• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 69
  • 24
  • 9
  • 8
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 159
  • 159
  • 33
  • 32
  • 24
  • 21
  • 16
  • 16
  • 15
  • 14
  • 13
  • 13
  • 13
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

The effect of PEO homopolymers on the behaviours and structural evolution of Pluronic F127 Smart Hydrogels for Controlled Drug Delivery Systems

Shriky, Banah, Mahmoudi, N., Kelly, Adrian L., Isreb, Mohammad, Gough, Tim 06 April 2022 (has links)
Yes / Understanding the structure-property relationships of drug delivery system (DDS) components is critical for their development and the prediction of bodily performance. This study investigates the effects of introducing polyethylene oxide (PEO) homopolymers, over a wide range of molecular weights, into Pluronic injectable smart hydrogel formulations. These smart DDSs promise to enhance patient compliance, reduce adverse effects and dosing frequency. Pharmaceutically, Pluronic systems are attractive due to their unique sol-gel phase transition in the body, biocompatibility, safety and ease of injectability as solutions before transforming into gel matrices at body temperature. This paper presents a systematic and comprehensive evaluation of gelation and the interplay of microscopic and macroscopic properties under both equilibrium and non-equilibrium conditions in controlled environments, as measured by rheology in conjunction with time-resolved Small Angle Neutron Scattering (SANS). The non-equilibrium conditions investigated in this work offer a better understanding of the two polymeric systems’ complex interactions affecting the matrix thermo-rheological behaviour and structure and therefore the future release of an active pharmaceutical ingredient from the injectable DDS.
132

Biodegradierbare Nanopartikel als Transportsysteme für Wirkstoffe in der Photodynamischen Therapie / in vitro Untersuchungen

Preuss, Annegret 12 January 2012 (has links)
In der vorliegenden Arbeit wurden zwei neuartige biodegradierbare Nanopartikel (NP)-Typen definierter Größe auf ihre Eignung als Wirkstofftransporter für die Verwendung in der Photodynamischen Therapie (PDT) untersucht. Die Verwendung biodegradierbarer NP als Wirkstofftransporter in der PDT ist ein vielversprechender neuer Ansatz, der im Rahmen dieser Arbeit erstmalig untersucht wurde. Die in dieser Arbeit untersuchten NP bestehen aus humanem Serumalbumin (HSA), beziehungsweise Polylactid-co-Glycolid (PLGA) und wurden mit den Photosensibilisatoren (PS) Phäophorbid a (Pheo), Meta-Tetra (Hydroxy-Phenyl)- Porphyrin (mTHPP) oder Meta-Tetra (Hydroxy-Phenyl)-Chlorin (mTHPC) beladen. Es wurden die endozytotische Aufnahme, der lysosomale Abbau der NP und die intrazelluläre Freisetzung der PS in Abhängigkeit von der Inkubationszeit in vitro an humanen Krebszellen untersucht. Um die Effizienz der Photosensibilisierung durch die mit PS beladenen NP zu bestimmen, wurden die Phototoxizität und die intrazelluläre Singulettsauerstoffgenerierung bestimmt. Es konnte gezeigt werden, dass sowohl HSA- als auch PLGA-NP das Potential besitzen als Wirkstofftransporter in der PDT Verwendung zu finden. Insbesondere mTHPC-beladene NP wirken durch starke intrazelluläre Singulettsauerstoffgenerierung sehr phototoxisch. Die Experimente zeigen, dass die intrazelluläre PS-Konzentration geringeren Einfluss auf die Effizienz der Photosensibilisierung hat als die Freisetzung der PS und deren intrazelluläre Lokalisation. Die Biodegradierbarkeit von HSA und PLGA ermöglicht einen schnellen Abbau. Dadurch kann bereits bei sehr geringen intrazellulären PS-Konzentrationen hohe Phototoxizität erreicht werden. Der Fokus bei der Optimierung sollte einerseits in einer stabilen Verbindung zwischen PS und NP liegen, andererseits in einer effizienten Freisetzung nach der zellulären Aufnahme. Deshalb sind biodegradierbare Polymere sehr vielversprechende Materialien für die Entwicklung von PS-NP-Transportsystemen. / In the present study, two novel biodegradable nanoparticle (NP) types with a defined size were examined for their suitability as drug delivery systems for use in photodynamic therapy (PDT). NP drug transporters already found a successful application in chemotherapy but the use of biodegradable NP in PDT is a new promising challenge. The investigated NP consist of human serum albumin (HSA) and poly(lactic-co-glycolic acid) (PLGA) and were loaded with the photosensitizers (PS) pheophorbide a (Pheo), meta-tetra(hydroxy-phenyl)-porphyrin (mTHPP) or meta- tetra(hydroxy-phenyl)-chlorin(mTHPC). The endocytotic intracellular uptake and the time dependent drug release caused by decomposition of the biodegradable PS loaded nanoparticles were studied in vitro on Jurkat cells in suspension. The phototoxicity as well as the intracellular singlet oxygen generation was investigated for different incubation times. It was shown that both, HSA and PLGA NPs are promising carriers for PDT agents regarding uptake and phototoxicity. Especially the mTHPC loaded NPs show a very efficient phototoxicity caused by a very high singlet oxygen generation after the release of the PSs. The experiments show that the overall intracellular PS concentration is of less importance for the efficiency of the photosensitization compared to the amount of intracellular drug release and the intracellular localisation of the PS molecules. The biodegradability of the HSA and PLGA nanoparticles enables a fast intracellular drug release that causes high phototoxicity even for very low intracellular PS concentrations. Thus, the strategy for efficient PS loaded NP carriers is not a maximum loading. The main challenge is to create carriers with highly stable PS NP bonding to prevent any drug release before intracellular uptake combined with the ability of a complete drug release inside the target cells. Thus, biodegradable polymers are very promising materials for the design of NP-PS delivery systems
133

Porous Materials as Drug Delivery Systems

Ge, Xueying 12 1900 (has links)
The porous materials discussed in this dissertation are metal-organic frameworks (MOFs) and porous liquids. Due to their high surface areas, tunable structures, and controllable porosities, MOFs have been explored for a wide variety of drug delivery applications. In chapter 2, MOFs have been used as magnetothermal-triggered release carriers through spatially distributed iron oxide nanoparticles within MOF matrix as a magnetic heating mediator and surface-grafted thermal-responsive nanocap as an alternating magnetic field (AMF)-responsive gatekeepers, achieving monitoring of drug release via external AMF by a conformational change of nanocap. In chapter 3, MOF, as a non-toxic loading carrier, encapsulate naringin, a natural product to serve as a multifunctional bio-platform capable of treating Gram-positive bacteria and certain cancers by slowly and progressively releasing the encapsulated naringin as well as improving and modulating immune system functions through the synergies between naringin and MOF. In chapter 4, porous liquid with unique solvent-free fluidity properties as a drug delivery platform for the first time. The interaction between hollow silica nanoparticle and polymerized ionic liquid, followed by ionic grafting brush of poly (ethylene glycol) telomer, makes this designed porous liquid responsible for high drug-loading and pH-responsive drug-releasing abilities along with slow degradation behavior. In addition to their high loading and controlled release, In vitro cell viability and cell uptake are also studied, thus opening up new opportunities for long-term chemotherapy.
134

Μελέτη υλικών βιολογικού ενδιαφέροντος μέσω προηγμένων φασματοσκοπικών τεχνικών / Study of bio-materials through advanced spectroscopic technics

Αγγελοπούλου, Αθηνά 30 April 2014 (has links)
Σήμερα η μελέτη των βιοϋλικών προσανατολίζεται σε δύο κατευθύνσεις, την ανάπτυξη συστημάτων μεταφοράς φαρμάκων και συστημάτων κατάλληλων να διεγείρουν κυτταρικές λειτουργίες. Η έρευνά μας έχει σχέση με την συγκριτική μελέτη συστημάτων μεταφοράς φαρμάκων κατάλληλων για εφαρμογή σε οστικούς καρκίνους. Τέτοιου είδους συστήματα θα πρέπει, αρχικά να είναι ικανά να μεταφέρουν τα φαρμακευτικά μόρια και στη συνέχεια να μπορούν να επάγουν οστεογένεση. Η δεύτερη λειτουργικότητα είναι ιδιαιτέρως σημαντική καθώς έχει σαν αποτέλεσμα την πλήρωση του οστικού ελλείμματος που προκαλείται από την δράση των καρκινικών κυττάρων. Για τον σκοπό αυτό, διερευνήθηκε η ικανότητα του υαλώδους δικτύου να μεταφέρει φαρμακευτικά μόρια μέσω παραδοσιακών συστημάτων μεταφοράς. Συνεπώς, ακολούθησε η ex vitro μελέτη pH-ευαίσθητων τροποποιημένων πυριτικών ξηρών πηκτών στα οποία είχε συνδεθεί το αντικαρκινικό φάρμακο δοξορουπμυσίνη. Συγκεκριμένα, πυριτικά ξηρά πηκτώματα συντέθηκαν με την μέθοδο sol-gel και τροποποιήθηκαν περαιτέρω με χημεία καρβοδιϊμιδίου. Η τροποποίηση είχε σαν αποτέλεσμα την επιφανειακή σύνδεση υδροπηκτών δεξτράνης που παρουσιάζουν ευαισθησία στο pH. Στη συνέχεια, ακολούθησε η σύνθεση των ανόργανων βιοενεργών νανοσφαιρών. Για την σύνθεση των υαλωδών νανοσφαιρών με εσωτερική κοιλότητα ακολουθήθηκε η διαδικασία επικάλυψης sol-gel, κατά την οποία έγινε η ηλεκτροστατική επικάλυψη νανοσωματιδίων πολυστυρενίου με αποτέλεσμα την σύνθεση ανόργανων πυριτικών και φωσφοπυριτικών νανοσφαιρών. Επιπλέον, μελετήθηκε η εφαρμογή του συμπολυμερούς του πολυμεθακρυλικού μεθυλεστέρα – υδρομεθακρυλικού προπυλεστέρα ως υποστρώματος καθώς το PMMA αποτελεί βασικό συστατικό των οστικών τσιμέντων και παρουσιάζει βελτιωμένες μηχανικές ιδιότητες. Προκειμένου να ολοκληρωθεί η συγκριτική μελέτη μας, ακολούθησε η ex vitro ανάλυση των παραπάνω υβριδικών φωσφοπυριτικών νανοσφαιρών καθώς επίσης των πυριτικών νανοσφαιρών PS και PMMA-co-HPMA. Η επώαση σε διάλυμα SBF οδήγησε στον σχηματισμό ανθρακικού πυριτικού υδροξυαπατίτη με το μέγεθος των κρυσταλλιτών να μην υπερβαίνει τα 45 nm και έντονη παρουσία συσσωματωμάτων. Βέλτιστες ιδιότητες βιοενεργότητας παρουσιάζουν οι τροποποιημένες με αμίνες υβριδικές νανοσφαίρες PMMA-co-HPMA, οι οποίες έχουν επίσης την δυνατότητα να χρησιμοποιηθούν ως μεταφορείς φαρμακευτικών μορίων σε όξινο καθώς επίσης και σε φυσιολογικό pH με παρατεταμένη δυνατότητα αποδέσμευσης. / Recently the study of biomaterials has moved in two directions, the evolution of drug delivery systems and of systems that can stimulate specific cellular responses. Our investigation aims to the study of drug delivery systems for bone cancer therapy. These systems must fulfill two important functionalities. At first, they should be able to deliver drug molecules to bone cancer environment through loading or surface conjugation and subsequently to cause osteogenesis. Their second functionality is especially important since it leads to substitution of bone defects caused from the action of cancer cells. For this purpose, the ability of the glassy network to deliver drug molecules was studied. For this purpose, expanded ex vitro research was followed in DOX conjugated pH-sensitive functionalized silica xerogels. Specifically, silica xerogels were synthesized through a sol-gel process and further functionalized with carbodiimide chemistry. The functionalization process resulted in pH-sensitive dextran hydrogels. The study of the enhanced properties of glassy substrates was followed by the synthesis of amorphous bioactive nanospheres. Moreover, the change of the organic core and the use of PMMA-co-HPMA were advantageous due to the enhanced mechanical properties of PMMA-co-HPMA and its use in bone cements. In order to accomplish our comparative investigation, we followed the ex vitro study of the above hybrid binary silicate, ternary and quaternary phosphosilicate nanospheres as well as the silicate PS and PMMA-co-HPMA nanospheres. The incubation in SBF solution resulted in the formation of a silica-substituted carbonate hydroxyapatite (Si-HCA) a with crystallite size of around 45 nm and extended surface aggregates. The amino-modified PMMA-co-HPMA hybrid nanospheres present enhanced biocompatible properties, with prolonged release ability as drug delivery systems, in acidic as well as physiological pH.
135

Development and evaluation of a solid oral dosage form for an artesunate and mefloquine drug combination / Abel Hermanus van der Watt

Van der Watt, Abel Hermanus January 2014 (has links)
Malaria affects about forty percent of the world’s population. Annually more than 1.5 million fatalities due to malaria occur and parasite resistance to existing antimalarial drugs such as mefloquine has already reached disturbingly high levels in South-East Asia and on the African continent. Consequently, there is a dire need for new drugs or formulations in the prophylaxis and treatment of malaria. Artesunate, an artemisinin derivative, represents a new category of antimalarials that is effective against drug-resistant Plasmodium falciparum strains and is of significance in the current antimalarial campaign. As formulating an ACT double fixed-dose combination is technically difficult, it is essential that fixed-dose combinations are shown to have satisfactory ingredient compatibility, stability, and dissolution rates similar to the separate oral dosage forms. Since the general deployment of a combination of artesunate and mefloquine in 1994, the cure rate increased again to almost 100% from 1998 onwards, and there has been a sustained decline in the incidence of Plasmodium falciparum malaria in the experimental studies (Nosten et al., 2000:297; WHO, 2010:17). However, the successful formulation of a solid oral dosage form and fixed dosage combination of artesunate and mefloquine remains both a market opportunity and a challenge. Artesunate and mefloquine both exhibited poor flow properties. Furthermore, different elimination half-lives, treatment dosages as well as solubility properties of artesunate and mefloquine required different formulation approaches. To substantiate the FDA’s pharmaceutical quality by design concept, the double fixed-dose combination of artesunate and mefloquine required strict preliminary formulation considerations regarding compatibility between excipients and between the APIs. Materials and process methods were only considered if theoretically and experimentally proved safe. Infrared absorption spectroscopy (IR) and X-ray powder diffraction (XRPD) data proved compatibility between ingredients and stability during the complete manufacturing process by a peak by peak correlation. Scanning Electron Micrographs (SEM) provided explanations for the inferior flow properties exhibited by the investigated APIs. Particle size analysis and SEM micrographs confirmed that the larger, rounder and more consistently sized particles of the granulated APIs contributed to improved flow under the specified testing conditions. A compressible mixture containing 615 mg of the APIs in accordance with the WHO recommendation of 25 mg/kg of mefloquine taken in two or three divided dosages, and 4 mg/kg/day for 3 days of artesunate for uncomplicated falciparum malaria was developed. Mini-tablets of artesunate and mefloquine were compressed separately and successfully with the required therapeutic dosages and complied with pharmacopoeial standards. Preformulation studies eventually led to a formula for a double fixed-dose combination and with the specific aim of delaying the release of artesunate due to its short half-life. A factorial design revealed the predominant factors contributing to the successful wet granulation of artesunate and mefloquine. A fractional factorial design identified the optimum factors and factor levels. The application of the granulation fluid (20% w/w) proved to be sufficient by a spraying method for both artesunate and mefloquine. A compatible acrylic polymer and coating agent for artesunate, Eudragit® L100 was employed to delay the release of approximately half of the artesunate dose from the double fixed-dose combination tablet until a pH of 6.8. A compressible mixture was identified and formulated to contain 200 mg of artesunate and 415 mg of mefloquine per tablet. The physical properties of the tablets complied with BP standards. An HPLC method from available literature was adapted and validated for analytical procedures. Dissolution studies according to a USP method were conducted to verify and quantify the release of the APIs in the double fixed-dose combination. The initial dissolution rate (DRi) of artesunate and mefloquine in the acidic dissolution medium was rapid as required. The enteric coated fraction of the artesunate exhibited no release in an acidic environment after 2 hours, but rapid release in a medium with a pH of 6.8. The structure of the granulated particles of mefloquine may have contributed to its first order release profile in the dissolution mediums. A linear correlation was present between the rate of mefloquine release and the percentage of mefloquine dissolved (R2 = 0.9484). Additionally, a linear relationship was found between the logarithm of the percentage mefloquine remaining against time (R2 = 0.9908). First order drug release is the dominant release profile found in the pharmaceutical industry today and is coherent with the kinetics of release obtained for mefloquine. A concept pre-clinical phase, double fixed-dose combination solid oral dosage form for artesunate and mefloquine was developed. The double fixed-dose combination was designed in accordance with the WHO’s recommendation for an oral dosage regimen of artesunate and mefloquine for the treatment of uncomplicated falciparum malaria. The specifications of the double fixed-dose combination were developed in close accordance with the FDA’s quality by design concept and WHO recommendations. An HPLC analytical procedure was developed to verify the presence of artesunate and mefloquine. The dissolution profiles of artesunate and mefloquine were investigated during the dissolution studies. / PhD (Pharmaceutics), North-West University, Potchefstroom Campus, 2014
136

Heart valve tissue engineering

Tseng, Yuan-Tsan January 2011 (has links)
Since current prosthetic heart valve replacements are costly, cause medical complications, and lack the ability to regenerate, tissue-engineered heart valves are an attractive alternative. These could provide an unlimited supply of immunological-tolerated biological substitutes, which respond to patients' physiological condition and grow with them. Since collagen is a major extra cellular matrix component of the heart valve, it is ideal material for constructing scaffolds. Collagen sources have been shown to influence the manufacturing of collagen scaffolds, and two commercial sources of collagen were obtained from Sigma Aldrich and Devro PLC for comparison. Consistencies between the collagens were shown in the primary and secondary structures of the collagen, while inconsistencies were shown at the tertiary level, when a higher level of natural crosslinking in the Sigma collagen and longer polymer chains in the Devro collagen were observed. These variations were reduced and the consistency increased by introducing crosslinking via dehydrothermal treatment (DHT). Collagen scaffolds produced via freeze-drying (FD) and critical point-drying with cross-linking via DHT or 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide /N-hydroxysuccinimide (EDC/NHS) were investigated. All the scaffolds were compatible with mesenchymal stem cells (MSCs) according to the proliferation of the cells and their ability to produce ECM, without differentiating between osteogenic, chondrogenic or endothelial lineages. The FD EDC/NHS scaffold demonstrated the most suitable physical property of all. This result illustrates that FD EDC/NHS crosslinking is the most suitable scaffold investigated as a start for heart valve tissue engineering. To prepare a scaffold with a controlled local, spatial and temporal delivery of growth factor, a composite scaffold comprising poly (lactic-co-glycolic acid) (PLGA) microspheres was developed. This composite scaffold demonstrated the same compatibility to the MSCs as untreated scaffold. However, the PLGA microspheres showed an increase in the deterioration rate of Young's modulus because of the detachment of the microspheres from the scaffold via cellular degradation.
137

Three-Dimensional Model of the Release and Diffusion of Paclitaxel in the Stent-Polymer-Wall-Lumen System of a Blood Vessel

Lamontagne, Steven 08 1900 (has links)
No description available.
138

BIOERODIBLE CALCIUM SULFATE BONE GRAFTING SUBSTITUTES WITH TAILORED DRUG DELIVERY CAPABILITIES

Orellana, Bryan R 01 January 2014 (has links)
Bone regeneration or augmentation is often required prior to or concomitant with implant placement. With the limitations of many existing technologies, a biologically compatible synthetic bone grafting substitute that is osteogenic, bioerodible, and provides spacing-making functionality while acting as a drug delivery vehicle for bioactive molecules could provide an alternative to ‘gold standard’ techniques. In the first part of this work, calcium sulfate (CS) space-making synthetic bone grafts with uniformly embedded poly(β-amino ester) (PBAE) biodegradable hydrogel particles was developed to allow controlled release of bioactive agents. The embedded gel particles’ influence on the physical and chemical characteristics of CS was tested. Namely, the compressive strength and modulus, dissolution, and morphology, were studied. All CS samples dissolved via zero-order surface erosion consistent to one another. Compression testing concluded that the amount, but not size, of embedded gel particles significantly decreased (up to 75%) the overall mechanical strength of the composite. Release studies were conducted to explore this system’s ability to deliver a broad range of drug types and sizes. Lysozyme (model protein for larger growth factors like bone morphogenic protein [BMP]) was loaded into PBAE particles embedded in CS matrix. The release of simvastatin, a small molecule drug capable of up regulating BMP production, was also examined. The release of both lysozyme and simvastatin was governed by dissolution of CS. The second part of this work proposed a bilayered CS implant. The physical and chemical properties were characterized similarly to the CS composites above. Release kinetics of directly loaded simvastatin in either the shell, core, or both were investigated. A sequential release of simvastatin was witnessed giving foresight of the composite’s tunability. The sequential release of an antibacterial, metronidazole, loaded into poly(lactic-co-glycolic acid) (PLGA) particles embedded into the shell along with directly loaded simvastatin either in the shell, core, or both layers was also observed. Through controlled release of bioactive agents, as well as a tunable layered geometry, CS-based implants have the potential to be optimized in order to help streamline the steps required for the healing and regeneration of compromised bone tissue.
139

Fabrication de nanofibres et nanoparticules de biopolyesters pour la libération contrôlée d'un composé modèle

Lavielle, Nicolas 29 November 2013 (has links) (PDF)
L'électrospinning est un procédé couramment utilisé pour la fabrication de membranes nanofibreuses non-tissées. Ces membranes sont particulièrement intéressantes pour des applications tels que l'ingénierie tissulaire et la libération contrôlée de médicaments car elles sont très poreuses et ont une large surface spécifique. Dans une première partie, nous avons développé une nouvelle stratégie afin de contrôler la morphologie et la dimension des fibres fabriquées par electrospinning. Puis nous avons développé un composite fait de nanofibres de PLA et de microparticules de PEG auto-organisé, créant des motifs en nid d'abeilles qui grandissent avec l'épaisseur de la membrane. Ces membranes auto-organisées ont une structure poreuse dont la dimension des pores va de quelques microns à plusieurs centaines de microns. Enfin, deux modèles ont été développés pour une libération contrôlée d'un composé model : la délivrance retardée par l'élaboration de structure sandwich et la libération directionnnelle par la création d'un gradient de concentration avec différentes cinétiques.
140

Development and evaluation of a solid oral dosage form for an artesunate and mefloquine drug combination / Abel Hermanus van der Watt

Van der Watt, Abel Hermanus January 2014 (has links)
Malaria affects about forty percent of the world’s population. Annually more than 1.5 million fatalities due to malaria occur and parasite resistance to existing antimalarial drugs such as mefloquine has already reached disturbingly high levels in South-East Asia and on the African continent. Consequently, there is a dire need for new drugs or formulations in the prophylaxis and treatment of malaria. Artesunate, an artemisinin derivative, represents a new category of antimalarials that is effective against drug-resistant Plasmodium falciparum strains and is of significance in the current antimalarial campaign. As formulating an ACT double fixed-dose combination is technically difficult, it is essential that fixed-dose combinations are shown to have satisfactory ingredient compatibility, stability, and dissolution rates similar to the separate oral dosage forms. Since the general deployment of a combination of artesunate and mefloquine in 1994, the cure rate increased again to almost 100% from 1998 onwards, and there has been a sustained decline in the incidence of Plasmodium falciparum malaria in the experimental studies (Nosten et al., 2000:297; WHO, 2010:17). However, the successful formulation of a solid oral dosage form and fixed dosage combination of artesunate and mefloquine remains both a market opportunity and a challenge. Artesunate and mefloquine both exhibited poor flow properties. Furthermore, different elimination half-lives, treatment dosages as well as solubility properties of artesunate and mefloquine required different formulation approaches. To substantiate the FDA’s pharmaceutical quality by design concept, the double fixed-dose combination of artesunate and mefloquine required strict preliminary formulation considerations regarding compatibility between excipients and between the APIs. Materials and process methods were only considered if theoretically and experimentally proved safe. Infrared absorption spectroscopy (IR) and X-ray powder diffraction (XRPD) data proved compatibility between ingredients and stability during the complete manufacturing process by a peak by peak correlation. Scanning Electron Micrographs (SEM) provided explanations for the inferior flow properties exhibited by the investigated APIs. Particle size analysis and SEM micrographs confirmed that the larger, rounder and more consistently sized particles of the granulated APIs contributed to improved flow under the specified testing conditions. A compressible mixture containing 615 mg of the APIs in accordance with the WHO recommendation of 25 mg/kg of mefloquine taken in two or three divided dosages, and 4 mg/kg/day for 3 days of artesunate for uncomplicated falciparum malaria was developed. Mini-tablets of artesunate and mefloquine were compressed separately and successfully with the required therapeutic dosages and complied with pharmacopoeial standards. Preformulation studies eventually led to a formula for a double fixed-dose combination and with the specific aim of delaying the release of artesunate due to its short half-life. A factorial design revealed the predominant factors contributing to the successful wet granulation of artesunate and mefloquine. A fractional factorial design identified the optimum factors and factor levels. The application of the granulation fluid (20% w/w) proved to be sufficient by a spraying method for both artesunate and mefloquine. A compatible acrylic polymer and coating agent for artesunate, Eudragit® L100 was employed to delay the release of approximately half of the artesunate dose from the double fixed-dose combination tablet until a pH of 6.8. A compressible mixture was identified and formulated to contain 200 mg of artesunate and 415 mg of mefloquine per tablet. The physical properties of the tablets complied with BP standards. An HPLC method from available literature was adapted and validated for analytical procedures. Dissolution studies according to a USP method were conducted to verify and quantify the release of the APIs in the double fixed-dose combination. The initial dissolution rate (DRi) of artesunate and mefloquine in the acidic dissolution medium was rapid as required. The enteric coated fraction of the artesunate exhibited no release in an acidic environment after 2 hours, but rapid release in a medium with a pH of 6.8. The structure of the granulated particles of mefloquine may have contributed to its first order release profile in the dissolution mediums. A linear correlation was present between the rate of mefloquine release and the percentage of mefloquine dissolved (R2 = 0.9484). Additionally, a linear relationship was found between the logarithm of the percentage mefloquine remaining against time (R2 = 0.9908). First order drug release is the dominant release profile found in the pharmaceutical industry today and is coherent with the kinetics of release obtained for mefloquine. A concept pre-clinical phase, double fixed-dose combination solid oral dosage form for artesunate and mefloquine was developed. The double fixed-dose combination was designed in accordance with the WHO’s recommendation for an oral dosage regimen of artesunate and mefloquine for the treatment of uncomplicated falciparum malaria. The specifications of the double fixed-dose combination were developed in close accordance with the FDA’s quality by design concept and WHO recommendations. An HPLC analytical procedure was developed to verify the presence of artesunate and mefloquine. The dissolution profiles of artesunate and mefloquine were investigated during the dissolution studies. / PhD (Pharmaceutics), North-West University, Potchefstroom Campus, 2014

Page generated in 0.0463 seconds