA brushes provide a soft interface that prevents the denaturation of adsorbed proteins. PDMAEMA is known to respond to external stimuli. The lower critical solution temperature (LCST) of PDMAEMA can be used to tune the hydrophobicity of the interface with temperature. For the first time, the effect of elevated hydrostatic pressure, up to 1000 bar, on the functionality of these systems is investigated. Planar PAA and PDMAEMA brushes are prepared from precursor diblock copolymer Langmuir layers with varied grafting density utilizing the Langmuir-Schäfer transfer technique. For solvent-swollen PAA brushes, neutron reflectivity (NR) measurements are conducted at the solid-liquid interface after incubation in buffered D2O and after the adsorption of bovine serum albumin (BSA) from the aqueous liquid phase at 1 bar and 900 bar. Detailed volume fraction profiles of the PAA brush and adsorbed BSA proteins are extracted. The amount of adsorbed BSA is found to scale linearly with grafting density. An elevated hydrostatic pressure of 900 bar is found to have no impact on the structure of the PAA brush and its capability to bind BSA proteins. The PDMAEMA brushes are investigated by NR at the solid-liquid interface in a temperature range of 20 to 60 °C for hydrostatic pressures from 1 to 1000 bar. A novel theoretical model of the brush density profile is used to fit the experimental NR data. Increasing the temperature causes a continuous decrease of the polymer brush thickness due to a hydrophobic coil to globule transition of the polymer chains when crossing the LCST. Hydrostatic pressure is found to act antagonistic to temperature. The hydrophobic collapse of the PDMAEMA brush caused by a temperature increase of 10 K is counterbalanced by a pressure increase of 1000 bar.
|
146 |
Suitability of the additive FFF process for copper induction coilsKimme, Jonas, Gruner, Jonas, Fröhlich, Alexander, Kunke, Andreas 03 February 2025 (has links)
The study highlights the potential of Fused Filament Fabrication (FFF) for manufacturing copper induction coils. Traditional methods, such as manual forming or powder bed fusion (PBF-LB/M), are precise but expensive and labor-intensive. In contrast, FFF could offer a more cost-effective alternative, especially for larger coils or small batch production. Initial tests with a modified FFF printer and copper filament showed promising results in terms of geometry, printability, and wall thickness.
|
147 |
The Mechanics of Mitotic Cell RoundingStewart, Martin 11 July 2012 (has links) (PDF)
During mitosis, adherent animal cells undergo a drastic shape change, from essentially flat to round, in a process known as mitotic cell rounding (MCR). The aim of this thesis was to critically examine the physical and biological basis of MCR.
The experimental part of this thesis employed a combined optical microscope-atomic force microscope (AFM) setup in conjunction with flat tipless cantilevers to analyze cell mechanics, shape and volume. To this end, two AFM assays were developed: the constant force assay (CFA), which applies constant force to cells and measures the resultant height, and the constant height assay (CHA), which confines cell height and measures the resultant force. These assays were deployed to analyze the shape and mechanical properties of single cells trans-mitosis. The CFA results showed that cells progressing through mitosis could increase their height against forces as high as 50 nN, and that higher forces can delay mitosis in HeLa cells. The CHA results showed that mitotic cells confined to ~50% of their normal height can generate forces around 50-100 nN without disturbing mitotic progression. Such forces represent intracellular pressures of at least 200 Pascals and cell surface tensions of around 10 nN/µm. Using the CHA to compare mitotic cell rounding with induced cell rounding, it was observed that the intracellular pressure of mitotic cells is at least 3-fold higher than rounded interphase cells. To investigate the molecular basis of the mechanical changes inherent in mitotic cell rounding, inhibitors and toxins were used to pharmacologically dissect the role of candidate cellular processes. These results implicated the actomyosin cortex and osmolyte transporters, the most prominent of which is the Na+/H+ exchanger, in the maintenance of mechanical properties and intracellular hydrostatic pressure. Observations on blebbing cells under the cantilever supported the idea that the actomyosin cortex is required to sustain hydrostatic pressure and direct this pressure into cell shape changes. To gain further insight into the relationship between actomyosin activity and intracellular pressure, dynamic perturbation experiments were conducted. To this end, the CHA was used to evaluate the pressure and volume of mitotic cells before, during and after dynamic perturbations that included tonic shocks, influx of specific inhibitors, and exposure to pore-forming toxins. When osmotic pressure gradients were depleted, pressure and volume decreased. When the actomyosin cytoskeleton was abolished, cell volume increased while rounding pressure decreased. Conversely, stimulation of actomyosin cortex contraction triggered an increase in rounding pressure and a decrease in volume. Taken together, the dynamic perturbation results demonstrated that the actomyosin cortex contracts against an opposing intracellular pressure and that this relationship sets the surface tension, pressure and volume of the cell.
The discussion section of this thesis provides a comprehensive overview of the physical basis of MCR by amalgamating the experimental results of this thesis with the literature. Additionally, the biochemal signaling pathways and proteins that drive MCR are collated and discussed. An exhaustive and unprecedented synthesis of the literature on cell rounding (approx. 750 papers as pubmed search hits on “cell rounding”, April 2012) reveals that the spread-to-round transition can be thought of in terms of a surface tension versus adhesion paradigm, and that cell rounding can be physically classified into four main modes, of which one is an MCR-like category characterized by increased actomyosin cortex tension and diminution of focal adhesions. The biochemical pathways and signaling patterns that correspond with these four rounding modes are catalogued and expounded upon in the context of the relevant physiology. This analysis reveals cell rounding as a pertinent topic that can be leveraged to yield insight into core principles of cell biophysics and tissue organization. It furthermore highlights MCR as a model problem to understand the adhesion versus cell surface tension paradigm in cells and its fundamentality to cell shape, mechanics and physiology.
|
148 |
On Ternary Phases of the Systems RE–B–Q (RE = La – Nd, Sm, Gd – Lu, Y; Q = S, Se)Borna, Marija 15 October 2012 (has links) (PDF)
It is known that boron containing compounds exhibit interesting chemical and physical properties. In the past 50 years modern preparative methods have led to an overwhelming number of different structures of novel and often unexpected boron–sulfur and boron–selenium compounds. Among all these new compounds, there was only one which comprises rare earth metal (RE), boron and heavier chalcogen, namely sulfur, the europium thioborate Eu[B2S4] [1]. Selenoborates of rare earth metals are hitherto unknown. On the other hand, rare earth oxoborates represent a well-known class of compounds [2] with a wide range of applications, especially in the field of optical materials. In addition, well-defined boron compounds containing the heavier group 16 elements are fairly difficult to prepare due to the high reactivity of in situ formed boron chalcogenides towards most container materials at elevated temperatures. The chalcogenoborates of the heavier chalcogens are sensitive against oxidation and hydrolysis and therefore have to be handled in an inert environment. Therefore, developing and optimization of preparative routes for the syntheses of pure and crystalline RE thio- and selenoborates was needed.
In the course of this study, the application of different preparation routes, such as optimized high-temperature routes (HT), metathesis reactions and high-pressure high-temperature routes (Hp – HT), led to sixteen new rare earth thioborates. Their crystal structures were solved and/or refined from powder and single crystal X-ray diffraction data, while the local structure around rare earth metal was confirmed from the results of the EXAFS analyses. Quantum mechanical calculations were used within this work in order to investigate the arrangement of intrinsic vacancies on the boron sites in the crystal structures of rare earth thioborates. Thermal, magnetic and optical properties of these compounds are also discussed.
The rare earth thioborates discovered during this work are the first examples of ternary thioborates containing trivalent cations. These compounds can be divided into two groups of isotypic compounds: the rare earth orthothioborates with general formula REIII[BS3] (RE = La – Nd, Sm, Gd and Tb) [3] and the rare earth thioborate sulfides with general formula REIII¦9B5S21, (RE = Gd – Lu, and Y) [4].
In the crystal structure of RE[BS3] (orthorhombic, space group Pna21, Z = 4), the sulfur atoms form the vertices of corrugated kagome nets, within which every second triangle is occupied by boron and the large hexagons are centered by RE cations. The structural features of the isotypic RE[BS3] phases show great similarities to those of rare earth oxoborates RE[BO3] and orthothioborates of alkali and alkaline earth metals as well as to thallium orthothioborate, yet pronounced differences are also observed: the [BS3]3– groups in the crystal structures of RE[BS3] are more distorted, where the distortion decreases with the decreasing size of the RE element, and the coordination environments of the [BS3]3– groups in the crystal structures of RE[BS3] are different in comparison with the coordination environments of the [BO3]3– groups in the crystal structures of λ-Nd[BO3] [5] and of o-Ce[BO3] [6].
The results of the IR and Raman investigations are in agreement with the presence of [BS3]3– anions in the crystal structure of RE[BS3]. Thermal analyses revealed the thermal stability of these compounds under inert conditions up to ~ 1200 K. Analyses of the magnetic properties of the Sm, Gd and Tb thioborates showed that both Gd and Tb phases order antiferromagnetically. The magnetic susceptibility for Sm orthothioborate approximately follows the Van-Vleck theory for Sm3+. Between 50 K and 62 K a transition appears which is independent of the magnetic field: the magnetic susceptibility becomes lower. This effect might indicate a discontinuous valence transition of Sm which was further investigated by means of XANES and X-ray diffraction using synchrotron radiation, both at low temperatures.
The series of isotypic RE thioborate sulfides with composition RE9B5S21, was obtained by the application of Hp – HT conditions to starting mixtures with the initial chemical composition “REB3S6“, after careful optimization of the pressure, temperature and treatment time, as well as the composition of the starting mixtures. Their crystal structures adopt the Ce6Al3.33S14 [7] structure type (hexagonal, space group P63, Z = 2/3). The special features of the RE9B5S21 crystal structures, concerning boron site occupancies and different coordination environments of the two crystallographically independent boron sites, were investigated in more detail by means of quantum chemical calculations, electron diffraction methods, optical and X-ray absorption spectroscopy as well as by 11B NMR spectroscopy. The results obtained from these different experimental and computational methods are in good mutual agreement. The crystal structures of the RE9B5S21 compounds are characterized by two types of anions: tetrahedral [BS4]5– and trigonal planar [BS3]3– as well as [(S2–)3] units. Isolated [BS4]5– tetrahedra (all pointing with one of their apices along the polar [001] direction) represent a unique feature of the crystal structure which is observed for the first time in a thioborate compound. These tetrahedra are stacked along the three-fold rotation axes. Vacancies are located at the trigonal-planar coordinated boron site with preferred ordering –B–B––B–B–– along [001]. No superstructure is observed by means of electron diffraction methods as adjacent columns are shuffled along the c axis, giving rise to a randomly distributed vacancy pattern. Positions of the sulfur atoms within the [(S2–)3] substructure as well as planarity of the [BS3]3– units were investigated in more detail by means of quantum mechanical calculations.
Results of the IR and Raman spectroscopy, as well as of the 11B NMR spectroscopy are in agreement with the presence of the boron atoms in two different coordination environments. Thermal analyses showed that compounds RE9B5S21 are stable under inert conditions up to ~ 1200 K. In accordance with the combined results of experimental and computational investigations, the chemical formula of the RE9B5S21 compounds is consistent with RE3[BS3]2[BS4]3S3.
A short overview of investigations towards rare earth selenoborates, where in most of the cases only known binary rare earth selenides could be identified, is presented as well in this work. Investigations in the RE–B–Se systems were conducted by the application of different preparation routes by varying the experimental parameters and the initial compositions of the starting mixtures. Although no crystal structure of a ternary phase in these systems could be solved, there are indications that such phases exist, but further investigations are needed.
[1] M. Döch, A. Hammerschmidt, B. Krebs, Z. Anorg. Allg. Chem., 2004, 630, 519.
[2] H. Huppertz, Chem. Commun., 2011, 47, 131; and references therein.
[3] J. Hunger, M. Borna, R. Kniep, J. Solid State Chem., 2010, 182, 702; J. Hunger, M. Borna, R. Kniep, Z. Kristallogr. NCS, 2010, 225, 217; M. Borna, J. Hunger, R. Kniep, Z. Kristallogr. NCS, 2010, 225, 223; M. Borna, J. Hunger, R. Kniep, Z. Kristallogr. NCS, 2010, 225, 225.
[4] M. Borna, J. Hunger, A. Ormeci, D. Zahn, U. Burkhardt, W. Carrillo-Cabrera, R. Cardoso-Gil, R. Kniep, J. Solid State Chem., 2011, 184, 296;
[5] H. Müller-Bunz, T. Nikelski, Th. Schleid, Z. Naturforsch. B, 2003, 58, 375.
[6] H. U. Bambauer, J. Weidelt, J.-St. Ysker, Z. Kristallogr., 1969, 130, 207.
[7] D. de Saint-Giniez, P. Laruelle, J. Flahaut, C. R. Séances, Acad. Sci. Ser. C, 1968, 267, 1029.
|
149 |
Ladungs- und Orbitalordnungsphänomene in Übergangsmetalloxidverbindungen unter hydrostatischem Druck / Diffraktometrische Studien mit Synchrotronstrahlung / Charge and orbital order phenomena in transition metal oxide compounds under hydrostatic pressureKiele, Sven 27 March 2006 (has links) (PDF)
The thesis is dealing with the investigation of charge and orbital order and their behaviour under external pressure. Therefore, a new pressure cell has been developed which allows the observation of superlattice reflections corresponding to the order phenomena under pressure using scattering of high-energy synchrotron radiation. The maximum pressure that can be reached is 1.25 GPa. Until today there has been no possibility to conduct such studies of charge and orbital order superlattice reflections under pressure using x-ray scattering. The intensities of the reflections of the single crystalline samples are quite weak compared to fundamental peaks. Therefore the measurements are strongly affected by the absorption of the radiation in the pressure cell itself. Further difficulties result from the facts that low temperatures are needed and the sample has to be oriented in reciprocal space after being mounted into the cell. Therefore, the design of a compact clamp-type piston pressure cell was chosen here. The cell is made from a copper-beryllium alloy with the wall thickness reduced in the height of the sample volume. This allows the usage inside a closed-cycle cryostat mounted on a three-axis-diffractometer. Absorption effects are minimized due to the combination of reduced wall thickness and the usage of high energy synchrotron radiation (E = 100 keV at the beamline BW5 at HASYLAB/DESY). The new experimental technique was established and used for a study of two representatives of the transition metal oxide compounds, i.e. doped cuprates and manganites, which belong to the class of strongly correlated electron systems. The 1/8-doped cuprate La_{2-x}Ba_{x}CuO_{4} reveals an ordered state at low temperatures. Inside the CuO_{2} planes a combined order of charge stripes and antiferromagnetic spin stripes is observed. The ordering results from the interaction between charge, spin and lattice degrees of freedom. Here the lattice degrees of freedom play a major role. Particularly, a structural transition from an orthorhombic to a tetragonal symmetry is prerequisite for the observation of the ordered state. The cell constructed in this work allows a more exact analysis of the coupling between the crystal lattice and the formation of the charge and spin ordered phase. The manganite system Pr_{0.7}(Ca_{0.9}Sr_{0.1})_{0.3}MnO_{3} shows a strong magnetoresistive effect, called colossal magnetoresistance (CMR). In this system, several ordered phases can be found, which exhibit charge, spin and - since the orbital degree of freedom is also present in the manganites - additionally orbital ordering phenomena. In particular, an antiferromagnetically spin ordered insulating phase, which is connected to a charge- and orbital ordered state competes with a ferromagnetic metallic phase. This competition leads to a phase separation, which determines the properties of the sample. Both phases are strongly coupled to the lattice degrees of freedom, so that application of external pressure drastically affects the interplay between the different phases and allows a detailed study of the relation between the charge and orbital ordered phase and the crystal structure. / Die vorliegende Arbeit befaßt sich mit dem Studium der Ordnungszustände von Ladungen und Orbitalen und deren Beeinflußung durch externen Druck. Als experimentelle Neuentwicklung wurde dafür eine Druckzelle entworfen, mit deren Hilfe die Beobachtung der jeweiligen Ordnungsphänomene unter Druck mittels der Streuung hochenergetischer Synchtrotronstrahlung möglich ist. Die Zelle erlaubt die Messung der orbitalen und Ladungsüberstrukturreflexe, welche aus den geordneten Zuständen resultieren, in einem Druckbereich bis 1.25 GPa. Die experimentelle Herausforderung ergibt sich hierbei aus der Tatsache, dass die Überstrukturreflexe im Vergleich zu den fundamentalen Reflexen der einkristallinen Proben sehr schwach sind und zusätzlich durch die Absorption im Mantelmaterial der Druckzelle stark beeinträchtigt werden. Darüber hinaus soll die Zelle bei tiefen Temperaturen einsetzbar und die Probe auch innerhalb der Zelle im reziproken Raum orientierbar sein. Bei dem hier realisierten Ansatz wurde für das Design daher der Typ einer kompakten Klemmdruckzelle aus einer Kupfer-Beryllium-Legierung gewählt, deren Zellwände im Bereich des Probenvolumens reduziert wurden. Dadurch ist der Einsatz der Zelle im Inneren eines Closed-Cycle-Kryostaten auf einem Einkristall-Diffraktometer möglich. Aufgrund der geringen Wandstärke der Zelle und der Nutzung von hochenergetischer Röntgenstrahlung (E = 100 keV am Messplatz BW5 des HASYLAB/DESY) werden Absorptionseffekte minimiert. Die neue Messmethode wurde im Rahmen der Arbeit etabliert und zur Untersuchung zweier wichtiger Übergangsmetalloxidverbindungen (dotierte Kuprate, Manganate), die zur Klasse der stark korrelierten Elektronensysteme gehören, eingesetzt. Das 1/8-dotierte Kupratsystem La_{2-x}Ba_{x}CuO_{4}, weist bei tiefen Temperaturen einen statisch geordneten Zustand auf. Innerhalb der CuO_{2}-Schichten des Kristalls ergibt sich eine Ordnung, bei der sich Streifen lokalisierter Löcher und antiferromagnetische Bereiche abwechseln. Ursache dieses Zustands ist das Wechselspiel von Ladungen, Spins und strukturellen Freiheitsgraden. Dabei spielen letztere eine herausgehobene Rolle. So ist insbesondere ein struktureller Übergang von einer orthorhombischen zu einer tetragonalen Phase Voraussetzung für die Beobachtung der Ordnung. Die in dieser Arbeit aufgebaute Druckzelle erlaubt eine genauere Analyse des Zusammenhangs zwischen Struktur des Kristalls und der Ausbildung der ladungs- und spingeordneten Phase. Das Manganatsystem Pr_{0.7}(Ca_{0.9}Sr_{0.1})_{0.3}MnO_{3}, zeichnet sich durch einen sehr starken magnetoresistiven Effekt aus, der auch als kolossaler Magnetowiderstand (CMR) bezeichnet wird. Auch hier kann bei tiefen Temperaturen eine geordnete Phase beobachtet werden. Allerdings spielt in diesem System zusätzlich der orbitale Freiheitsgrad der Elektronen eine entscheidende Rolle, so dass sich eine kombinierte Ladungs- und Orbitalordnung ergibt. Diese Phase, die isolierend und zusätzlich antiferromagnetisch geordnet ist, steht im direkten Wettbewerb zu einer ferromagnetischen Phase. Aus dieser Konkurrenz ergibt sich eine Tendenz zur Phasenseparation, deren Effekte die Eigenschaften des Kristalls dominieren. Da beide Phasen stark an die strukturellen Freiheitsgrade gekoppelt sind, läßt sich das Gleichgewicht zwischen ihnen durch externen Druck beeinflussen und die Abhängigkeit der ladungs- und orbitalgeordneten Phase von den strukturellen Eigenschaften des Kristalls im Detail untersuchen.
|
150 |
Stability of microbial transglutaminase and its reactions with individual caseins under atmospheric and high pressure / Stabilität der mikrobiellen Transglutaminase und ihre Reaktionen mit Caseinen unter atmosphärischem Druck und unter HochdruckMenéndez Aguirre, Orquídea de María Pastora 03 November 2006 (has links) (PDF)
Kinetic inactivation of factor XIIIa and MTG were performed in a pressure range from 0.1 to 400 MPa at 40°C within a time from 0 to 60 min in a TRIS-acetate buffer at pH 6.0. The inactivation of both enzymes at these conditions followed a first order reaction model. The high inactivation rate constant of 26.6 x10-3/min-1 for factor XIIIa at low pressure (50 MP) indicated that this enzyme is much easier to inactivate than MTG, which achieved an inactivation rate constant value of 9.7 x10-3/min at higher pressure (200 MPa). An inactivation volume of –10.17±0.5 cm3/mol confirmed that MTG is very stable under high pressure. The stability of MTG under high pressure and thermal treatment was related to its conformational changes. Enzyme inactivation was accompanied by secondary and tertiary structure changes until an irreversible protein precipitation is achieved. The tertiary structure, represented by circular dichroism spectra in the aromatic region showed differences among native and MTG samples treated under high pressure, as well as at elevated temperature. Tyrosine bands, indicating protein unfolding, increased proportionally with increasing pressure treatment above 400 MPa. Nevertheless, compared to pressure, a maximal enhancement could be observed after thermal treatment at 0.1 MPa at 80°C. That demonstrated the exposure of hydrophobic groups to the protein surface with a concomitant protein unfolding. The spectra in the far ultraviolet region showed that increasing high pressure and high temperature lead to alterations in the secondary structure. The mathematical algorithms CONTIN used to calculate secondary structures stated that the 24.5% of alpha-helix of native MTG decreased to 17.2% after a treatment at 400 MPa at 40°C for 60 min and to 6.5% after a treatment at 0.1 MPa at 80°C for 2 min. However, beta-strand structures remained relatively stable after these several treatments. MTG is arranged in a way that the active site is located between beta-strand domains that are surrounded by alpha-helices, the results of this investigation suggested that MTG activity is related with the relative stability of alpha-helix and the outstanding stability of the central beta-strand structure. The irreversible precipitated protein observed at 600 MPa at 40°C for 60 min and 0.1 MPa at 80°C for 2 min was caused principally by the formation of disulfides bonds, because high pressure and high thermal treatment lead to the exposition of the Cys64 residue towards the solvent with the subsequent ability to react with neighbouring cysteine residues. Furthermore, the reaction between protein and reducing sugars resulted in the formation of Maillard products. Furosine, as an indicator of the early stages of Maillard reaction was measured. Concentration values of 261.0 mg/g protein from samples treated at 600 MPa and 40°C and 238.5 mg/g protein from samples treated at and 0.1 MPa and 80°C for 2 min were obtained. Pentosidine a subsequent product observed in the advanced Maillard reaction was also present. Concentrations of 13.7 and 6.7 mg/g protein were obtained in the samples treated at 600 MPa and 40°C for 60 min and 0.1 MPa and 80°C for 2 min, respectively. Kinetic inactivation studies of MTG in a pressure range from 0.1 to 600 MPa at 10, 30, 40, and 50°C within a long time range from 0 to 140 h were performed in order to study MTG stability under the simultaneous effect of pressure and temperature. The inactivation kinetic showed a first and very fast step and a second very slow step suggesting irreversible inactivation behaviour. Activation energy and entropy difference decreased with increasing pressure. Thereby, the inactivation rate constants of enzyme were less temperature dependent at high pressure. The effect of pressure and temperature on MTG inactivation had a synergistic behaviour. At temperatures of 10, 30, and 40°C, increasing pressure leads to increasing inactivation rate constants. However at 50°C a tendency change occurred. Negative activation volumes of –16.2±0.5, -13.6±0.1, -11.2±0.3 cm3/mol were obtained for 10, 30 and 40°C respectively and for treatment at 50°C a positive value of about +3.0±2.0 cm3/mol in a pressure range from 0.1 to 300 and a negative volume of –11.0±0.4 cm3/mol MPa from 300 to 600 MPa were calculated. A pressure/temperature diagram from inactivation rate constants was performed to represent MTG stability. The diagram shows that in a pressure and temperature range from 0.1 to 550 MPa and 10 to 40°C, pressure induces MTG stabilization against heat denaturation. At 50°C in range from 0.1 to 300 MPa, pressure induces also enzyme stabilization again heat denaturation, but at the same temperature and above 300 MPa the enzyme was inactivated. After MTG stability analysis, reaction kinetics from MTG with individual caseins in a TRIS-acetate buffer pH 6.0 were performed under atmospheric pressure (0.1 MPa) and high pressure (400 MPa) at 40°C. The reaction was monitored by gel permeation chromatography under in three assumptions: 1) The initial velocity kinetics was obtained from a non-progressive enzymatic reactions with the products. 2) The substrate concentration exceeded enzyme concentration. 3) The sum of the individual catalytic constants of the reactive glutamine residues inside caseins are represented by a single MTG-monomeric casein complex. Enzyme reaction kinetics of MTG with the individual caseins carried out at 0.1 MPa at 40°C showed Michaelis-Menten-Henri behaviour with maximal velocities of 2.7 x 10-3, 0.8 x 10-3, and 1.3 x 10-3 mmol/L∙min and Km values of 59 x 10-3, 64 x 10-3 and 50 x 10-3 mmol/L of beta-, alpha-s1-, and whole-casein, respectively. This suggested that MTG achieved a maximal velocity with ß-casein, but had the best affinity with acid casein followed by beta- casein and finally alpha-s1-casein. Enzyme reaction kinetics of beta-casein carried out at 400 MPa and 40°C also showed a Michaelis-Menten-Henri behaviour with a similar maximal velocity of 2.6 x 10-3 mmol/L×min, but the Km value of 144 x 10-3 mmol/L showing kinetical similarity to a non-competitive inhibition. The reaction of MTG with alpha-s1-casein under high pressure did not fit in to Henri-Michaelis-Menten kinetics. Kinetic parameters showed that the affinity of MTG to beta- and alpha-s1-casein under atmospheric pressure is higher than the affinity of MTG to these caseins under high pressure. This loss of affinity can be explained by a constant number of reactive glutamine residues of casein, although the protein is unfolding at high pressure, a decrease of enzyme activity of MTG to 74% after treatment at 400 MPa at 40°C for 15 min and self association of casein under thermal and high pressure treatment. Fur technological application, the formation of acid milk gels was studied under the influence of MTG within its range of pH stability. Simultaneous addition of MTG and different concentrations of glucono-delta-lactone (Gdl) to casein solutions (5% w/v) at 40°C was analysed. Gels firmness was accessed by oscillation rheometry and gel permeation chromatography. Oscillation rheometry data showed that the time of gelation decreased with an increasing Gdl concentration added to the system, however higher concentrations of Gdl caused the formation of weaker gels. Addition of 1 g Gdl/g protein without MTG caused gelation within 5 min and a storage module value G´ of 48.9 Pa. With the simultaneous addition of 1 g Gdl/g protein and 6 U MTG/ g protein the gelation time was 4 min and the reached storage modulus was 63.7 Pa. However, the addition of 0.21 g Gdl/g protein and 6 U/g protein MTG increase the gelation time to about 69 min, but, a higher module value G´ of 111.0 Pa was achieved. Addition of high Gdl concentration caused a rapid drop of pH below 5 leading to a fast enzyme inactivation. However addition of very low Gdl concentrations was also not optimal. The simultaneous influence of MTG and Gdl concentration on the gelation time and elastic properties was evaluated by a central composite rotatable design (CCRD). The resulting quadratic storage modulus model showed that, MTG concentration had a significant influence on storage modulus G´ and, that the firmness of the gels increase in direct proportion with MTG activity with the existence of a optimum Gdl concentration, whereas the resulting linear model of the gelation time stated that Gdl concentration has a significant influence on the gelation time, while it is independent of the MTG activity. A maximal firmness of 136 ± 2 Pa was reached between a range of 0.24 - 0.27 g Gdl/g protein and 5.8 U MTG/g within a time from 49 to 59 min. Gel permeation chromatography analysis demonstrated that acid gels induced by Gdl were formed by reversible cross-linking like electrostatic interactions and hydrogen bonds as well as disulfide bonds caused by temperature treatment. Whereas, the addition of MTG proved the formation of non-reversible cross-linking like oligomers based on Ne-(g-glutamyl)- lysine, which gave more firmness and stabilization on the casein gel network.
|
Page generated in 0.0399 seconds