• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 54
  • 54
  • 24
  • 19
  • 17
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Développement et évaluation de poudres sèches pour inhalation à base d'itraconazole dans le cadre du traitement et de la prévention de l'aspergillose pulmonaire

Duret, Christophe 19 April 2013 (has links)
Compte tenu de ses aspects multiples, de sa dangerosité potentielle et du taux de<p>survie considérablement bas qui lui est associé dans ses formes les plus graves, l’aspergillose<p>pulmonaire est encore à l’heure actuelle dévastatrice sur le plan clinique. L’approche<p>médicamenteuse conventionnelle consiste en l’administration par voie orale ou<p>intraveineuse (IV) d’agents antifongiques. Ces voies classiques requièrent l’administration de<p>doses très élevées qui sont nécessaires à l’obtention de concentrations systémiques<p>suffisantes pour obtenir un effet thérapeutique au niveau pulmonaire. Cependant, ces<p>concentrations systémiques sont également la cause d’effets secondaires indésirables et<p>d’interactions médicamenteuses importantes. Une alternative thérapeutique à ces voies<p>classiques serait de localiser ces antifongiques dans le poumon, en utilisant la voie inhalée.<p>Cela permettrait d’augmenter le taux de succès thérapeutique en déposant et en<p>concentrant directement la dose au niveau du site d’infection tout en minimisant les<p>concentrations systémiques.<p>Pour ce faire, nous avons choisi de développer des poudres sèches pour inhalation à<p>base d’itraconazole (ITZ), un antifongique actif à l’égard des souches d’aspergillus. Celles-ci<p>sont administrable via un inhalateur à poudre sèche pour les avantages que présente ce<p>mode d’administration comparativement aux nébuliseurs et aux inhalateurs pressurisés. Le<p>développement des formulations implique entre autres l’obtention de caractéristiques<p>aérodynamiques appropriées, c’est-à-dire, ayant, après décharge à partir d’un dispositif<p>d’inhalation, un profil de déposition pulmonaire permettant d’atteindre des doses<p>pulmonaires pharmacologiquement efficaces. Toutefois, l’ITZ présente une solubilité<p>aqueuse extrêmement faible (solubilité aqueuse à pH 7 ~ 4 ng/ml à 25°C). Or, une fois<p>déposée dans le poumon, la dose inhalée doit se solubiliser pour exercer son action<p>pharmacologique. Nous avons donc inclus dans les concepts de formulation, une stratégie<p>permettant l’amélioration du profil de dissolution et l’augmentation de la solubilité de l’ITZ.<p>Cela permettrait en effet d’en potentialiser au maximum l’action pharmacologique au sein<p>des lésions fongiques avant qu'il ne soit éliminé sous sa forme non dissoute par les<p>mécanismes de clairance non absorptifs du poumon. De plus, le poumon étant un organe ne<p>tolérant qu’un nombre limité de substances administrables par inhalation, nous nous<p>sommes focalisés sur l’utilisation d’excipients présentant un faible potentiel toxique ou bien<p>tolérés après inhalation. Enfin, nous avons gardé à l’esprit lors du développement des procédés de fabrication qu’ils pouvaient être sujets à la mise à l’échelle industrielle. Nous<p>avons donc privilégié des procédés de fabrication simples incluant des technologies<p>transposables telles que l’atomisation par la chaleur et l’homogénéisation à haute pression.<p>Une attention particulière lors de la caractérisation des poudres a été portée sur les<p>propriétés d’écoulement des formulations, toujours dans l’optique de faciliter une<p>potentielle future manutention à plus grande échelle.<p>Pour répondre à ces critères, durant la première partie de ce travail, nous avons<p>imaginé deux concepts de formulation qui ont pour but de former des microparticules de<p>mannitol dans lesquelles est dispersé l’ITZ sous forme « modifiée ».<p>Le premier concept de formulation qui a été développé consistait à former une<p>dispersion solide (DS) entre l’ITZ, si possible amorphe pour en augmenter la solubilité, et un<p>agent matriciel en utilisant le procédé d’atomisation par la chaleur d’une solution contenant<p>tous les ingrédients sous forme dissoute. Lors de tests préliminaires, nous avons évalué trois<p>types d’agents matriciels, deux agents hydrophiles (le mannitol et le lactose) et un agent<p>hydrophobe (le cholestérol). Sur base de la faisabilité, des résultats préliminaires de<p>solubilité, de dissolution et de déposition pulmonaire in vitro, le mannitol a été retenu.<p>Après une optimisation des conditions d’atomisation, les formulations ont été produites en<p>vue d’être caractérisées. Il a été observé, par diffraction de rayons X sur poudre (PXRD) et<p>par calorimétrie différentielle à balayage (DSC), qu’après atomisation, l’ITZ était obtenu sous<p>forme amorphe et le mannitol sous forme cristalline. Les tests d’évaluation des propriétés<p>aérodynamiques ont été réalisés à l’aide d’un impacteur liquide multi-étages (MsLI) en<p>suivant les recommandations pratiques de la Pharmacopée européenne. Ce type de<p>compositions, atomisées dans les conditions optimales, permettait d’obtenir des poudres<p>sèches présentant les caractéristiques de taille (diamètre médian < 5 μm, mesuré par<p>diffraction laser) et les propriétés aérodynamiques appropriées à l’administration<p>pulmonaire (fraction de particules fines (FPF) déterminées lors des tests d’impaction<p>comprises entre 40 % et 70 %). La formation d’une DS avec le mannitol était nécessaire afin<p>d’augmenter la solubilité et d’accélérer la cinétique de dissolution de l’ITZ comparativement<p>à son homologue micronisé sous forme cristalline ou encore à sa forme amorphe atomisée<p>sans mannitol. Par exemple, dans sa configuration amorphe atomisée sans excipient ou sous<p>sa forme cristalline initiale, l’ITZ présentait une solubilité à saturation (mesurée dans un tampon phosphate contenant 0,02% de dipalmytoyl phosphatidyl choline) inférieure à 10<p>ng/ml. Après formation d’une DS avec le mannitol suivant notre procédé de formulation,<p>nous sommes parvenus à des valeurs de solubilité atteignant 450 ng/ml. Il s’est avéré que<p>l’ajout à la composition d’un surfactant, le tocopherol polyethylène glycol 1000 succinate<p>(TPGS), permettait d’accélérer la cinétique de dissolution du principe actif. Toutefois,<p>l’utilisation du TPGS induisait une diminution des performances aérodynamiques des<p>formulations. Etant donné que cette augmentation de la cinétique de dissolution pouvait<p>être un avantage après administration pulmonaire, nous avons considéré un autre type de<p>surfactant, les phospholipides (PL). L’utilisation de la lécithine de soja hydrogéné s’est<p>révélée être très efficace. Les performances aérodynamiques des formulations ont été<p>préservées et même améliorées. Leur incorporation à la DS permettait également d’obtenir<p>une accélération du profil de dissolution de l’ITZ. De plus, l’augmentation de la quantité de<p>PL dans nos formulations, dans la gamme des concentrations utilisées, était corrélée avec<p>une amélioration d’autant plus marquée du profil de dissolution de l’ITZ. En outre, les<p>solubilités de l’ITZ en présence de PL furent considérablement améliorées avec, par<p>exemple, des concentrations mesurées de 870 ng/ml et 1342 ng/ml pour les formulations<p>contenant respectivement 10 % (m/mpoudre) et 35 % (m/mpoudre) d’ITZ, ainsi que 10 % de PL<p>exprimés par rapport à la quantité d’ITZ.<p>Le deuxième concept de formulation développé consistait à produire des<p>microparticules de mannitol dans lesquelles étaient dispersées des nanoparticules (NP)<p>cristallines d’ITZ. Le procédé de fabrication était le suivant. Une suspension de nanocristaux<p>d’ITZ produite par homogénéisation à haute pression (HPH) était re-suspendue dans une<p>solution de mannitol qui était par la suite atomisée pour obtenir les microparticules de<p>poudres sèches. Après optimisation des conditions d’homogénéisation, nous sommes<p>parvenus à produire des nanosuspensions d’ITZ dont les particules présentaient un diamètre<p>médian inférieur à 250 nm. Nous avons alors évalué l’influence qu’avait l’ajout du mannitol<p>et du taurocholate sodique sur l’état d’agrégation des NP avant l’étape d’atomisation et sur<p>les performances des formulations sous forme sèche. Il a été observé que l’ajout de<p>mannitol était nécessaire à la production de solutions sursaturées en ITZ avec une solubilité<p>maximale d’ITZ mesurées à 96 ng/ml dans le tampon phosphate précédemment cité. L’ajout<p>de mannitol s’est avéré nécessaire afin de minimiser le phénomène d’agrégation des NP durant l’étape d’atomisation. De plus, l’ajout de taurocholate de sodium permettait<p>également d’inhiber leur agrégation. La cristallinité des NP d’ITZ a été confirmée par PXRD et<p>DSC. Ce type de formulation présentait des tailles et des performances aérodynamiques<p>compatibles à l’administration pulmonaire (tailles des particules < 5 μm et FPF entre 35 % et<p>46 %). Néanmoins, comparativement aux DS précédemment décrites, ces formulations à<p>base de NP s’avèrent sensiblement moins performantes. En effet, au niveau des<p>caractéristiques aérodynamiques, les formulations à base de NP présentent des FPF<p>nettement inférieures à celles obtenues pour les DS (FPF de ~40 % pour les formulations<p>nanoparticulaires contre ~70 % pour les DS d’ITZ amorphe). De plus, à partir des<p>formulations à bases de NP, les taux de sursaturation en ITZ atteints étaient nettement<p>inférieurs à ceux obtenus avec les DS (~100 ng/ml Vs > 1000 ng/ml pour les meilleurs DS). En<p>outre, la production des nanosuspensions nécessitait l’étape supplémentaire d’un minimum<p>de 300 cycles d’homogénéisation, ce qui représente un désavantage considérable en termes<p>de rendement économique en cas de transposition à échelle industrielle comparativement à<p>l’étape unique nécessaire pour la fabrication des DS. Pour ces raisons, seules les DS ont été<p>évaluées in vivo.<p>Après la mise au point des formulations, la seconde partie de ce projet consistait à<p>évaluer les DS développés dans un système biologique complet, la souris. Nous avons en<p>premier lieu réalisé une pharmacocinétique (PK) après administration pulmonaire pour<p>déterminer l’effet de l’augmentation de la solubilité observée in vitro et de l’ajout de PL dans<p>la formulation. Ensuite, nous avons entrepris une étude d’activité sur un modèle murin<p>d’aspergillose pulmonaire invasive (API) permettant de comparer l’efficacité thérapeutique<p>ou prophylactique de nos formulations comparativement à une thérapie standard par voie<p>orale. Pour effectuer ces deux études, nous avons préalablement validé une méthode<p>d’administration des poudres sèches chez la souris à l’aide d’un insufflateur (DP-4M®, Penn<p>Century, Wyndmoor, USA) en utilisant la voie endotrachéale. Le premier point de cette<p>investigation avait pour objet de déterminer si l’intervalle de taille particulaire généré lors de<p>la décharge de nos formulations au sortir de l’insufflateur permettait une répartition<p>homogène dans les poumons ainsi qu’une pénétration profonde des particules jusqu’aux<p>alvéoles pulmonaires. Le deuxième point sur lequel nous nous sommes également attardés était la reproductibilité des doses pulmonaires générées après insufflation, facteur<p>déterminant lors de la réalisation d’une étude PK.<p>Sur base des observations constatées durant la validation du dispositif<p>d’administration, nous avons entrepris une étude PK après administration pulmonaire d’une<p>dose de 0,5 mg/kg d’ITZ, représentant une quantité inhalable par l’homme et pouvant<p>garantir des taux pulmonaires en antifongiques théoriquement adéquats. Cette étude a<p>permis de comparer les concentrations pulmonaires et plasmatiques en ITZ après<p>l’administration de poudres sèches à base d’une DS de mannitol et d’ITZ qui était soit<p>cristallin soit amorphe, avec ou sans PL. Après administration de la DS à base d’ITZ sous sa<p>forme amorphe, une augmentation de la quantité d’ITZ absorbée vers le compartiment<p>systémique a été observée. En effet, il a été observé une augmentation d’un facteur 2,7 de<p>l’aire sous la courbe des concentrations plasmatiques en ITZ de 0 à 24 heures (AUC0-24h)<p>comparativement à celle obtenue après administration de la DS à base d’ITZ sous sa forme<p>cristalline. Le temps pour atteindre la concentration plasmatique maximale (tmax) était<p>également plus court pour la formulation à base ITZ sous sa forme amorphe (tmax de 10 min<p>vs 30 min pour la formulation cristalline). De plus, dans cette configuration amorphe, les<p>temps de rétention pulmonaire en ITZ étaient considérablement plus élevés (t1/2<p>d’élimination de 6,5 h pour l'ITZ cristallin vs 14 ,7 h pour l’ITZ amorphe) permettant de<p>maintenir une concentration pulmonaire en ITZ supérieure à la CMI de la souche<p>d’aspergillus la plus fréquente (A. fumigatus ;2 μg/gpoumon) pendant plus de 24h. L’ajout de<p>PL dans un rapport ITZ:PL:mannitol (1:3:97) dans la DS influençait le profil PK de l’ITZ<p>amorphe en accentuant et accélérant d’avantage la phase d’absorption initiale de l’ITZ<p>observée (Cmax et tmax plasmatique supérieur et inférieur à ceux obtenus pour l’ITZ amorphe,<p>respectivement). Toutefois, cette formulation a été éliminée plus rapidement des poumons<p>(t1/2 d’élimination pulmonaire de l’ITZ de 4,1h pour les formulations avec PL vs 14,7h sans<p>PL). Pour cette raison, nous avons décidé d’évaluer l’efficacité des formulations à base d’ITZ<p>sous forme amorphe sans phospholipides dans un modèle murin d’aspergillose pulmonaire<p>invasive (API) que nous avons développé.<p>Nous ne sommes pas parvenus à mettre en évidence un effet thérapeutique de<p>l’administration des poudres sèches administrées dans ce modèle murin neutropénique<p>d’API. Nous justifions ce manque d’activité par une agressivité du modèle trop prononcée et par l’impossibilité de pouvoir administrer de manière plus fréquente le traitement par<p>inhalation en raison de l’anesthésie nécessaire pour la procédure d’administration<p>endotrachéale. Toutefois, des essais complémentaires vont être envisagés (modification de<p>la charge fongique, administration des poudres par une tour d’inhalation, optimisation du<p>dosage et de la fréquence d’administration). En revanche, il a été mis en évidence que<p>l’administration prophylactique (début des administrations 2 jours avant l’infection) d’une<p>dose de 5 mg/kg/48h d’une DS d’ITZ amorphe augmentait significativement le taux de survie<p>de 12 jours après l’infection par A. fumigatus comparativement aux animaux non traités<p>(taux de survivants :50 % vs 0 %). A titre de comparaison, le pourcentage de survie obtenu<p>après prophylaxie quotidienne d’une dose de 12,5 mg/kg/12h de solution orale de VCZ (la<p>thérapie recommandée pour l’API) n’était que de 25 %.<p>En conclusion, les DS d’ITZ destinées à être administrées par inhalation constituent<p>une approche thérapeutique prometteuse dans le cadre de la prévention et du traitement<p>de l’aspergillose pulmonaire. / Doctorat en Sciences biomédicales et pharmaceutiques / info:eu-repo/semantics/nonPublished
52

Performance of two different types of inhalers. Influence of flow and spacer on emitted dose and aerodynamic characterisation.

Almeziny, Mohammed A.N. January 2009 (has links)
This thesis is based around examination of three mainstream inhaled drugs Formoterol, Budesonide and Beclomethasone for treatment of asthma and COPD. The areas investigated are these which have been raised in reports and studies, where there are concern, for drug use and assessment of their use. In reporting this work the literature study sets out a brief summary of the background and anatomy and physiology of the respiratory system and then discuses the mechanism of drug deposition in the lung, as well as the methods of studying deposition and pulmonary delivery devices. This section includes the basis of asthma and COPD and its treatment. In addition, a short section is presented on the role of the pharmacist in improving asthma and COPD patient¿s care. Therefore the thesis is divided into 3 parts based around formoterol, budesonide and beclomethasone. In the first case the research determines the in-vitro performance of formoterol and budesonide in combination therapy. In the initial stage a new rapid, robust and sensitive HPLC method was developed and validated for the simultaneous assay of formoterol and the two epimers of budesonide which are pharmacologically active. In the second section, the purpose was to evaluate the aerodynamic characteristics for a combination of formoterol and the two epimers of budesonide at inhalation flow rates of 28.3 and 60 L/min. The aerodynamic characteristics of the emitted dose were measured by an Anderson cascade impactor (ACI) and the next generation cascade impactor (NGI). In all aerodynamic characterisations, the differences between flow rates 28.3 and 60 were statistically significant in formoterol, budesonide R and budesonide S, while the differences between ACI and NGI at 60 were not statistically significant. Spacers are commonly used especially for paediatric and elderly patients. However, there is considerable discussion about their use and operation. In addition, the introduction of the HFAs propellants has led to many changes in the drug formulation characteristics. The purpose of the last section is to examine t h e performance of different types of spacers with different beclomethasone pMDIs. Also, it was to examine the hypothesis of whether the result of a specific spacer with a given drug/ brand name can be extrapolated to other pMDIs or brand names for the same drug. The results show that there are different effects on aerodynamic characterisation and there are significant differences in the amount of drug available for inhalation when different spacers are used as inhalation aids. Thus, the study shows that the result from experiments with a combination of a spacer and a device cannot be extrapolated to other combination.
53

Effects of Buffer Composition on DNase I Formulation in Disordered Mesoporous Silica Particles

Startaite, Lauryna January 2024 (has links)
Cystic fibrosis, a genetic disorder affecting multiple organs in the body, including the lungs, remains a significant threat to patients due to inadequate treatment options. Treatment includes aerosolized deoxyribonuclease I which bolsters pulmonary function and improves affected patient condition. However, taking the liquid formulations requires prolonged inhalation times and nebulization equipment. Conversely, dry powder inhalers are handheld devices, delivering fine particles deep into the lung on a single inhalation. Dry formulations may be enhanced through the use of mesoporous silica particles which have an optimal size for inhalation, are light in weight and have a large surface area. Loading deoxyribonuclease I into mesoporous silica particles could potentially improve drug delivery to cystic fibrosis patients with reduced administration frequency when taken with dry powder inhalers. The incorporation of buffers into this system is crucial for ensuring efficient drug loading and stability at the biointerface during dry powder preparation. Thus, the objective of this project was to ascertain the most suitable buffer composition for loading deoxyribonuclease I into mesoporous silica particles. Protein size and activity were evaluated in different buffers prior to adsorption. Subsequently, dry formulations were prepared by freeze drying, and studied by thermogravimetric analysis and dynamic vapour sorption. Cumulative release analysis in simulated lung fluid was performed, followed by released protein enzymatic activity evaluation. Findings indicated the necessity of incorporating Ca2+ into buffers to increase protein loading efficiency and stability in dry formulations. Highest level of adsorption, and adequate remaining deoxyribonuclease I activity was observed in formulations prepared with calcium doped mesoporous silica particles in pH 5.0 50 mM sodium acetate buffer with added 5 mM CaCl2.
54

Development and Evaluation of Controlled-Release Cisplatin Dry Powders for Inhalation against Lung Tumours

Levet, Vincent 10 April 2017 (has links) (PDF)
Lung cancer is the deadliest cancer in the world, with a global 5-year survival rate of about 15%. Despite a notable impact of the latest improvements in prevention, screening, detection and staging, the efficacy of conventional treatments is not sufficient and has reached a therapeutic plateau. These conventional treatments involve a combination of surgery, radiotherapy (RT) and chemotherapy (CT). CT is used in almost all stages: in operable and inoperable stages to limit tumour cell invasion and in latest stages as a palliative treatment. Cisplatin is one of the most frequently used and most potent drugs available. It is administered by parenteral route at doses limited by its high and cumulative nephrotoxicity but also by other systemic toxicities (e.g. ototoxicity). Its administration therefore requires many precautions (long hydration procedure, surveillance of the renal function), which mobilize medical personnel. A major limitation of parental CT is the low concentration of drug that successfully reaches the tumour or the metastases. A potential additional modality could be aerosolized CT to localize lung cancer treatment. It has shown a relative local tolerance for cisplatin through preclinical and clinical studies in humans by means of nebulized solutions or liposomal formulations. As a local treatment, aerosolized CT has a clear pharmacokinetic (PK) advantage, as it can increase local exposure while decreasing systemic exposure. However, because CT drugs, such as cisplatin, are active at rather high doses (in the mg range), the duration of administration from nebulizers is very long as it depends on the drug solubility or on drug encapsulation into liposomes. They also pose a high risk of environmental contamination and require HEPA-filtrated hoods during the nebulization procedure. Of all the inhalation devices available to deliver high drug doses, dry powder inhalers (DPIs) were chosen in this work. These were chosen to circumvent the above issues by providing higher deposited doses, in very short timeframes, using a patient-driven device that could help limit environmental exposure to only very low levels of drug. DPI in general also have the advantage of being applicable to both poorly-water-soluble and to water-soluble anticancer drugs. However, because direct deposition of high quantities of anticancer drugs to the lung parenchyma could pose a high risk of local irritation and pulmonary adverse effects, controlled release (CR) of cisplatin from deposited particles in the lung parenchyma was needed. However, in the lungs, foreign undissolved particles are rapidly eliminated by means of naturally occurring clearance mechanisms, in particular macrophage uptake in the alveoli. Therefore, formulation strategies able to limit the particles clearance are needed to assure high lung residence of these CR particles. The formulation strategy of this work was to develop DPI formulation based on solid-lipid microparticles (SLM) able to (i) be deposited into the lung, (ii) control the release of cisplatin and (iii) escape macrophage uptake in order to remain in the lung long enough and at a concentration able to optimize the therapeutic index (i.e. increase the potential therapeutic effect and decrease the potential side effects).The primary objectives of the SLM-based DPI formulations were to (i) exhibit aerodynamic properties compatible with lung cancer patients abilities and cisplatin requirements (e.g. a high deposited fraction, high deagglomeration abilities under low airflow within a low-resistance DPI, deposition in the mg range), (ii) provide a CR matrix for cisplatin in vitro, (iii) be able to be retained into the lung long enough in vivo, (iv) using scalable production techniques and (v) using only potentially well-tolerated excipients.Cisplatin was initially reduced to microcrystals under high-pressure homogenization (HPH) cycles up to 20 000 psi. This procedure permitted uncoated particles with mean diameters below 1.0 μm to be obtained. To assess the cisplatin release abilities of the DPI formulations on the deposited fraction only, a new dissolution test was adapted. This test used a classical paddle apparatus from the pharmacopoeia and a Fast Screening Impactor (FSI). An excipient-free formulation, obtained from the spray dried suspension of cisplatin microcrystals (100% cisplatin) was initially produced. It was compared to a 95:5 cisplatin/tocopheryl polyethylene glycol succinate (TPGS) formulation, which exhibited a higher deposition ability (fine particle fraction (FPF) of 24.2 vs. 51.5% of the nominal dose, respectively). Both exhibited immediate release (IR), with 90% dissolved under 10 minutes.Solid lipid microparticle (SLM)-based formulations were then produced using the cisplatin microcrystalline suspension and various lipid excipients. Those had previously been screened for their ability to be spray dried following their solubilisation in heated isopropanol. The addition of a triglyceride, tristearin (TS), as the main lipid component and if necessary a polyethylene glycol (PEG) excipient-comprising fraction with TPGS or distearoyl phosphoethanolamine polyethylene glycol 2000 (DSPE-mPEG-2000) as a surface modifier, provided spray dried particles with interesting characteristics. These formulations, comprised of at least 50% cisplatin, exhibited high CR abilities in simulated lung fluid at 37°C for more than 24 h (as low as 56% released after 24 h) and a low burst-effect (as low as 24% and 16% after 10 minutes with and without PEGylated excipients, respectively). They also showed high aerodynamic properties, with a high FPF ranging from 37.3 to 50.3% w/w of the nominal dose and a low median mass aerodynamic diameter (MMAD) between 2.0 and 2.4 μm. The process also offered high production yields (> 60%).The best IR DPI formulation (evaluated on the FPF, i.e. cisplatin/TPGS 95:5) and the most promising CR formulations without (i.e. cisplatin/TS 50:50) and with PEGylated excipients (evaluated on CR abilities, i.e. cisplatin/TS/TPGS 50:49.5:0.5) were then administered to CD 1 mice, concurrently to endotracheal nebulization (EN) of a cisplatin solution. This was done using specific endotracheal devices, the Penn-Century Inc. DP-4M© Dry Powder Insufflatorn and for the cisplatin solution, the Microsprayer™ IA-1C©. They were compared to intravenous (IV) injection during a PK study over 48 hours. The administration of DPI formulations required the development of a spray dried diluent (Mannitol:Leucine 10:1) and specific dilution method (3D mixing for 4 hours and double-sieving) to be able to deliver precise and repeatable quantities of powder into the lungs of mice at 1.25 mg/kg dose. A PK study was carried out of the lungs, blood, kidneys, liver, mediastinum and spleen of the mice. The study used a developed and validated electrothermal atomic absorption spectrometry (ETAAS) method. Results showed that endotracheal administration of DPI formulations permitted the exposure of the lungs to cisplatin, expressed as the area under the curve (AUC) to be greatly increased while decreasing the systemic exposure. More precisely, the only formulation that exhibited prolonged lung retention was the one comprising PEGylated excipient (cisplatin/TS/TPGS 50:49.5:0.5), which was observed for ~7 hours. This lung retention was associated with smoother concentration vs. time profiles in blood (higher tmax and lower Cmax), which also confirmed its CR abilities in vivo as dissolved cisplatin is a highly permeable drug. The overall exposure, established by the AUC, helped calculate the target efficiency (Te: the ratio of AUC in the lungs to the sum of AUC in non-target organs) and the target advantage (Ta: ratio of AUC in the lungs by the tested route to the AUC in the lungs by the IV route). For instance, the Ta of the aforementioned formulation (cisplatin/TS/TPGS 50:49.5:0.5) was of 10.9, as compared to 1 for IV, 3.3 for EN, 2.6 for the IR DPI formulation (cisplatin/TPGS 95:5) and 3.7 for the non-PEGylated CR DPI formulation (cisplatin/TS 50:50). In the meantime, the Te for the same formulations were 1.6, 0.09, 1.1, 0.4 and 0.9, respectively, showing again the great efficiency of the inhaled route vs. the IV route in targeting the lungs. More importantly, it showed the added efficiency of the CR DPI formulation with lung retention abilities, provided by the addition of PEGylated excipients. In the last part of the work, maximum tolerated doses (MTD) of formulations were established. These showed that the best candidate, selected based on the PK results (CR DPI with lung retention abilities composed of cisplatin/TS/TPGS 50:49.5:0.5) had better overall tolerance than IR approaches (DPI formulation at cisplatin/TPGS 95:5 and EN of a cisplatin solution). More precisely, it was possible to double the administered dosage for the CR formulation (1.0 mg/kg) vs. the IR DPI and EN (both at 0.5 mg/kg) under a repeated administration scheme (3 times a week for 2 weeks).Moreover, an assessment of the lung tolerance of this best candidate was realized and compared to the IR DPI, EN and the IV route. It was done through analysis of the broncho-alveolar lavage fluid (BALF) 24 hours following a single administration at the pre-determined MTD. IL-1β, IL-6 and TNF-α cytokines were not increased following the administrations. No evidence of tissue damage or cytotoxicity could be observed through quantification of the protein content and of lactate dehydrogenase (LDH) activity. The only observations were a decrease in total cells and an increase in polynuclear neutrophils (PN) cells in the BALF, which was not observed by IV or following the administration of the vehicle of the CR formulation alone (i.e. PEGylated SLM and dry diluent). This increase was not directly linked to the formulation but rather to cisplatin, as it was observed in each cisplatin inhalation experiments, and not with the vehicle of the CR formulation, which was comparable to the non-treated mice.In parallel, we realized a survival study following the administration of the best DPI formulation candidate (cisplatin/TS/TPGS 50:49.5:0.5) vs. the IR DPI candidate (cisplatin/TPGS 95:5), both at their respective MTD under the aforementioned repeated dosing scheme. Cisplatin was administered to mice bearing a grafted orthotopic M109-HiFR lung tumour model, previously developed in the laboratory. The DPI formulations were evaluated against IV administration at each dose (0.5 and 1.0 mg/kg, respectively). This study first confirmed the lower toxicity of the CR approach, as the IR DPI formulation caused a much higher number of deaths during treatment of the grafted mice. The CR formulation administered at 1.0 mg/kg showed a higher survival than the negative control but a tumour response comparable to IV administered at half this dose (0.5 mg/kg). This unexpected outcome with regard to the PK results is explained by the fact that the tumour model is highly metastatic. Mice treated with inhaled formulations died due to distant tumour involvement, while those treated systemically died due to pulmonary tumour involvement. This led us to believe that this kind of treatment may have greater potential in combination, adjuvant to the parenteral route.This work helped establish the proof-of-concept of a cisplatin CR DPI formulation with an up-scalable process. The SLM approach confirmed that encapsulation of drugs exhibiting low solubility, such as cisplatin, was possible using highly hydrophobic excipients and that surface modification was mandatory to provide notable lung retention in vivo. The SLM approach showed good signs of tolerance during the exploratory study but still needs to be confirmed under a chronic scheme using other determinants such as histopathological analyses of the lung tissue. Moreover, comparison of the nephrotoxicity of formulations against that of the IV route should be conducted with appropriate and sensitive methods. Finally, the survival study of the CR DPI formulation showed mitigated results, partly because of the orthotopic model characteristics. This could be proof that inhaled CT has a role to play combined with classical systemic CT. This needs to be assessed in a further study.Le cancer du poumon est le cancer ayant le taux de mortalité le plus élevé au monde, avec un taux de survie global à 5 ans d'environ 15%. Malgré un impact notable des dernières améliorations en matière de prévention, de dépistage, et de classification du cancer du poumon, l'efficacité des traitements classiques n'est toujours pas suffisante et semble avoir atteint un plateau thérapeutique. Ces traitements classiques comprennent de la chirurgie, de la radiothérapie et de la chimiothérapie, le plus souvent en combinaison. La chimiothérapie est utilisée à presque tous les stades: dans les stades opérables et inopérables afin de limiter l'invasion par les cellules tumorales jusqu’aux derniers stades en tant que traitement palliatif. Le cisplatine est l'un des médicaments anticancéreux les plus fréquemment utilisés et les plus puissants actuellement disponibles. Il est administré par voie parentérale à des doses qui sont limitées par sa néphrotoxicité élevée et cumulative mais également par d'autres toxicités systémiques (par exemple, de l'ototoxicité). Son administration nécessite donc de nombreuses précautions (longue procédure d'hydratation, surveillance de la fonction rénale), ce qui mobilise fortement le personnel médical. Une limitation importante de la chimiothérapie parentérale est la faible concentration d’actif qui atteint avec succès la tumeur ou les métastases. Une autre voie d’accès potentielle pourrait être la chimiothérapie inhalée pour traiter le cancer du poumon. Cette approche a montré une relativement bonne tolérance locale pour le cisplatine à travers différentes études précliniques et cliniques chez l'homme au moyen de solutions ou de formulations liposomales nébulisées. En tant que traitement via la voie pulmonaire, la chimiothérapie inhalée présente un avantage pharmacocinétique évident, car elle permet d’augmenter l'exposition locale tout en diminuant l'exposition systémique. Cependant, du fait que les médicaments chimiothérapeutiques, tels que le cisplatine, soient actifs à des doses relativement élevées (dans la gamme du mg), la durée d'administration à partir des nébuliseurs s’avère en pratique très longue car elle dépend principalement de la solubilité de l’actif ou de son encapsulation dans les liposomes. Les nébuliseurs présentent également un risque élevé de contamination de l'environnement et nécessitent de lourds appareillages (hottes filtrantes en particulier) pendant la procédure d’administration.Parmi tous les dispositifs d'inhalation existants, capables de délivrer des doses élevées de médicaments, les inhalateurs de poudre sèche (DPI) semblent être de bons candidats. Ceux-ci ont été choisis dans ce travail afin de contourner les problèmes énumérés ci-dessus, en fournissant des doses pulmonaires plus élevées, dans des délais très courts. De plus, ces dispositifs sont activés par le flux inspiratoire du patient, ce qui pourrait aider à limiter l'exposition environnementale à des niveaux très faibles. Les inhalateurs à poudre sèche présentent également l'avantage d'être utilisables à la fois avec des médicaments solubles et des médicaments peu solubles dans l’eau. Malgré tout, étant donné que la déposition directe de quantités élevées de médicaments chimiothérapeutiques dans le parenchyme pulmonaire pourrait présenter un risque élevé d'irritation et d'effets indésirables locaux, une libération contrôlée du cisplatine à partir de particules déposées dans le parenchyme pulmonaire s’avère nécessaire. Cependant, dans les poumons, ces particules non dissoutes d’origine étrangère sont rapidement éliminées par les mécanismes d’élimination, en particulier par la clairance par les macrophages au niveau des alvéoles. Par conséquent, des stratégies de formulation capables de limiter la clairance des particules sont nécessaires pour assurer une résidence pulmonaire élevée de ces particules à libération contrôlée.La stratégie de formulation de ce travail a donc consisté à développer une formulation pour inhalateur à poudre sèche à base de microparticules lipidiques solides capable de (i) être déposées dans le poumon, (ii) de contrôler la libération du cisplatine et (iii) de rester dans le poumon suffisamment longtemps dans le but d’optimiser l'indice thérapeutique (c'est-à-dire augmenter le potentiel thérapeutique du cisplatine et diminuer ses potentiels effets secondaires).Les objectifs principaux des formulations basées sur les microparticules lipidiques solides étaient (i) de présenter des hautes charges en cisplatine au sein des microparticules lipidiques tout en présentant des propriétés aérodynamiques compatibles avec la capacité pulmonaire des patients atteints de cancer du poumon (par exemple, une fraction déposée élevée et une capacité élevée à la désagglomération sous faible débit d'air dans un inhalateur de faible résistance), (ii) de fournir une matrice capable de libérer le cisplatine de manière contrôlée in vitro, (iii) d’être capable de rester dans le poumon suffisamment longtemps in vivo, tout cela (iv) en utilisant des techniques de production ayant une bonne capacité d’augmentation d’échelle et (v) de n’utiliser que des excipients potentiellement bien tolérés au niveau du poumon.Le cisplatine a été initialement réduit sous forme microcristalline à l’aide de cycles d'homogénéisation à haute pression jusqu'à 20 000 psi. Cette procédure a permis d'obtenir des particules non enrobées ayant un diamètre moyen inférieur à 1.0 μm. Afin d’évaluer les capacités de libération du cisplatine des formulations à partir de la fraction capable théoriquement de se déposer dans les poumons, un nouveau test de dissolution a été adapté à partir d’un appareil à palettes classique de la pharmacopée et d’un impacteur à cascade « Fast Screening Impactor ». Une formulation sans excipient, obtenue à partir de la suspension de cisplatine, soumise à la technique de séchage par l’atomisation (100% de cisplatine) a été produite comme point de départ. Celle-ci a ensuite été comparée à une formulation de cisplatine/tocophéryl polyéthylène glycol succinate (TPGS) (95:5), qui présentait une capacité de déposition pulmonaire in vitro (fraction de particules fines (FPF) de 24.2% pour la première et de 51.5% pour la deuxième, exprimée par rapport à la dose nominale). Toutes deux ont démontré des capacités de libération immédiate, avec 90% du cisplatin dissous en moins de 10 minutes.D’autres formulations, cette fois élaborées sous la forme de microparticules lipidiques solides ont ensuite été produites à partir de la suspension microcristalline de cisplatine et de divers excipients lipidiques. Ces microparticules avaient préalablement été testées pour leur aptitude à être séchées par atomisation après solubilisation des excipients dans de l'isopropanol chaud. L’ajout d’un triglycéride, la tristéarine (TS), comme excipient lipidique principal et également d’une fraction comprenant un excipient contenant du polyéthylène glycol (PEG), à l’aide de TPGS ou de distéaroyl phosphoéthanolamine polyéthylène glycol 2000 (DSPE-mPEG-2000) a montré des résultats intéressants. Ces formulations, ayant une teneur en cisplatine d’au moins 50%, ont présenté des aptitudes élevées pour la libération contrôlée dans le fluide pulmonaire simulé in vitro à 37 °C, et ce, pendant plus de 24 h (jusqu'à 56% libérées après 24 h) ainsi qu’un faible « burst-effect » (de seulement 24% et 16% après 10 minutes avec et sans excipients PEGylés, respectivement). Elles ont également montré des propriétés aérodynamiques élevées, avec une FPF élevée allant de 37.3 à 50.3% m/m par rapport à la dose nominale et un diamètre aérodynamique compris entre 2.0 et 2.4 μm. Le meilleur candidat à libération immédiate (évaluée sur base de la FPF, soit la formulation cisplatine/TPGS 95:5 m/m) et les formulations à libération contrôlée les plus prometteuses n’incluant pas d’excipients PEGylés (cisplatine/TS 50:50 m/m) et incluant des excipients PEGylés (évalués sur les capacités de libération contrôlée, c'est-à-dire la formulation cisplatin/TS/TPGS 50:49.5:0.5 m/m/m) ont ensuite été administrées à des souris CD-1, en comparaison d’une nébulisation endotrachéale d'une solution de cisplatine. Ceci a été fait à l’aide de dispositifs endotrachéaux dédiés aux poudres pour le DP-4M© « Dry Powder Insufflator » et aux solutions pour le Microsprayer™ IA-1C© de Penn-Century. Ces formulations ont été comparées à l'injection intraveineuse (IV) au cours d’une étude pharmacocinétique étendue sur 48 heures.L'administration de formulations de poudres sèches pour inhalation a nécessité le développement préalable d'un diluant par atomisation (Mannitol:Leucine 10:1 m/m) ainsi que d’une méthode de dilution des poudres (mélange tridimensionnel pendant 4 heures et suivi d’un double-tamisage) afin de pouvoir délivrer des quantités précises et répétables de poudre dans les poumons de souris à la dose d’1.25 mg/kg. Le suivi des paramètres pharmacocinétiques a ainsi pu être réalisé au niveau des poumons, du sang, des reins, du foie, du médiastin et de la rate des souris. Ceci a été fait à l’aide d’une méthode de spectrométrie d'absorption atomique électrothermique, qui a été préalablement développée et validée. Les résultats obtenus ont montré que l'administration endotrachéale de formulations de poudres sèches permettait d’augmenter fortement l'exposition des poumons par le cisplatine, exprimée en aire sous la courbe (AUC) tout en diminuant l'exposition systémique. Plus précisément, la seule formulation présentant une rétention pulmonaire prolongée était celle qui comprenait un excipient PEGylé (cisplatine/TS/TPGS 50:49.5:0.5 m/m/m), ce qui a été observé pendant environ 7 heures. Cette rétention pulmonaire a été associée à des profils de concentration en fonction du temps plus réguliers dans le sang (tmax supérieur et Cmax inférieur), ce qui a également confirmé ses capacités de libération contrôlée in vivo car la perméabilité de l’épithélium pulmonaire pour le cisplatine dissous s’est avérée très élevée. L'exposition globale établie à partir de l’AUC a permis de calculer l’efficacité de ciblage (Te: rapport de l'AUC mesurée dans les poumons et de la somme des AUC mesurées dans les organes non cibles) et l’avantage du ciblage (Ta: rapport de l’AUC mesuré dans les poumons suite à l’administration pulmonaire et de l'AUC mesurée dans les poumons suite à l’administration par la voie IV). Par exemple, le Ta de la formulation décrite ci-dessus (cisplatine/TS/TPGS 50:49.5:0.5 m/m/m) était de 10.9, comparativement à 1 pour l’IV, 3.3 pour la nébulisation endotrachéale, 2.6 pour la formulation de poudre sèche à libération immédiate (cisplatine/TPGS 95:5 w/w) et 3.7 pour la formulation de poudre sèche à libération contrôlée ne comprenant pas d’excipient PEGylé (cisplatine/TS 50:50). Dans le même temps, le Te mesuré pour les mêmes formulations était de 1.6, 0.09, 1.1, 0.4 et 0.9, respectivement, démontrant également le rendement élevé de la voie inhalée par rapport à la voie IV dans sa capacité à cibler les poumons. Plus important encore, ceci a démontré le grand avantage des capacités de rétention pulmonaire de la formulation à libération contrôlée comprenant un excipient PEGylé.Dans la dernière partie de ce travail, les doses maximales tolérées (DMT) des formulations ont été déterminées. Le meilleur candidat, choisi en fonction des résultats de pharmacocinétique (formulation à libération contrôlée ayant des capacités de rétention pulmonaire composé de cisplatine/TS/TPGS 50:49.5:0.5 m/m/m), avait une meilleure tolérance globale que les deux approches à libération immédiate testées (formulation de poudre sèche cisplatine/TPGS 95:5 et la nébulisation endotrachéale d'une solution de cisplatine). Plus précisément, il s’est avéré possible de doubler le dosage administré pour la formulation à libération contrôlée (1.0 mg/kg) par rapport à la poudre sèche à libération immédiate et à la nébulisation endotrachéale (toutes les deux à 0.5 mg/kg) suivant un schéma d'administration chronique (3 fois par semaine pendant 2 semaines). De plus, une évaluation de la tolérance pulmonaire de cette formulation à libération prolongée a été réalisée et comparée à la poudre sèche à libération immédiate, à la nébulisation endotrachéale et à la voie IV. Elle a été réalisée par analyse du liquide provenant du lavage broncho-alvéolaire, 24 heures après une administration unique à la dose maximale tolérée préalablement déterminée pour chaque formulation. Aucune augmentation des cytokines IL-1β, IL-6 et TNF-α n’a pu être détectée à la suite des administrations. Aucunes preuves de lésion tissulaire ou de cytotoxicité n'ont pu être observées au travers du dosage de la teneur en protéines totale et de l'activité de la lactate déshydrogénase. Les seules observations qui ont pu être faites ont été une diminution des cellules totales et une augmentation des polynucléaires neutrophiles dans le lavage broncho-alvéolaire, ce qui n'a pas été observé suite à l’administration IV ou après l'administration du véhicule de la formulation à libération contrôlée seul (c'est-à-dire les microparticules lipidiques solides PEGylées et le diluant). Cette augmentation ne semble pas liée aux microparticules lipidiques solides ou au diluent mais probablement à l’exposition pulmonaire au cisplatine, car cette augmentation a été observée pour chaque groupe inhalé contenant du cisplatine. Le cisplatine a ensuite été administré à des souris qui ont été greffées de manière orthotopique par une lignée murine de carcinome pulmonaire M109-HiFR, modèle préclinique préalablement développé au sein de notre laboratoire. Les formulations de poudres sèches ont été évaluées par rapport à l'administration IV à chaque dose testée (0.5 et 1.0 mg/kg, respectivement). Cette étude a d'abord confirmé la toxicité plus faible de l'approche à libération contrôlée, car la formulation à libération immédiate a causé un nombre beaucoup plus élevé de décès pendant le traitement des souris greffées. La formulation à libération contrôlée administrée à 1.0 mg/kg, a montré une survie plus élevée que le contrôle négatif, mais une réponse comparable à la dose IV administrée à la moitié de la dose (0.5 mg/kg). Ce résultat inattendu par rapport aux résultats de l’étude pharmacocinétique s'explique probablement par le fait que le modèle de tumeur utilisé est hautement métastatique. Les souris traitées avec des formulations inhalées sont mortes en raison de tumeurs secondaires distantes par rapport à la tumeur primaire implantée au niveau du poumon, alors que celles traitées par la voie systémique sont mortes en raison d’un envahissement tumoral pulmonaire. Cela nous amène à penser que ce type de traitement inhalé pourrait avoir un plus grand potentiel en combinaison à la voie parentérale. Ce travail a ainsi permis d’établir la preuve du concept de formulation à base de poudre sèche de cisplatine à libération contrôlée, en utilisant un processus de fabrication capable de subir une mise à l’échelle industrielle. L’utilisation de microparticules lipidiques solides a confirmé que l'encapsulation d’actifs présentant une certaine hydrophilie, comme le cisplatine, était possible en utilisant des excipients hautement hydrophobes et qu'une modification de leur surface était cependant obligatoire pour obtenir une rétention pulmonaire intéressante in vivo. Les microparticules lipidiques solides ont montré de bons signes de tolérance au cours de l'étude exploratoire, mais celle-ci doit encore être confirmée avec une administration chronique des poudres. Ceci doit être fait en suivant des paramètres supplémentaires, tels que des analyses histologiques du tissu pulmonaire. De plus, la comparaison de la néphrotoxicité des formulations avec celle mesurée par la voie IV doit être effectuée avec des méthodes appropriées et sensibles. Enfin, l'étude de survie de la formulation à libération prolongée a montré des résultats mitigés, en partie à cause des caractéristiques du modèle orthotopique de tumeur pulmonaire. Cependant, il semblerait que la chimiothérapie inhalée à un rôle important à jouer en combinaison avec la chimiothérapie systémique classique. Ceci doit être évalué dans une étude future. / Doctorat en Sciences biomédicales et pharmaceutiques (Pharmacie) / info:eu-repo/semantics/nonPublished

Page generated in 0.0566 seconds