• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 61
  • 54
  • 20
  • 2
  • Tagged with
  • 135
  • 93
  • 62
  • 52
  • 52
  • 52
  • 45
  • 23
  • 21
  • 15
  • 13
  • 12
  • 12
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Adressierung elektrochemischer Sensoren in einer passiven Matrix

Lutter, Burghard 26 June 2008 (has links)
In dieser Arbeit wird ein durch eine passive Matrix angesteuertes Sensorarray vorgestellt. Das Sensorarray besteht aus zwei parallel zueinander angeordneten Leiterplatten mit jeweils vier Leiterbahnen, die als Arbeits- und Gegenelektroden verwendet werden. Die Leiterbahnen kreuzen sich in einem Winkel von 90°, wobei an jedem Kreuzungspunkt ein Sensorelement gebildet wird. Ein selektives Auslesen der Sensorelemente wird durch eine mechanische oder auf Kapillarkräften basierenden Unterteilung des Elektrolyten sowie eine spezielle elektrotechnische Auslesemethode erreicht. Durch die Verwendung einer aus Preußisch Blau bestehenden kombinierten Gegen- und Referenzelektrode können in dem Zwei Elektrodensystem Bedingungen, die denen eines Drei Elektrodensystems sehr nahe kommen, realisiert werden.Mit diesem einfach aufzubauenden Sensorarray konnte die Lücke zwischen den, in der Größe limitierten Sensoren mit Einzeladressierung und den wesentlich aufwändigeren, aber eine hohe Packungsdichte aufweisenden CMOS Sensoren geschlossen werden. Die Funktionalität dieses Sensorarrays wurde anhand von zwei unterschiedlichen Anwendungsbeispielen aus dem Bereich der Kombinatorischen Chemie unter Beweis gestellt.
72

Functionalized (nano) Carbon-based electrochemical Sensors

Grosser, Tobias 15 November 2024 (has links)
Kohlenstoff basierte Elektroden sind sehr vielseitig und bieten einen großen Anwendungsbereich. Diese Arbeit ist fokussiert auf die Entwicklung, Modifizierung und Anwendung von Sensoren, die auf siebgedruckten Kohlenstoffelektroden (C-SPEs), sowie Graphen basieren. Im ersten Abschnitt der Arbeit wurden C-SPEs als Grundlage genutzt, um einen elektrochemischen Sensor für D-Laktat zu entwickeln, wobei D-Laktat ein potentieller Biomarker ist, um bakterielle Kontaminationen in physiologischen zu erkennen. Der entwickelte Sensor erreichte in pH-gepufferten Testsystemen eine Nachweisgrenze von 500 nM. Die Empfindlichkeit von D-Laktat in mit D-Laktat versetzten verdünnten Synovialflüssigkeitsproben wurde nur auf die Hälfte reduziert, was die Fähigkeit des Sensors beweist, erhöhte D-Laktat-Werte auch in einer komplexen physiologischen Matrix nachzuweisen. Im zweiten Teil wurde Graphen auf ein Silizium/Siliziumdioxid Träger mit vorgefertigten Platinelektroden transferiert. Anschließend wurde es einem Stickstoffplasma ausgesetzt, was zu einer tiefgreifenden Veränderung seiner elektrochemischen Eigenschaften führte. Oberflächenanalysen zeigten, dass das Graphengitter mit Stickstoffatomen dotiert und mit stickstoffhaltigen funktionellen Gruppen auf der Graphenoberfläche modifiziert wurde, welches die elektrokatalytische Aktivität der untersuchten Redoxspezies veränderten. Im letzten Teil dieser Arbeit wird eine neue Klasse hybrider 2D-Elektroden vorgestellt, bei denen nanoskalige Quecksilberpartikel zwischen zwei Graphen-Monoschichten eingeschlossen wurden. Dadurch erhält Graphen vorteilhafte Eigenschaften von Quecksilber, wie unter anderem ein hohes Überpotential für die Wasserstoffentwicklung und eine erhöhte Empfindlichkeit gegenüber Schwermetallionen wie Cd2+ und Pb2+. Das Ausgasen von Quecksilber durch die obere Schicht wurde vollständig verhindert, was zu einer stabilen quecksilberähnlichen Elektrode führt, die jedoch eine kohlenstoffhaltige Grenzfläche aufweist. / The use of carbon-based electrochemical sensors is highly versatile and applicable across a wide range of scenarios. This thesis is focused on the development, modification and application of sensors based on screen-printed carbon electrodes (C-SPEs) as well as graphene. In the first study, C-SPEs were used as a basis to develop an electrochemical sensor for D-lactate, which is a potent biomarker to detect bacterial contaminations in physiological samples. The D-lactate sensor achieved a detection limit of about 500 nM D-lactate in pH buffered test systems. The sensitivity in spiked diluted synovial fluid samples was only halved, which proves its capability to detect elevated D-lactate levels in the complex physiological matrix. In the second part, graphene was transferred onto a silicon/silicon oxide substrate with pre-patterned Pt-electrodes. Afterwards, it was subjected to nitrogen plasma, resulting in a profound alteration of its electrochemical properties. Surface analysis led to the conclusion, that the graphene lattice was doped with nitrogen atoms as well as nitrogen containing functional groups on the graphene surface, which altered graphene’s electrocatalytic activity towards the investigated redox species. In the final study, a new class of hybrid 2D electrodes is presented, where nanosized mercury particles are incorporated between two graphene monolayers. Thereby, graphene acquires advantageous properties from mercury, including a high overpotential for hydrogen evolution and increased sensitivity to heavy metal ions such as Cd2+ and Pb2+. The outgassing of mercury is entirely impeded by the top layer, resulting in a stable mercury-like electrode but featuring a carbonaceous interface.
73

Elektrochemisch hergestellte Fe-Pd-Schichten und Nanodrähte - Morphologie, Struktur und magnetische Eigenschaften

Hähnel, Veronika 22 May 2015 (has links) (PDF)
Mit Fe-Pd-Legierungen nahe der Zusammensetzung Fe70Pd30 kann man aufgrund des thermischen oder magnetischen Formgedächtniseffekts große Dehnungen erzeugen. Daher sind sie für Mikro- und Nanoaktoren sowie Sensoren von großem wissenschaftlichen und technologischen Interesse. Im Vergleich zu Massivmaterial und dünnen Schichten erwartet man für eindimensionale Geometrien wie Nanodrähte deutlich höhere Arbeitsfrequenzen und Dehnungen. Zur Herstellung von Nanodrähten eignet sich die elektrochemische Abscheidung in selbstordnende nanoporöse Membranen als effizienteste Methode gegenüber lithographischen oder physikalischen Methoden. Um den Formgedächtniseffekt auch in Fe-Pd-Nanodrähten mit ca. 30 at.% Pd zu nutzen, werden in dieser Arbeit entsprechende Herstellungsbedingungen wie Elektrolytsystem, Abscheideparameter und Nachbehandlung herausgearbeitet. Die Zusammenhänge zwischen Abscheidebedingungen und Morphologie, lokaler Mikrostruktur, Struktur sowie magnetischen Eigenschaften werden untersucht und bewertet. Es wird gezeigt, dass Fe-Pd-Nanodrähte trotz der Kombination aus edlem und unedlem Metall elektrochemisch hergestellt werden können. Ein komplexierter Fe-Pd-Elektrolyt in Kombination mit optimierten alternierenden Abscheidepotentialen führt reproduzierbar zu durchgehenden, nahezu defektfreien Nanodrähten nahe der Zusammensetzung Fe70Pd30. Mit einer nachträglichen Wärmebehandlung erreicht man eine vollständige Umwandlung der Fe-Pd-Legierung von der kubisch raumzentrierten zur kubisch flächenzentrierten Struktur. Die erfolgreiche Herstellung dieser Nanodrähte stellt eine Schlüsselposition auf dem Weg zu formgedächtnisbasierten Nanoaktoren dar. In dieser Arbeit konnten wichtige Ansatzpunkte zur Strukturkontrolle während der elektrochemischen Abscheidung und somit zur Aktivierung des Formgedächtniseffekts identifiziert werden. / Fe-Pd alloys at about 30 at.% Pd allow obtaining high length changes or strains in the percent range due to thermal or magnetic shape memory effect. They are especially promising candidates for smart and intelligent materials in micro- and nanoactuators as well as sensors. In comparison to bulk materials and thin films the utilization of nanowires promises higher actuation frequencies and strains, which further heighten the scientific and technological interest. Electrodeposition within self-organized nanoporous templates is a very time efficient method to prepare even large arrays of Fe-Pd nanowires of different length and diameter compared to lithographic or physical methods. The aim of this work is to exhibit the preparation conditions such as electrolyte system, deposition parameter and post treatment for shape memory active Fe-Pd nanowires at about 30 at.% Pd. Correlations between morphology, local microstructure, structure and magnetic properties are investigated and evaluated. Fe-Pd nanowires are successfully prepared by electrodeposition despite the combination of noble Pd and less noble Fe metals. The usage of an electrolyte with complexed Fe and Pd ions and an optimized alternating potential deposition regime leads to continuous and almost defect free nanowires close to the composition Fe70Pd30. The complete transition from the bcc to fcc structure of the Fe-Pd alloy is achieved by an additional heat treatment. However, the successful preparation of these nanowires represents a key element towards nanoactuators based on shape memory alloys. Fundamental knowledge about electrochemical preparation of Fe-Pd nanowires is gained. Important starting points towards structure control during deposition and activation of the shape memory effect are identified.
74

Electrochemical Phase Formation of Ni and Ni-Fe Alloys in a Magnetic Field

Ispas, Adriana 02 November 2007 (has links) (PDF)
The aim of this work was to investigate the effects that a magnetic field can induce during the electrodeposition of Ni and Ni-Fe alloys. Special regard was given to mass transport controlled effects. Magnetic field effects on the nucleation and growth of ferromagnetic layers and on the properties of electrodeposited layers (like grain size, texture, morphology or roughness) were investigated. The influence of a magnetic field on the magnetic properties of Ni layers and on the composition of Ni-Fe alloys was also studied. Nucleation and growth of thin Ni layers on gold electrodes under a superimposed magnetic field were analysed in-situ with the Electrochemical Quartz Crystal Microbalance technique. Three theoretical models were chosen for characterizing the Ni nucleation: Scharifker-Hills (SH), Scharifker-Mostany (SM) and Heerman-Tarallo (HT). The AFM images proved that more nuclei appear in a magnetic field in the case that the Lorentz force and the natural convection act in the same direction. From all the models, the HT model gave the best agreement with the AFM results. When the Lorentz force and the natural convection act in the same direction, an increase of the Ni partial current with the magnetic field was obtained. When they act in opposite directions, the Ni current was influenced just at the beginning of deposition (first 10 seconds). At longer times, the magnetic field has no effect on the Ni current. However, the total current (jNi+jHER) decreases with the magnetic field. In the absence of a macroscopic MHD convection, the Ni current decreases with the magnetic field the first 10-15 seconds of deposition. On longer time scales no influence of the magnetic field could be noticed for this configuration. When the magnetic field was applied perpendicular to the electric current, an increase of the hydrogen evolution reaction (HER) with the magnetic flux density was noticed. Hydrogen reduction is mass transport controlled. Therefore, the magnetic field will increase the limiting current of the HER. Optical microscopy images showed that the hydrogen bubbles were circular in the absence of the MHD convection and that they presented a tail when a Lorentz force was present. The direction of the tail depends on the net force induced by the natural and MHD convections. The interplay between the natural and MHD convections proved to be important during Ni-Fe alloy deposition, too. When the Lorentz force and the natural convection act in the same direction, an increase of the Fe content of the alloys with the magnetic field was observed. When the Lorentz force was perpendicular to the natural convection, no significant changes were observed in the composition of the layers. The alloy composition did not change with the magnetic field when the electric current was parallel to the magnetic field lines. Two surfactants were used in the case that Ni was electrodeposited from a sulfamate bath: SDS and sulfirol 8. The Ni layers obtained from a sulfamate bath with sulfirol 8 presented larger grains compared to the layers deposited from a bath free of surfactants. This increase of the grain size was attributed to the incorporation of the surfactant in the deposit. Coarser layers were obtained in a magnetic field (applied perpendicular to the electric current) when the electrodeposition was done from an electrolyte with surfactants. The number of grains increased with the magnetic field for the Ni layers electrodeposited from a bath free of surfactants and for a bath with SDS. As a consequence, the grain size decreased. In the case of the electrolyte with sulfirol 8, the number of grains decreased with the magnetic field, and their size increased. For the Ni-Fe alloys, which contained less than 10 at% Fe, the preferred crystalline orientation changes from (220), in the absence of a magnetic field, to (111), (when the magnetic field was applied perpendicular to the electric current). When the magnetic field lines were parallel to the electric current, both the (111) and (220) textures were preferred in almost the same proportion. As a general conclusion of this work it can be said that by choosing the right experimental condition, one can improve the morphology and the properties of the deposited layers by applying a magnetic field. At the same time, the mass transport processes can be influenced by a magnetic field.
75

Thermodynamische Analyse der Existenzbereiche fester Phasen - Prinzipien der Syntheseplanung in der anorganischen Festkörperchemie

Schmidt, Peer 15 January 2008 (has links) (PDF)
Die Planung von Festkörpersynthesen schließt neben einer sinnvollen Aufteilung der zu untersuchenden Bereiche der Zusammensetzung xi auch eine fundierte Abschätzung der zu erwartenden Existenzbereiche (p, T)x der neuen Phasen ein. Die Form der Darstellung der Phasengleichgewichte in Zustandsbarogrammen folgt aus den thermodynamischen Beziehungen der betreffenden Gasphasenreaktionen (Kp G(T)) als lg(p) - 1/T - Diagramm. Für einfache Konstitutionstypen von Zustandsdiagrammen und –barogrammen wurde eine zusammenfassende Darstellung gegeben. Neben der Abhängigkeit der Existenz von Festkörpern von deren Gesamtdruck können sich wesentliche Bedingungen der Phasenbildung aus dem Partialdruckverhalten der Komponenten ergeben. Für eine phasenreine Darstellung von Oxiden erweist sich entsprechend die Einstellung des Sauerstoffpartialdrucks p(O2) als essentiell. Zur globalen Einordnung der Existenzbereiche (p(O2), T) bzw. der abgeleiteten Redox-Potentiale oxidischer Festkörper wurde das Konzept einer elektrochemischen Spannungsreihe für Festkörper entwickelt. Auf der Grundlage dieser Prinzipien und mit der Anschaulichkeit der Diagramme der Spannungsreihe lassen sich die Redoxgleichgewichte von Festkörperreaktionen beliebiger Kombination der Elemente M und M’ in einfacher Weise abschätzen. Über die Prinzipien druckabhängiger Gleichgewichtsbeziehungen zwischen kondensierten Bodenkörpern und der Gasphase in einem Gleichgewichtsraum hinaus wurden auch die Mechanismen von Bodenkörper-Gasphasen-Gleichgewichten zwischen zwei miteinander verbundenen Gleichgewichtsräumen untersucht. Neben den bekannten Erscheinungen der Sublimation und Zersetzungssublimation wurde ein neuer Reaktionsmechanismus des Chemischen Transports mit theoretischen Hintergründen, thermodynamischen Modellierungen und experimentellen Beispielen als Auto- oder Selbsttransport beschrieben. / The planning of solid-state synthesis includes beside the areas of composition x a thorough assessment of the existence ranges (p, T) of the new phases. The form of presentation of the phase equilibria in phase barograms follows from the thermodynamic relations of the gas-phase reactions (Kp, G(T)) as a lg(p) - 1/T - diagram. For simple constitution types of phase diagrams and barograms a summary was presented. Apart from the dependence of the existence of solids from the total pressure essential conditions of the phase formation can be deduced from the partial pressure behaviour of the components. The oxygen partial pressure p(O2) is accordingly essential for the formation of phase pure oxides. For global classification of the existence ranges (p(O2), T) and the derived redox potentials of oxidic solids, the concept of an electromotive series for solids has been originated. On the basis of these principles, and with the clarity of the diagrams of the voltage range the redox balance of solid state reactions of any combination of elements M and M' in a simple way is to estimate. In addition to the principles of pressure equilibria between condensed materials and the gas phase in only one equilibrium range the mechanisms of solid - gas equilibria between two interconnected ranges were also described. Besides the well-known phenomena of sublimation and decomposition sublimation a new reaction mechanism of the chemical transport was evaluated as an Auto- or Selftransport with theoretical backgrounds, thermodynamic modelling and experimental examples.
76

Untersuchungen zur Elektrochemischen Bodensanierung für die Stoffklasse der hochsiedenden aliphatischen Chlorkohlenwasserstoffe

Röhrs, Joachim 09 January 2004 (has links) (PDF)
Die elektrokinetische Bodensanierung nutzt Transporteffekte aus, die entstehen, wenn ein elektrisches Feld an einen Bodenkörper angelegt wird. Die Sanierungsmethode versagt bei immobilen Schadstoffen. Allerdings scheint unter bestimmten Bedingungen ein im Boden induzierter Abbau der Schadstoffe möglich. Dafür müssen so genannte "Mikroleiter" und Redox-Systeme im Boden vorhanden sein. Hierzu werden theoretische Modelle vorgestellt. An einem konkreten Beispiel (mit aliphatischen Chlorkohlenwasserstoffen kontaminierter Boden) wurde getestet, ob direkt im Boden ein Abbau der Schadstoffe mit der Technik der elektrochemischen Bodensanierung erzielt werden kann. Die Analyse der CKW wurde per GC-MS durchgeführt. Theoretisch ist ein reduktiver Abbau oder eine Dechlorierung durch Eliminierungsreaktionen möglich. Die Ergebnisse der Laborversuche (Einwaage 100-3.000 g) erbrachten unter Einhaltung bestimmter Faktoren einen erfolgreichen Abbau der CKW. Bei ständiger Bewässerung des Bodens und einer Feldstärke von mindestens 600 V/m konnte ein Abbau festgestellt werden. Die Erhöhung des Chlorid-Gehaltes im Abwasser zeigt die erfolgreiche Abbaureaktion an. Potentielle Abbauprodukte mit weniger Chlor-Atomen im Molekülaufbau konnten nachgewiesen werden. Diese Stoffe lassen sich mit den ursprünglichen Kontaminationssubstanzen verknüpfen. Da eine Migration der Schadstoffe im elektrischen Feld nicht beobachtet wurde, wird eine im Boden induzierte Abbaureaktion angenommen. In Bodenzonen mit hohem pH-Wert (Eliminierung) und in Kathodennähe (Reduktion) waren die stärksten Abbauraten zu verzeichnen. Bei Versuchen ohne ständige Bewässerung war der CKW-Abbau schwach. Die Widerstände stiegen stark an. Ein Versuch in einem Container (Einwaage Boden: ca. 2 t) erbrachte nur einen punktuellen Abbau der CKW. Die Struktur des Originalbodens verhinderte den Aufbau eines homogenen elektrischen Feldes. In einem Fassversuch (Einwaage Boden: ca. 33 kg) wurden die Versuchsbedingungen modifiziert. Anlagerungen an allen Elektroden verhinderten eine ausreichend hohe effektive Feldstärke im Bodenkörper. Sanierungseffekte fanden nur lokal begrenzt statt. Im Vergleich von Labor zu Großversuchen zeigte sich, dass die eingetragene Ladungsmenge eine entscheidende Rolle spielt.
77

Synthese und Reaktionsverhalten von Übergangsmetallkomplexen sowie deren Verwendung in der Homogenen Katalyse und Metallabscheidung

Jakob, Alexander 29 April 2009 (has links) (PDF)
Die vorliegende Arbeit beschäftigt sich mit der Synthese von Kupfer(I)- und Silber(I)- Carboxylaten der Form [MO2CR] und [LmMO2CR] (L = 2-Elektronen-Donorligand; m = 1, 2, 3; M = Cu, Ag; R = org. Rest). Die Verwendung dieser Komplexe zur Abscheidung von Metallen wird anhand ausgewählter Verbindungen mittels unterschiedlicher Abscheideprozesse beschrieben. Die Darstellung von neuartigen Ethinylferrocen-funktionalisierten Phosphanen und deren Koordinationsverhalten in Bezug auf Übergangsmetalle ebenfalls Thema der Arbeit. Das elektrochemische Verhalten wurde mittels Cyclovoltammetrie näher untersucht und der Einsatz von Ethinylferrocen-funktionalisierten Phosphan-Palladium(II)-Komplexen in der Suzuki- Miyaura- und Heck-Mizoroki-Kreuzkupplungsreaktion getestet. 2,2’-Bipyrimidin als Chelat- bzw. als μ-1,2,3,4-verbrückender Ligand ist in der Lage heterotetrametallische Übergangsmetallkomplexe mit z. B. Platin(II)-Bisalkinyleinheiten zu bilden. An ausgewählten Verbindungen werden die elektrochemischen Eigenschaften vorgestellt. Weiterer Bestandteil dieser Arbeit ist die Synthese und Charakterisierung von heterobimetallischen Komplexen aufgegriffen, in welchen frühe und späte Übergangsmetalle über eine Fulvalenideinheit verknüpft sind.
78

New Routes Towards Nanoporous Carbon Materials for Electrochemical Energy Storage and Gas Adsorption

Oschatz, Martin 14 April 2015 (has links) (PDF)
The chemical element carbon plays a key role in the 21st century. “The new carbon age” is associated with the global warming due to increasing carbon dioxide emissions. The latter are a major consequence of the continued combustion of fossil fuels for energy generation. However, carbon is also one key component to overcome these problems. Especially porous carbon materials are highly attractive for many environmentally relevant applications. These materials provide high specific surface area, high pore volume, thermal/chemical stability, and high electrical conductivity. They are promising candidates for the removal of carbon dioxide or other environmentally relevant gases from exhaust gas mixtures. Furthermore, porous carbons are used in electrochemical energy storage devices (e.g. batteries or electrochemical capacitors). The performance of the materials in these applications depends on their pore structure. Hence, precise control over the pore size and the pore geometry is important to achieve. Besides a high specific surface area (SSA) and a well-defined pore size, pore accessibility must be ensured because the surface must be completely available. If the porous carbons exhibit ink-bottle pores, the high surface area is useless because the guest species do not reach the pore interior. Therefore, carbon materials with hierarchical pore structure are attractive. They combine at least two different pore systems of different size which contribute with their individual advantages. While smaller pores provide large specific surface area, larger pores ensure efficient mass transport. Numerous methods for the targeted synthesis of carbide-derived carbon materials (CDCs) with hierarchical pore architectures were developed within this thesis (Figure 1). CDCs are produced by the extraction of metal- or semi-metal atoms from carbide precursors leading to the formation of a microporous carbon network with high specific surface area. PolyHIPE-CDCs with porosity on three hierarchy levels and total pore volumes as high as 8.5 cm3/g were prepared by a high internal phase emulsion technique. CO2 activation increases the SSA to values above 3100 m2/g. These materials are promising for the filtration of non-polar organic compounds from gas mixtures. CDC nanospheres with diameters below 200 nm were obtained from polycarbosilane-based miniemulsions. They show high capacitance of up to 175 F/g in symmetrical EDLCs in 1 M H2SO4 aqueous electrolyte. Besides such emulsion techniques, the hard-templating concept (also referred to as nanocasting) was presented as an efficient approach for the synthesis of CDC mesofoam powders and meso-macroporous CDC monoliths starting from silica templates and polycarbosilane precursors. As a wide range of pore sizes is approachable, the resulting materials are highly versatile in terms of application. Due to their high nanopore volume, well-defined mesopores and large SSA, they show outstanding properties as electrode materials in EDLCs or in Li-S batteries as well as high and rapid uptake in gas adsorption processes. CDC aerogels were produced by pyrolysis and high-temperature chlorine treatment of cross-linked polycarbosilane aerogels. These materials can be tailored for efficient CO2 adsorption and show outstanding performance in EDLC electrodes at high current densities of up to 100 A/g due to the very short electron diffusion pathways within the aerogel-type pore system. It was further shown that CDCs can be combined with mesopores by the sacrificial template method starting from PMMA particles as the pore-forming material. The use of highly toxic hydrofluoric acid for template removal and large amounts of organic solvents as typical for hard- and soft-templating approaches can be overcome. SSAs and total pore volumes of 2434 m2/g and 2.64 cm3/g are achieved ensuring good performance of PMMA-CDCs in Li-S batteries cathodes. Besides the characterization of CDCs in real energy storage devices and adsorption processes, their use as model substances in energy- and environmentally relevant applications was part of this thesis. The questions “How does it work?” and “What do we need?” must be clearly answered before any material can be tailored under the consideration of economic and ecological perspectives. The high potential of CDCs for this purpose was shown in this thesis. These carbons were used as model substances in combination with nuclear magnetic resonance (NMR) techniques to get a detailed understanding of the adsorption processes on porous carbon surfaces. However, such investigations require the use of model substances with a tailored and well-defined pore structure to clearly differentiate physical states of adsorbed species and to understand fundamental mechanisms. The characterization of the interaction of electrolyte molecules with the carbon surface was performed with solid-state NMR experiments. The materials were also studied in the high-pressure adsorption of 129Xe using an in-situ NMR technique. Both NMR studies enable the analysis of ions or gas atoms adsorbed on the carbon surface on an atomic level and experimentally demonstrate different strength of interaction with pores of variable size and connectivity. In addition, the novel InfraSORP technology was used for the investigation of the thermal response of CDCs and templated carbon and carbide materials during n-butane adsorption. These model systems lead to a more profound understanding of this technique for the rapid characterization of porous materials. The Kroll-Carbon (KC) concept is a highly attractive alternative for the synthesis of well-defined carbons on the large scale. In this technique, the porous materials are produced by the reductive carbochlorination reaction between oxidic nanoparticles and a surrounding carbon matrix. First KC materials were produced with high SSA close to 2000 m2/g and total pore volumes exceeding 3 cm3/g. This method was established with template particles of various dimensions as well as by using various types of oxides (silica, alumina, titania). Hence, porous carbon materials with various textural parameters are approachable. The first generation of KCs is promising for the use in Li-S battery cathodes and as electrode materials in EDLCs.
79

Kroll-carbons based on silica and alumina templates as high-rate electrode materials in electrochemical double-layer capacitors

Oschatz, Martin, Boukhalfa, S., Nickel, W., Lee, J. T., Klosz, S., Borchardt, L., Eychmüller, A., Yushin, G., Kaskel, Stefan 01 September 2014 (has links) (PDF)
Hierarchical Kroll-carbons (KCs) with combined micro- and mesopore systems are prepared from silica and alumina templates by a reductive carbochlorination reaction of fumed silica and alumina nanoparticles inside a dense carbon matrix. The resulting KCs offer specific surface areas close to 2000 m2 g−1 and total pore volumes exceeding 3 cm3 g−1, resulting from their hierarchical pore structure. High micropore volumes of 0.39 cm3 g−1 are achieved in alumina-based KCs due to the enhanced carbon etching reaction being mainly responsible for the evolution of porosity. Mesopore sizes are uniform and precisely controllable over a wide range by the template particle dimensions. The possibility of directly recycling the process exhaust gases for the template synthesis and the use of renewable carbohydrates as the carbon source lead to a scalable and efficient alternative to classical hard- and soft templating approaches for the production of mesoporous and hierarchical carbon materials. Silica- and alumina-based Kroll-carbons are versatile electrode materials in electrochemical double-layer capacitors (EDLCs). Specific capacitances of up to 135 F g−1 in an aqueous electrolyte (1 M sulfuric acid) and 174 F g−1 in ionic liquid (1-ethyl-3-methylimidazolium tetrafluoroborate) are achieved when measured in a symmetric cell configuration up to voltages of 0.6 and 2.5 V, respectively. 90% of the capacitance can be utilized at high current densities (20 A g−1) and room temperature rendering Kroll-carbons as attractive materials for EDLC electrodes resulting in high capacities and high rate performance due to the combined presence of micro- and mesopores.
80

Herstellung und Charakterisierung von Nanodots in dünnen Blockcopolymerfilmen / Synthesis and characterization of nanodots from thin block copolymer films

Böhme, Marcus 24 January 2012 (has links) (PDF)
Die in Blockcopolymeren beobachtete Mikrophasenseparation ermöglicht die Herstellung von periodischen Strukturen mit einer charakteristische Länge kleiner 100 nm. In der vorliegenden Arbeit wurden dünne Blockcopolymerfilme als Template zur Herstellung von metallischen, keramischen bzw. polymeren Nanodots untersucht. Derartige Nanodots könnten in magnetischen Datenspeichern, Superkondensatoren oder als photonische Kristalle eingesetzt werden. / The microphase seregation observed in block copolymers enables the generation of mesoscopic structures with characteristic lengths below 100 nm on a large scale. In this thesis, thin block copolymer films were investigated as templates for the synthesis of metallic, ceramic and polymeric nanodots. Such nanodots could be used in magnetic data storage devices, supercapacitors or photonic crystals.

Page generated in 0.2538 seconds