• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 11
  • 11
  • 5
  • 2
  • 2
  • Tagged with
  • 60
  • 14
  • 12
  • 12
  • 10
  • 10
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Analýza nanočásticových systémů atomovou spektrometrií / Analysis of nanopartical systems by atomic spectrometry

Jeníková, Eva January 2018 (has links)
EN The present diploma thesis is focused on optimization methods of titanium and phosphorus concentration for their use in the colloidal solution of TiO2 nanoparticles modified by bisphosphonates. For these analyses was used atomic absorption spectrometry with flame and electrothermal atomization. The characteristics of the two analytes were compared to two different spectrometers. Using the F-AAS technique on the GBC 933 AA spectrometer has been achieved a detection limit of 5,2 mg l-1 for titanium and a detection limit of 163 mg l-1 for the phosphorus. Using the ContrAA 700 spectrometer, F-AAS has been achieved an almost five times lower detection limit of 1,1 mg l-1 for titanium determination. For determination of phosphorus using this spectrometer, was obtained a similar value of 151 mg l-1 , as using the GBC 933 AA spectrometer. The determination of phosphorus by the ET-AAS technique using the ContrAA 700 spectrometer resulted in a detection limit of 1,23 mg l-1 , which is a significant difference compared to the flame system. It has been proved that optimized methods are consistent with the intention, which was confirmed by the analysis of real titanium and phosphorus samples in the colloidal solution of TiO2 nanoparticles modified bisphosphonates.
42

[en] CARBONS FROM PYROLYZED BAMBOO AS CONDUCTIVE MATERIALS FOR ELECTRIC, ELECTROTHERMAL AND ELECTROCHEMICAL APPLICATIONS / [pt] MATERIAL DE CARBONO CONDUTOR A PARTIR DA PIRÓLISE DO BAMBU PARA APLICAÇÕES ELÉTRICAS, ELETROTÉRMICAS E ELETROQUÍMICAS

LAYNE OLIVEIRA DE LUCAS GONTIJO 06 June 2023 (has links)
[pt] O bambu é rico em biomassa lignocelulósica, e anatomicamente é composto por um sistema de microcanais vasculares alinhados, retos e paralelos entre si. Suas micro e nanoestruturas podem ser modificadas através do tratamento térmico em altas temperaturas (carbonização/pirólise) para obtenção de propriedades elétricas sem a perda da estrutura 3D, possibilitando a aplicação em dispositivos eletroquímicos e microfluídicos eletricamente condutores. As amostras de bambu gigante Dendrocalamus giganteous foram tratadas sob atmosfera de nitrogênio em temperaturas variando de 200 a 1000 graus C e caracterizadas por TGA, ATR-FT-IR, RAMAN, DRX, XPS, HR-TEM, ICP-EOS, (Microtomografia computadorizada de raios-X), I/V, Voltametria cíclica e análise termográfica IR. Foi possível realizar análise estrutural e química; determinação de composições, identificação da transição de fase da estrutura cristalina da celulose para carbono grafítico/turbostrático; medir as condutividades térmica e elétrica. As amostras B-200, B-400 e B-600 apresentaram-se isolantes, enquanto B-700 apresentou-se resistiva (resistividade elétrica)= 1,5 x 10-1 (ohms) m e B-1000 comportamento ôhmico (condutividade elétrica)= 8,4 x 10 2 S m-1 (siemens)/ metro). O dispositivo B-700 foi utilizado como microaquecedor de solventes polares (H2O e etilenoglicol) em regime de fluxo contínuo e chapa de aquecimento, com eficiência de conversão eletrotérmica em fluxo, estabilidade estrutural e reprodutibilidade eletrotérmica. O microaquecedor e a chapa aquecedora alcançaram temperaturas máximas de 340 graus C (0,8 A 6,3V) e 490 graus C (2,0 A, 5,3 V), respectivamente. Isso demonstra que os materiais de bambu pirolisado obtidos nessa pesquisa são promissores para aplicações em supercapacitores, eletrodos, entre outros. / [en] Bamboo is rich in biomass and carbon and, anatomically, is composed of a system of vascular microchannels that are aligned, straight, and parallel to each other. The micro and nanostructures of bamboo can be modified through heat treatment at high temperatures (carbonization/pyrolysis) to obtain electrical properties without losing the 3D structure of the material, which allows the application in electrically conductive electrochemical and microfluidic devices. The present work investigated the influence of heat treatment at high temperatures on the structure and properties of samples of Dendrocalamus giganteous giant bamboo. The samples were subjected to heat treatment under a Nitrogen atmosphere at temperatures ranging from 200 to 1000 degrees C and characterized by TGA, ATR-FT-IR, RAMAN, DRX, XPS, HR-TEM, ICP-EOS, (X-ray computed microtomography), I/V, Cyclic Voltammetry, and IR thermographic analysis. This set of techniques provided structural and chemical information; compositions, the phase transition from cellulose crystal structure to graphic/turbostratic carbon; thermal and electrical conductivity. Samples B-200, B-400, and B-600 showed insulating properties, while B-700 showed resistive behavior (electrical resistivity)= 1.8 x 10-1 (ohms) m and B-1000 showed ohmic behavior (Electric conductivity)= 8.4 x 10 2 S m-1 (siemens)/ meter). The B-700 device was used as a microheater of polar solvents (H2O and ethylene glycol) in a continuous flow regime and heating plate and showed the efficiency of electrothermal conversion in flow mode, structural stability, and electrothermal reproducibility. The microheater and hot plate reached maximum temperatures of 340 degrees C (0.8 A, 6.3 V) and 490 degrees C (2.0 A, 5.3 V), respectively. These results show that the pyrolyzed bamboo materials obtained in this research are promising for applications in supercapacitors, electrodes, heaters, and catalytic microheaters in continuous flow.
43

Experimental investigation of electric propulsion systems using C12A7 electride hollow cathodes

Gondol, Norman, Tajmar, Martin 04 April 2024 (has links)
The development and experimental investigation of two low-power electric propulsion concepts using compact heaterless C12A7 electride (C12A7:e-) hollow cathodes is presented. The first concept represents an electrothermal thruster, in which a cathode discharge is used to heat a gas that is subsequently accelerated in a nozzle-shaped anode. The second propulsion system is an attempt to develop a sub-500 W magnetoplasmadynamic thruster (MPDT) that uses a rectangular discharge channel that allows to increase the applied magnetic field and thus lower the necessary discharge current. Extensive parameter studies with both concepts were conducted, and the thrust and discharge properties of different geometric and operational configurations were determined. This work is a follow-up publication of a previous paper (Gondol and Tajmar in CEAS Space J 14:65–77, 2021).
44

Electro-thermal Characterizations, Compact Modeling and TCAD based Device Simulations of advanced SiGe : C BiCMOS HBTs and of nanometric CMOS FET / Contribution à la caractérisation électro-thermique, à la modélisation compacte et à la simulation TCAD de dispositifs avancés de type TBH SiGe : C et de dispositifs nanométrique CMOS FET

Sahoo, Amit Kumar 13 July 2012 (has links)
Ce travail de thèse présente une évaluation approfondie des différentes techniques de mesure transitoire et dynamique pour l’évaluation du comportement électro-thermique des transistors bipolaires à hétérojonctions HBT SiGe:C de la technologie BiCMOS et des transistors Métal-Oxyde-Semiconducteur à effet de champ (MOSFET) de la technologie CMOS 45nm. En particulier, je propose une nouvelle approche pour caractériser avec précision le régime transitoire d'auto-échauffement, basée sur des mesures impulsionelles. La méthodologie a été vérifiée par des mesures statiques à différentes températures ambiantes, des mesures de paramètres S à basses fréquences et des simulations thermiques transitoires. Des simulations thermiques par éléments finis (TCAD) en trois dimensions ont été réalisées sur les transistors HBTs de la technologie submicroniques SiGe: C BiCMOS. Cette technologie est caractérisée par une fréquence de transition fT de 230 GHz et une fréquence maximum d’oscillation fMAX de 290 GHz. Par ailleurs, cette étude a été réalisée sur les différentes géométries de transistor. Une évaluation complète des mécanismes d'auto-échauffement dans les domaines temporels et fréquentiels a été réalisée. Une expression généralisée de l'impédance thermique dans le domaine fréquentiel a été formulée et a été utilisé pour extraire cette impédance en deçà de la fréquence de coupure thermique. Les paramètres thermiques ont été extraits par des simulations compactes grâce au modèle compact de transistors auquel un modèle électro-thermique a été ajouté via le nœud de température. Les travaux théoriques développés à ce jour pour la modélisation d'impédance thermique ont été vérifiés avec nos résultats expérimentaux. Il a été montré que, le réseau thermique classique utilisant un pôle unique n'est pas suffisant pour modéliser avec précision le comportement thermique transitoire et donc qu’un réseau plus complexe doit être utilisé. Ainsi, nous validons expérimentalement pour la première fois, le modèle distribué électrothermique de l'impédance thermique utilisant un réseau nodal récursif. Le réseau récursif a été vérifié par des simulations TCAD, ainsi que par des mesures et celles ci se sont révélées en excellent accord. Par conséquent, un modèle électro-thermique multi-géométries basé sur le réseau récursif a été développé. Le modèle a été vérifié par des simulations numériques ainsi que par des mesures de paramètre S à basse fréquence et finalement la conformité est excellente quelque soit la géométrie des dispositifs. / An extensive evaluation of different techniques for transient and dynamic electro-thermal behavior of microwave SiGe:C BiCMOS hetero-junction bipolar transistors (HBT) and nano-scale metal-oxide-semiconductor field-effect transistors (MOSFETs) have been presented. In particular, new and simple approach to accurately characterize the transient self-heating effect, based on pulse measurements, is demonstrated. The methodology is verified by static measurements at different ambient temperatures, s-parameter measurements at low frequency region and transient thermal simulations. Three dimensional thermal TCAD simulations are performed on different geometries of the submicron SiGe:C BiCMOS HBTs with fT and fmax of 230 GHz and 290 GHz, respectively. A comprehensive evaluation of device self-heating in time and frequency domain has been investigated. A generalized expression for the frequency-domain thermal impedance has been formulated and that is used to extract device thermal impedance below thermal cut-off frequency. The thermal parameters are extracted through transistor compact model simulations connecting electro-thermal network at temperature node. Theoretical works for thermal impedance modeling using different networks, developed until date, have been verified with our experimental results. We report for the first time the experimental verification of the distributed electrothermal model for thermal impedance using a nodal and recursive network. It has been shown that, the conventional single pole thermal network is not sufficient to accurately model the transient thermal spreading behavior and therefore a recursive network needs to be used. Recursive network is verified with device simulations as well as measurements and found to be in excellent agreement. Therefore, finally a scalable electro-thermal model using this recursive network is developed. The scalability has been verified through numerical simulations as well as by low frequency measurements and excellent conformity has been found in for various device geometries.
45

A Vertical C60 Transistor with a Permeable Base Electrode / Ein vertikaler C60-Transistor mit einer permeablen Basiselektrode

Fischer, Axel 26 October 2015 (has links) (PDF)
A high performance vertical organic transistor based on the organic semiconductor C60 is developed in this work. The sandwich geometry of this transistor, well known from organic light-emitting diodes or organic solar cells, allows for a short transfer length of charge carriers in vertical direction. In comparison to conventional organic field-effect transistors with lateral current flow, much smaller channel lengths are reached, even if low resolution and low-cost shadow masks are used. As a result, the transistor operates at low voltages (1 V), drives current densities in the range of 10 A/cm², and enables a switching speed in the MHz range. The operation mechanism is studied in detail. It is demonstrated that the transistor can be described by a nano-porous permeable base electrode insulated by a thin native aluminum oxide film on its surface. Thus, the transistor has to be understood as two metal-oxide-semiconductor diodes, sharing a common electrode, the base. Upon applying a bias to the base, charges accumulate in front of the oxide, similar to the channel formation in a field-effect transistor. Due to the increased conductivity in this region, charges are efficiently transported toward and through the pinholes of the base electrode, realizing a high charge carrier transmission. Thus, even a low concentration of openings in the base electrode is sufficient to ensure large transmission currents. The device concept turns out to be ideal for applications where high transconductance and high operation frequency are needed, e.g. in analog amplifier circuits. The full potential of the transistor is obtained if the active area is structured by an insulating layer in order to perfectly align the three electrodes. Besides that, molecular doping near the charge injecting contact is essential to minimize the contact resistance. Due to the high power density in the vertical C60 transistor, Joule self-heating occurs, which is discussed in this work in the context of organic semiconductors. The large activation energies of the electrical conductivity observed cause the presence of S-shaped current-voltage characteristics and result in thermal switching as well as negative differential resistances, as demonstrated for several two-terminal devices. A detailed understanding of these processes is important to determine restrictions and proceed with further optimizations. / In dieser Arbeit wird ein vertikaler organischer Transistor mit hoher Leistungsfähigkeit vorgestellt, der auf dem organischen Halbleiter C60 basiert. Die von organischen Leuchtdioden und organischen Solarzellen bekannte \'Sandwich’-Geometrie wird verwendet, so dass es möglich ist, für die vertikale Stromrichtung kurze Transferlängen der Ladungsträger zu erreichen. Im Vergleich zum konventionellen organischen Feldeffekttransistor mit lateralem Stromfluss werden dadurch viel kleinere Kanallängen erreicht, selbst wenn preisgünstige Schattenmasken mit geringer Auflösung für die thermische Verdampfung im Vakuum genutzt werden. Daher kann der Transistor bei einer Betriebsspannung von 1 V Stromdichten im Bereich von 10 A/cm² und Schaltgeschwindigkeiten im MHz-Bereich erreichen. Obwohl diese Technologie vielversprechend ist, fehlt bislang ein umfassendes Verständnis des Funktionsmechanismus. Hier wird gezeigt, dass der Transistor eine nanoporöse Basiselektrode hat, die durch ein natives Oxid auf ihrer Oberfläche elektrisch isoliert ist. Daher kann das Bauelement als zwei Metall-Oxid-Halbleiter-Dioden verstanden werden, die sich eine gemeinsame Elektrode, die Basis, teilen. Unter Spannung akkumulieren Ladungsträger vor dem Oxid, ähnlich zur Ausbildung eines Ladungsträgerkanals im Feldeffekttransistor. Aufgrund der erhöhten Leitfähigkeit in dieser Region werden Ladungsträger effizient zu und durch die Öffnungen der Basis transportiert, was zu hohen Ladungsträgertransmissionen führt. Selbst bei einer geringen Konzentration von Löchern in der Basiselektrode werden so hohe Transmissionsströme erzielt. Das Bauelementkonzept ist ideal für Anwendungen, in denen eine hohe Transkonduktanz und eine hohe Schaltgeschwindigkeit erreicht werden soll, z.B. in analogen Schaltkreisen, die kleine Signale verarbeiten. Das volle Potential des Transistors offenbart sich jedoch, wenn die aktive Fläche durch eine Isolatorschicht strukturiert wird, um den Überlapp der drei Elektroden zu optimieren, so dass Leckströme minimiert werden. Daneben ist die Dotierung der Molekülschichten am Emitter essentiell, um Kontaktwiderstände zu vermeiden. Aufgrund der hohen Leistungsdichten in den vertikalen C60-Transistoren kommt es zur Selbsterwärmung, die in dieser Arbeit im Kontext organischen Halbleiter diskutiert wird. Die große Aktivierungsenergie der Leitfähigkeit führt zu S-förmigen Strom-Spannungs-Kennlinien und hat thermisches Umschalten sowie negative differentielle Widerstände zur Folge, was für verschiedene Bauelemente demonstriert wird. Ein detailliertes Verständnis dieser Prozesse ist wichtig, um Beschränkungen für Anwendungen zu erkennen und um entsprechende Verbesserungen einzuführen.
46

Contribution à l'étude de l'effet du vieillissement de modules de puissance sur leur comportement électrothermique / Contribution to the study of the effect of ageing of the power modules on their electrothermal behavior

Belkacem-Beldi, Ghania 23 June 2014 (has links)
Les travaux présentés dans cette thèse se focalisent sur l'étude de l’effet de dégradations des composants de puissance, plus particulièrement au niveau de l’environnement proche des puces (métallisations, connexions, brasures puces/DCB), sur le comportement électrique et thermique des puces ainsi que de leur assemblage. Pour ce faire nous avons cherché à étudier la répartition des courants et des températures à la surface de la puce à l’aide d’un modèle électrothermique 2D distribué. Nous avons aussi évalué l’effet de la dégradation des brasures dans le volume de l’assemblage, à l’aide cette fois d’un modèle thermique relié à la constitution de l’assemblage. La première partie de cette thèse consiste à mettre en place un modèle électrothermique distribué de puce MOSFET, qui tient compte à la fois du caractère distribué de la dissipation de la puissance et du couplage électrothermique en régime transitoire. Ce modèle électrothermique s’appuie sur un modèle électrique aux variables d’états et un modèle thermique par éléments finis couplé au modèle électrique. Les modèles électriques et thermiques ont été développés respectivement sous Matlab et sous CAST3M, et le couplage des deux modèles a été fait sous Simulink. Dans une deuxième partie, pour la validation des résultats des températures et pour l’analyse de l’effet du vieillissement et des dégradations (sur la distribution et la dynamique de température de la surface supérieure de la puce), une méthodologie de mesure rapide de température et un banc expérimental pour thermographie infrarouge ont été mis en place. Les difficultés rencontrées lors des mesures thermiques IR sous variation rapide de la température nous ont poussé à envisager d’autres méthodes d’analyse thermique. Enfin, nous avons cherché à évaluer la réponse impulsionnelle du composant testé en estimant, par des simulations thermiques, la fonction de transfert dans le domaine fréquentiel à l’aide du logiciel COMSOL Multiphysics. Nous avons également étudié la pertinence de modèles RC équivalents (réseau RC de Cauer). Ces modèles ont ensuite été utilisés pour rendre compte de différents modes de dégradation notamment cette fois au niveau des couches de brasures entre puce et DCB et entre DCB et semelle. Mots clef : Modules de puissance à semi-conducteur, Vieillissement, Métallisation, Modélisation électrothermique, Court-circuit, Distribution de courant et de température, Problème inverse, Caméra IR, Réseaux de Cauer. / The work presented in this thesis focus on the study of the effect of degradation of power components, especially at the near environment of chips (metallization, connections, solder chips / DCB), on the electrical and thermal behavior of the chips and their assembly. As a consequence, we studied the distribution of currents and temperatures on the chip surface with a 2D electrothermal distributed model. We also evaluated the effect of solder degradation in the volume of the assembly. Firstly, we developed an electrothermal distributed model of the MOSFET chip, which takes into account both the distributed power dissipation and the electrothermal coupling transient. This electrothermal model is based on an electrical model of state variables and thermal finite element model coupled to the electric model. Electrical and thermal models were developed respectively in Matlab and CAST3M whereas the two models coupling was done in Simulink . In the second part, to validate the results of temperatures and to analyze the effect of ageing and degradation on the distribution and dynamics of temperature of the upper surface of the chip, methodology rapid temperature measurement and an experimental bench for infrared thermography were established. The difficulties encountered in IR thermal measurements with rapid temperature change led us to consider other thermal analysis methods. Eventually, we assessed the impulse response of the tested component by estimating with thermal simulations, the transfer function in the frequency domain using the COMSOL Multiphysics software. Moreover we evaluated the relevance of RC equivalent models (RC Cauer network). These models were then used to account for different modes of degradation this time especially on the solder layer between the chip and DCB and between the DCB and sole. Keywords: Power Modules semiconductor, Ageing, Metallization, electrothermal modeling, Short Circuit, Power and temperature distribution, inverse problem, IR Camera, Cauer networks.
47

Pour une approche complète de l'évaluation de fiabilité dans les microsystèmes / For a complete approach of microsystems reliability evaluation

Matmat, Mohamed 03 September 2010 (has links)
La complexité des microsystèmes, leur multidisciplinarité, l’hétérogénéité des matériaux utilisés et les interfaces avec l’environnement extérieur rendent difficiles l’évaluation et la maîtrise de leur fiabilité indispensables pour l’exploitation des nombreuses possibilités innovantes qu’ils offrent.L’approche que nous avons proposée dans ce travail, afin de prédire la fiabilité des microsystèmes, se fonde sur l’usage intensif de la modélisation et de la simulation, dans les conditions d’usage du microsystème (profil de mission), en associant donc l’évaluation de la fiabilité à la démarche de conception : avant d’entreprendre une modélisation fonctionnelle de type VHDL-AMS, les objectifs de fiabilité sont exprimés explicitement dans le cahier des charges du microsystème, au même titre que les objectifs plus habituels de performances.Afin de supporter nos travaux, nous avons appliqué cette démarche de prédiction de la fiabilité sur deux types de microsystèmes :- des micro-actionneurs électrothermiques. - des commutateurs RF capacitifs à actionnement électrostatique / The complexity of microsystems, their multidisciplinarity, the heterogeneity of materials and interfaces with the external environment makes difficult the assessment and control of reliability, which is indispensable for the exploitation of the several innovative opportunities that they offer. The approach we proposed, in this work, to predict the reliability of microsystems is based on the intensive use of modelling and simulation, in the use and environmental conditions of micro-system (mission profile), thus by combining the reliability evaluation in the design process: before undertaking any type of functional modelling VHDL-AMS, reliability objectives are expressed explicitly in the specification of the micro-system, as well as the most common performance goals.To support our work, we applied this approach for predicting the reliability for two types of microsystems:- Electro-thermal micro-actuators.- Capacitive RF MEMS switches
48

Investigation of Electro-thermal and Thermoelectric Properties of Carbon Nanomaterials

Verma, Rekha January 2013 (has links) (PDF)
Due to the aggressive downscaling of the CMOS technology, power and current densities are increasing inside the chip. The limiting current conduction capacity(106 Acm−2)and thermal conductivity(201Wm−1K−1 for Al and 400 Wm−1K−1 for Cu) of the existing interconnects materials has given rise to different electro-thermal issues such a shot-spot formation, electromigration, etc. Exploration of new materials with high thermal conductivity and current conduction has thus attracted much attention for future integrated circuit technology. Among all the elemental materials, carbon nanomaterials (graphene and carbon nanotube) possess exceptionally high thermal (600-7000 Wm−1K−1) and current( ~108 -109 Acm−2)conduction properties at room temperature, which makes them potential candidate for interconnect materials. At the same time development of efficient energy harvesting techniques are also becoming important for future wireless autonomous devices. The excess heat generated at the hot-spot location could be used to drive an electronic circuit through a suitable thermoelectric generator. As the See beck coefficient of graphene is reported to be the highest among all elementary semiconductors, exploration of thermoelectric properties of graphene is very important. This thesis investigates the electrothermal and thermoelectric properties of metallic single walled carbon nanotube (SWCNT) and single layer graphene (SLG) for their possible applications in thermal management in next generation integrated circuits. A closed form analytical solution of Joule-heating equation in metallic SWCNTs is thus proposed by considering a temperature dependent lattice thermal conductivity (κ) on the basis of three-phonon Umklapp, mass-difference and boundary scattering phenomena. The solution of which gives the temperature profile over the SWCNT length and hence the location of hot-spot(created due to the self-heating inside the chip) can be predicted. This self-heating phenomenon is further extended to estimate the electromigration performance and mean-time-to-failure of metallic SWCNTs. It is shown that metallic SWCNTs are less prone to electromigration. To analyze the electro-thermal effects in a suspended SLG, a physics-based flexural phonon dominated thermal conductivity model is developed, which shows that κ follows a T1.5 and T−2 law at lower(<300 K) and higher temperature respectively in the absence of isotopes(C13 atoms). However in the presence of isotopic impurity, the behavior of κ sharply deviates from T−2 at higher temperatures. The proposed model of κ is found to be in excellent match with the available experimental data over a wide range of temperatures and can be utilized for an efficient electro-thermal analysis of encased/supported graphene. By considering the interaction of electron with in-plane and flexural phonons in a doped SLG sheet, a physics-based electrical conductance(σ) model of SLG under self-heating effect is also discussed that particularly exhibits the variation of electrical resistance with temperature at different current levels and matches well with the available experimental data. To investigate the thermoelectric performance of a SLG sheet, analytical models for See beck effect coefficient (SB) and specific heat (Cph) are developed, which are found to be in good agreement with the experimental data. Using those analytical models, it is predicted that one can achieve a thermoelectric figure of merit(ZT) of ~ 0.62 at room temperature by adding isotopic impurities(C13 atoms) in a degenerate SLG. Such prediction shows the immense potential of graphene in waste-heat recovery applications. Those models for σ, κ, SB and Cph are further used to determine the time evolution of temperature distribution along suspended SLG sheet through a transient analysis of Joule-heating equation under the Thomson effect. The proposed methodology can be extended to analyze the graphene heat-spreader theory and interconnects and graphene based thermoelectrics.
49

Experimental Studies on Extremely Small Scale Vibrations of Micro-Scale Mechanical and Biological Structures

Venkatesh, Kadbur Prabhakar Rao January 2017 (has links) (PDF)
Experimental vibration analysis of mechanical structures is a well established field.Plenty of literature exists on macro scale structures in the fields of civil, mechanical and aerospace engineering, but the study of vibrations of micro scale structures such as MEMS, liquid droplets, and biological cells is relatively new. For such structures, the amplitudes of vibration are typically in nanometeror sub-nanometer range and the frequencies are in KHz to MHz range depending upon the dimensions of the structure. In our study, we use a scanningLaser Doppler Vibrometer (LDV) to measure the vibrations of micro-scale objects such as MEMS structures, micro droplets and cells. The vibrometercan capture frequency response up to 24 MHz withpicometer displacement resolution. First, we present the study of dynamics of a 2-D micromechanical structure—a MEMSelectrothermal actuator. The structure is realized using SOI MUMPs process from MEMSCAP. The fabricated device is tested for its dynamic performance characteristics using the LDV. In our experiments, we could capture up to 50 out-of-plane modes of vibration—an unprecedented capture—with a single excitation. Subsequent FEM based numerical simulations confirmed that the captured modes were indeed what the experiments indicated, and the measured frequencies werefound to be within 5% of theoretically predicted. Next, we study the dynamics of a 3-D micro droplet and show how the substrate adhesion modulates the natural frequency of the droplet. Adhesion properties of droplets are decided by the degree of wettability that is generally measured by the contact angle between the substrate and the droplet. In this work, we were able to capture 14 modes of vibration of a mercury droplet on different substrates and measure the correspondingfrequencies experimentally. We verify these frequencies with analytical calculations and find that all the measured frequencies are within 6% of theoretically predicted values. We also show that considering any two pairs of natural frequencies, we can calculate the surface tension and the contact angle, thus providing a new method for measuring adhesion of a droplet on an unknown surface. Lastly, we present a study of vibrations of biological cells.Our first study is that of single muscle fibers taken from drosophila.Muscle fibers with different pathological conditions were held in two structural configurations—asa fixed-fixed beam and a cantilever beam—and their vibration signatures analysed.We found that there was significant reduction in natural frequency of diseased fibers. Among the diseased fibers, we could confidently classify the myopathies into nemaline and cardiac types based on the natural frequency of single fibers. We have noticed that the elastic modulus of the muscle which decides the natural frequency is dictated by the myosin expression levels. Our last example isa study of the vibration signatures of cancer cells. Here we measure the natural frequencies of normal and certain cancerous cells, and show that we can distinguish the two based on their natural frequencies. We find that the natural frequency of cancerous cells is approximately half of that of normal cells. Within the cancerous cells, we are able to distinguished epithelial cancer cells and mesenchymal cancer cells based on their natural frequency values. For Epithelial cells,we activate the signaling pathways to induce EMT and notice the reduction in the natural frequency. This mechanical assay based on vibration response corroborates results from the biochemical assays such as Western blots and PCR, thus opening a new technique of mechano-diagnostics.
50

Simulation multi-physiques de circuits intégrés pour la fiabilité / Multiphysics simulation of integrated circuits for reliability

Garci, Maroua 20 May 2016 (has links)
Cette thèse porte sur le thème général de la fiabilité des circuits microélectroniques. Le but de notre travail fut de développer un outil de simulation multi-physiques pour la conception des circuits intégrés fiables qui possède les caractéristiques innovatrices suivantes : • (i) L’intégration dans un environnement de conception microélectronique standard, tel que l’environnement Cadence® ; • (ii) La possibilité de simulation, sur de longues durées, du comportement des circuits CMOS analogiques en tenant compte du phénomène de vieillissement ; • (iii) La simulation de plusieurs physiques (électrique-thermique-mécanique) couplées dans ce même environnement de CAO en utilisant la méthode de simulation directe. Ce travail de thèse a été réalisé en passant par trois grandes étapes traduites par les trois parties de ce manuscrit. / This thesis was carried out under the theme of the microelectronics Integrated Circuits Reliability. The aim of our work was to develop a multi-physics simulation tool for the design of reliable integrated circuits. This tool has the following innovative features : • (i) The integration in a standard microelectronics design environment, such as the Cadence® environment ;• (ii) The possibility of efficient simulation, over long periods, of analog CMOS circuits taking into account the aging henomenon ; • (iii) The simulation of multiple physical behaviours of ICs (electrical-thermalmechanical) coupled in the same environment using the direct simulation method. This work was carried out through three main stages detailed in the three parts of this Manuscript.

Page generated in 0.2978 seconds