• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 6
  • 4
  • Tagged with
  • 28
  • 28
  • 27
  • 26
  • 25
  • 14
  • 14
  • 12
  • 12
  • 12
  • 9
  • 8
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Density functional study of the electronic and magnetic properties of selected transition metal complexes

Martin, Claudia 27 February 2014 (has links) (PDF)
Die vorliegende Promotionsarbeit “Density functional study of the electronic and magnetic properties of selected transition metal complexes” beschäftigt sich mit dem Zusammenhang zwischen strukturellen Merkmalen sowie elektronischen und magnetischen Eigenschaften von Einzelmolekül-Magneten. Im Wesentlichen konnte dabei gezeigt werden, dass die magnetischen Eigenschaften sowohl von strukturellen Merkmalen als auch von den elektronischen Eigenschaften bestimmt werden. Des Weiteren ergab sich, dass verschiedene Kenngrößen der magnetischen Eigenschaften (im speziellen der magnetische Grundzustand S sowie die magnetische Anisotropie D) miteinander korreliert sind. Dies ist im Besonderen für eine mögliche Anwendung von Einzelmolekül-Magneten im Bereich der Datenspeicherung von Bedeutung.
12

Computational analysis of electronic properties and mechanism of formation of endohedral fullerenes and graphene with Fe atoms: Computational analysis of electronic properties and mechanism of formation of endohedral fullerenes and graphene with Fe atoms

Deng, Qingming 05 February 2016 (has links)
In this thesis, a series of computational studies based on density functional theory (DFT) and density functional tight-binding (DFTB) is presented to deeply understand experimental results on the synthesis of endohedral fullerenes and graphene/iron hybrids at atomic level. In the first part, a simple and efficient model is proposed to evaluate the strain experienced by clusters encapsulated in endohedral metallofullerenes (EMFs). Calculations for the sole cluster, either in the neutral or the charged state, cannot be used for this goal. However, when the effect of the carbon cage is mimicked by small organic π-systems (such as pentalene and sumanene), the cluster has sufficient freedom to adopt the optimal configuration, and therefore the energetic characteristics of the EMF-induced distortion of the cluster can be evaluated. Both nitride and sulfide clusters were found to be rather flexible. Hence, they can be encapsulated in carbon cages of different size and shape. For carbide M2C2 cluster the situation is more complex. The optimized cluster can adopt either butterfly or linear shapes, and these configurations have substantially different metal-metal distance. Whereas for Sc2C2 both structures are isoenergetic, linear form of the Y2C2 cluster is substantially less stable than the butterfly-shaped configuration. These results show that phenomenon of the “nanoscale fullerene compression” once proposed by Zhang et al. (J. AM. CHEM. SOC. (2012),134(20)) should be “nanoscale fullerene stretching”. Finally, the results also reveal that both Ti2S and Ti2C2 cluster are strained in corresponding EMF molecules, but the origin of the strain is opposite: C78-D3h(5) cage imposes too long Ti···Ti distance for the sulfide cluster and too short distance for the carbide cluster. In the second part of the thesis, possible fullerene geometries and electronic structures have been explored theoretically for the species detected in mass spectra of the Sc-EMF extract synthesized using CH4 as a reactive gas. Two most promising candidates, namely Sc4C@C80-Ih(7) and Sc4C3@C80-Ih(7), have been identified and further studied at the DFT level. For Sc4C@C80, the tetrahedral Sc4 cluster with the central μ4-C atom was found to be 10 kJ/mol more stable than the square cluster. For Sc4C3@C80, the calculation showed that the most stable is the Sc4C3 cluster in which the triangular C3 moiety is η3- and η2-coordinated to Sc atoms. Whereas Sc4C@C80 has rather small HOMO-LUMO gap and low ionization potential, the HOMO-LUMO gap of Sc4C3@C80 is substantially higher and exceeds that of Sc4C2@C80. In the third part, computational studies of structures and reactivity are described for a new type of EMFs with a heptagon that has been produced in the arc-discharge synthesis. DFT computations predict that LaSc2N@Cs(hept)-C80 is more stable than LaSc2N@D5h-C80, so the former should be synthesized in much higher yield than observed. This disagreement may be ascribed to the kinetic factors rather than thermodynamic stability. Because of prospective applications of this EMFs by introducing functional groups, the influence of the heptagon on the chemical properties have been further evaluated. Thermodynamically and kinetically preferred reaction sites are studied computationally for Prato and Bingel-Hirsch cycloaddition reactions. In both types of reactions the heptagon is not affected, and chemical reactivity is determined by the adjacent pentalene units. Thermodynamically controlled Prato addition is predicted to proceed regioselectively across the pentagon/pentagon edges, whereas the most reactive sites in kinetically-controlled Bingel-Hirsch reaction are the carbon atoms next to the pentagon/pentagon edge. Fourth, although various EMFs have been successfully synthesized and characterized, the formation mechanism is still not known in details, and hence control of the synthesis products is rather poor. Therefore, EMF self-assembly process in Sc/carbon vapor in the presence and absence of cooling gas (helium) and reactive gas (NH3 and CH4) is systematically investigated using quantum chemical molecular dynamics (QM/MD) simulations based on the DFTB potentials. The cooling gas effect is that the presence of He atoms accelerates formation of pentagons and hexagons and reduces the size of formed carbon cages in comparison to the analogous He-free simulations. As a result, the Sc/C/He system yields a large number of successful trajectories (i.e. leading to the Sc-EMFs) with more realistic cage-size distribution than the Sc/C system. Encapsulation of Sc atoms within the carbon cage was found to proceed via two parallel mechanisms. The main mechanism involves nucleation of the several hexagons and pentagons with Sc atoms already at the early stages of the carbon vapor condensation. In such proto-cages, both Sc–C σ-bonds and coordination bonds between Sc atoms and the π-system of the carbon network are present. Sc atoms are thus rather labile and can move along the carbon network, but the overall bonding is sufficiently strong to prevent dissociation even at high temperatures. Further growth of the carbon cage results in encapsulation of one or two Sc atoms within the forming fullerene. Another encapsulation mechanism is observed in rare cases. In this process, the closed cage is formed with Sc being a part of the carbon network, i.e. being bonded by three or four Sc–C σ-bonds. However, such intermediates are found to be unstable, and transform into the endohedral fullerenes within few picoseconds of annealing. In perfect agreement with experimental studies, extension of the simulation to Fe and Ti showed that Fe-EMFs are not formed at all, whereas Ti is prone to form Ti-EMFs with small cage sizes, including Ti@C28-Td and Ti@C30-C2v(3). The role of “reactive gas” in the EMF synthesis is revealed in dedicated simulations of the fullerene formation in the presence of several molecules of CH4 or NH3. When concentration of reactive gas is high, carbon vapor tends to form graphene flakes or other carbon species terminated by hydrogen atoms, whereas the yield of empty fullerenes is very low. Conversely, with additional metal atoms (Sc) and the same number of NH3 molecules, the yield of fullerenes constantly increase from 5 to 65% which is ascribed to the catalytic activity of metal atoms in the nucleation of carbon cages already at early stage. Moreover, due to the presence of hydrogen atoms from the reactive gas, the carbon cage formation requires much longer time, which provides sufficient reaction time to encapsulate 3 or 4 Sc atoms within one cage. It explains preferential formation of clusterfullerenes in experiments with reactive gas. At the same time, monometallofullerenes and dimetallofullerenes are the main products in absence of reactive gas. We also provide possible growth mechanisms of carbide and cyano-clusterfullerenes in details to elucidate how the intracluster goes into the cage. A possible growth mechanism of nitride clusterfullerenes has been proposed based on DFT results. In the last part, a free-standing crystalline single-atom thick layer of Fe has been studied theoretically. By investigating the energy difference, ΔE, between a suspended Fe monolayer and a nanoparticle using the equivalent number of Fe atoms, one can estimate that the largest stable membrane should be ca. 12 atoms wide or 3 × 3 nm2 which is in excellent agreement with the experimental observation. Otherwise, the possibility of C, O, N atoms embedded into the Fe membrane can been fully excluded by DFTB and DFT simulations, which agrees with electron energy loss spectroscopy (EELS) measurement. A significantly enhanced magnetic moment for single atom thick Fe membranes (3.08 μB) is predicted by DFT as compared to the bulk BCC Fe (2.1 μB), which originates from the 2D nature of the Fe membrane since the dz2 orbital is out-of-plane while the dxy orbital is in-plane.
13

All in situ ultra-high vacuum study of Bi2Te3 topological insulator thin films

Höfer, Katharina 24 February 2017 (has links)
The term "topological insulator" (TI) represents a novel class of compounds which are insulating in the bulk, but simultaneously and unavoidably have a metallic surface. The reason for this is the non-trivial band topology, arising from particular band inversions and the spin-orbit interaction, of the bulk. These topologically protected metallic surface states are characterized by massless Dirac dispersion and locked helical spin polarization, leading to forbidden back-scattering with robustness against disorder. Based on the extraordinary features of the topological insulators an abundance of new phenomena and many exciting experiments have been proposed by theoreticians, but still await their experimental verification, not to mention their implementation into applications, e.g. the creation of Majorana fermions, advanced spintronics, or the realization of quantum computers. In this perspective, the 3D TIs Bi2Te3 and Bi2Se3 gained a lot of interest due to their relatively simple electronic band structure, having only a single Dirac cone at the surface. Furthermore, they exhibit an appreciable bulk band gap of up to ~ 0.3 eV, making room temperature applications feasible. Yet, the execution of these proposals remains an enormous experimental challenge. The main obstacle, which thus far hampered the electrical characterization of topological surface states via transport experiments, is the residual extrinsic conductivity arising from the presence of defects and impurities in their bulk, as well as the contamination of the surface due to exposure to air. This thesis is part of the actual effort in improving sample quality to achieve bulk-insulating Bi2Te3 films and study of their electrical properties under controlled conditions. Furthermore, appropriate capping materials preserving the electronic features under ambient atmosphere shall be identified to facilitate more sophisticated ex-situ experiments. Bi2Te3 thin films were fabricated by molecular beam epitaxy (MBE). It could be shown that, by optimizing the growth conditions, it is indeed possible to obtain consistently bulk-insulating and single-domain TI films. Hereby, the key factor is to supply the elements with a Te/Bi ratio of ~8, while achieving a full distillation of the Te, and the usage of substrates with negligible lattice mismatch. The optimal MBE conditions for Bi2Te3 were found in a two-step growth procedure at substrate temperatures of 220°C and 250°C, respectively, and a Bi flux rate of 1 Å/min. Subsequently, the structural characterization by high- and low-energy electron diffraction, photoelectron spectroscopy, and, in particular, the temperature-dependent conductivity measurements were entirely done inside the same ultra-high vacuum (UHV) system, ensuring a reliable record of the intrinsic properties of the topological surface states. Bi2Te3 films with thicknesses ranging from 10 to 50 quintuple layers (QL; 1QL~1 nm) were fabricated to examine, whether the conductivity is solely arising from the surface states. Angle resolved photoemission spectroscopy (ARPES) demonstrates that the chemical potential for all these samples is located well within the bulk band gap, and is only intersected by the topological surface states, displaying the characteristic linear dispersion. A metallic-like temperature dependency of the sheet resistance is observed from the in-situ transport experiments. Upon going from 10 to 50QL the sheet resistance displays a variation by a factor 1.3 at 14K and of 1.5 at room temperature, evidencing that the conductivity is indeed dominated by the surface. Low charge carrier concentrations in the range of 2–4*10^12 cm^−2 with high mobility values up to 4600 cm2/Vs could be achieved. Furthermore, the degradation effect of air exposure on the conductance of the Bi2Te3 films was quantified, emphasizing the necessity to protect the surface from ambient conditions. Since the films behave inert to pure oxygen, water/moisture is the most probable source of degeneration. Moreover, epitaxially grown elemental tellurium was identified as a suitable capping material preserving the properties of the intrinsically insulating Bi2Te3 films and protecting from alterations during air exposure, facilitating well-defined and reliable ex-situ experiments. These findings serve as an ideal platform for further investigations and open the way to prepare devices that can exploit the intrinsic features of the topological surface states.:Abstract Kurzfassung Acronyms List of Symbols Introduction 1 Topological insulators 1.1 Basic theory of topological insulators 1.2 3D topological insulator materials: bismuth chalcogenides 2 Experimental techniques 2.1 General layout of the UHV-system 2.2 Molecular beam epitaxy 2.3 Structural and spectroscopic characterization 2.3.1 RHEED and LEED 2.3.2 Photoelectron spectroscopy 2.3.3 Ex situ x-ray diffraction 2.4 In situ electrical resistance measurements 2.4.1 In situ transport setup 2.4.2 Measurement equipment and operation modes 2.5 Substrates and sample holders 3 MBE growth and structural characterization of Bi2Te3 thin films 3.1 Bi2Te3 growth optimization and in situ structural characterization 3.1.1 1-step growth on Al2O3 (0001) 3.1.2 2-step growth on Al2O3 (0001) 3.1.3 2-step growth on BaF2 (111) 3.2 Ex situ structural characterization 4 In situ spectroscopy and transport properties of Bi2Te3 thin films 4.1 In situ spectroscopy of Bi2Te3 thin films 4.1.1 XPS 4.1.2 ARPES 4.2 Combined ARPES and in situ electrical resistance measurements of bulk-insulating Bi2Te3 thin films 4.2.1 Quality of the in situ electrical sample contacts 4.2.2 Verification of the intrinsic conduction through topological surface states of bulk-insulating Bi2Te3 thin films 5 Effect of surface contaminants on the TI properties 5.1 Effect of air exposure on the electrical conductivity of Bi2Te3 surfaces 5.2 Determination of the contaminants causing degradation of the TI properties 5.3 Long-time resistance behavior of a Bi2Te3 film exposed to minimal traces of contaminants 6 Protective capping of bulk-insulating Bi2Te3 thin films 6.1 Capping with BaF2 6.1.1 MBE growth and structure of BaF2 on Bi2Te3 thin films 6.1.2 Electron spectroscopy and electrical transport properties of BaF2 capped Bi2Te3 6.2 Capping with tellurium 6.2.1 MBE growth and structure of Te on Bi2Te3 thin films 6.2.2 Photoelectron spectroscopy and electrical transport properties of Te capped Bi2Te3 6.2.3 De-capping of Te 6.2.4 Efficiency of Te capping against air exposure 7 Conclusion and outlook Bibliography Versicherung Curriculum vitae Veröffentlichungen / Der Begriff "Topologischer Isolator" (TI) beschreibt eine neuartige Klasse von Verbindungen deren Inneres (engl. Bulk) isolierend ist, dieses Innere aber gleichzeitig und zwangsläufig eine metallisch leitende Oberfläche aufweist. Dies ist begründet in der nicht-trivialen Topologie dieser Materialien, welche durch eine spezielle Invertierung einzelner Bänder in der Bandstruktur und der Spin-Bahn-Kopplung im Materialinneren hervorgerufen ist. Diese topologisch geschützten, metallischen Oberflächenzustände sind gekennzeichnet durch eine masselose Dirac Dispersionsrelation und gekoppelte Helizität der Spinpolarisation, welche die Rückstreuung der Ladungsträger verbietet und somit zur Stabilisierung der Zustände gegenüber Störungen beiträgt. Auf Grundlage dieser außergewöhnlichen Merkmale haben Theoretiker eine Fülle neuer Phänomene und spannender Experimente vorhergesagt. Deren experimentelle Überprüfung steht jedoch noch aus, geschweige denn deren Umsetzung in Anwendungen, wie zum Beispiel die Erzeugung von Majorana Teilchen, fortgeschrittene Spintronik, oder die Realisierung von Quantencomputern. Aufgrund ihrer relativ einfachen Bandstruktur, welche nur einen Dirac-Kegel an der Oberfläche aufweist, haben die 3D TI Bi2Te3 und Bi2Se3 in den letzten Jahren großes Interesse erlangt. Weiterhin besitzen diese Materialien eine merkliche Bandlücke von bis zu ~0,3 eV, welche sogar Anwendungen bei Raumtemperatur ermöglichen könnten. Dennoch ist deren experimentelle Umsetzung nachwievor eine enorme Herausforderung. Das Haupthindernis, welches bis jetzt insbesondere die elektrische Charakterisierung the topologischen Oberflächenzustände behindert hat, ist die zusätzliche Leitfähigkeit des Materialinneren, welche durch Kristalldefekte und Beimischungen, sowie die Verunreinigung der Probenoberfläche durch Luftexposition bedingt wird. Die vorliegende Arbeit liefert einen Beitrag zu aktuellen den Anstrengungen in der Verbesserung der Probenqualität der TI um die Leitfähigkeit des Materialinneren zu unterdrücken, sowie die anschließende Untersuchung der elektrischen Eigenschaften unter kontrollierten Bedingungen durchzuführen. Weiterhin sollen geeignete Deckschichten identifiziert werden, welche die besonderen elektronischen Merkmale der TI nicht beeinflussen sowie diese gegen äußere Einflüsse schützen, und somit die Durchführung anspruchsvoller ex situ Experimente ermöglichen können. Die untersuchten Bi2Te3 Schichten wurden mittels Molekularstrahlepitaxie (MBE) hergestellt. Es konnte gezeigt werden, dass es allein durch Optimierung der Wachstumsbedingungen möglich ist Proben herzustellen, die gleichbleibend isolierende Eigenschaften des TI Inneren aufweisen und Eindomänen-Ausrichtung besitzen. Die zentralen Faktoren sind hierbei die Aufrechterhaltung eines Flussratenverhältnisses von Te/Bi ~8 der einzelnen Elemente, sowie die Wahl einer ausreichend hohen Substrattemperatur, um ein vollständiges Abdampfen (Destillation) des überschüssigen Tellur zu erreichen. Weiterhin müssen Substrate mit gut angepassten Gitterparametern verwendet werden, welches bei BaF2 (111) gegeben ist. Optimales MBE Wachstum konnte durch ein Zwei-Stufen Prozess bei Substrattemperaturen von 220°C und 250°C und einer Bi-Verdampfungsrate von 1 Å/min erreicht werden. Die nachfolgende Charakterisierung der strukturellen Eigenschaften, Photoelektronenspektroskopie, sowie temperaturabhängige Leitfähigkeitsmessungen wurden alle in einem zusammenhängenden Ultrahochvakuum-System durchgeführt. Auf diese Weise wird eine zuverlässige Erfassung der intrinsischen Eigenschaften der TI sichergestellt. Zur Überprüfung, ob die Leitfähigkeit der Proben tatsächlich nur durch die Oberflächenzustände hervorgerufen wird, wurden Filme mit Schichtdicken im Bereich von 10 bis 50 Quintupel-Lagen (QL; 1QL~ 1 nm) hergestellt und charakterisiert. Winkelaufgelöste Photoelektronenspektroskopie (ARPES) belegt, dass das chemische Potential (Fermi-Niveau) in allen Proben innerhalb der Bandlücke der Bandstruktur des Materialinneren liegt und nur von den topologisch geschützten Oberflächenzuständen gekreuzt wird, welche die charakteristische lineare Dirac Dispersionsrelation aufweisen. Die temperaturabhängigen Widerstandsmessungen zeigen ein metallisches Verhalten aller Proben. Bei der Variation der Schichtdicke von 10 zu 50QL wird eine Streuung des Flächenwiderstandes vom Faktor 1,3 bei 14K und 1,5 bei Raumtemperatur beobachtet. Dies beweist, dass die gemessene Leitfähigkeit vorrangig durch die topologisch geschützten Oberflächenzustände hervorgerufen wird. Eine geringe Oberflächenladungsträgerkonzentration im Bereich von 2–4*10^12 cm^−2 und hohe Mobilitätswerte von bis zu 4600 cm2/Vs wurden erreicht. Weiterhin wurden die negativen Auswirkungen auf die Eigenschaften der TI durch Luftexposition quantifiziert, welches die Notwendigkeit belegt, die Oberfläche der TI vor Umgebungseinflüssen zu schützen. Die Proben verhalten sich inert gegenüber reinem Sauerstoff, daher ist Wasser aus der Luftfeuchte höchstwahrscheinlich der Hauptgrund für die beobachtbare Verschlechterung. Darüber hinaus konnte epitaktisch gewachsenes Tellur als geeignete Deckschicht ausfindig gemacht werden, welches die Eigenschaften der Bi2Te3 Filme nicht beeinflusst, sowie gegen Veränderungen durch Luftexposition schützt. Die gewonnenen Erkenntnisse stellen eine ideale Grundlage für weiterführende Untersuchungen dar und ebnen den Weg zur Entwicklung von Bauelementen welche die spezifischen Besonderheiten der topologischen Oberflächenzustände.:Abstract Kurzfassung Acronyms List of Symbols Introduction 1 Topological insulators 1.1 Basic theory of topological insulators 1.2 3D topological insulator materials: bismuth chalcogenides 2 Experimental techniques 2.1 General layout of the UHV-system 2.2 Molecular beam epitaxy 2.3 Structural and spectroscopic characterization 2.3.1 RHEED and LEED 2.3.2 Photoelectron spectroscopy 2.3.3 Ex situ x-ray diffraction 2.4 In situ electrical resistance measurements 2.4.1 In situ transport setup 2.4.2 Measurement equipment and operation modes 2.5 Substrates and sample holders 3 MBE growth and structural characterization of Bi2Te3 thin films 3.1 Bi2Te3 growth optimization and in situ structural characterization 3.1.1 1-step growth on Al2O3 (0001) 3.1.2 2-step growth on Al2O3 (0001) 3.1.3 2-step growth on BaF2 (111) 3.2 Ex situ structural characterization 4 In situ spectroscopy and transport properties of Bi2Te3 thin films 4.1 In situ spectroscopy of Bi2Te3 thin films 4.1.1 XPS 4.1.2 ARPES 4.2 Combined ARPES and in situ electrical resistance measurements of bulk-insulating Bi2Te3 thin films 4.2.1 Quality of the in situ electrical sample contacts 4.2.2 Verification of the intrinsic conduction through topological surface states of bulk-insulating Bi2Te3 thin films 5 Effect of surface contaminants on the TI properties 5.1 Effect of air exposure on the electrical conductivity of Bi2Te3 surfaces 5.2 Determination of the contaminants causing degradation of the TI properties 5.3 Long-time resistance behavior of a Bi2Te3 film exposed to minimal traces of contaminants 6 Protective capping of bulk-insulating Bi2Te3 thin films 6.1 Capping with BaF2 6.1.1 MBE growth and structure of BaF2 on Bi2Te3 thin films 6.1.2 Electron spectroscopy and electrical transport properties of BaF2 capped Bi2Te3 6.2 Capping with tellurium 6.2.1 MBE growth and structure of Te on Bi2Te3 thin films 6.2.2 Photoelectron spectroscopy and electrical transport properties of Te capped Bi2Te3 6.2.3 De-capping of Te 6.2.4 Efficiency of Te capping against air exposure 7 Conclusion and outlook Bibliography Versicherung Curriculum vitae Veröffentlichungen
14

Density functional study of the electronic and magnetic properties of selected transition metal complexes

Martin, Claudia 29 November 2013 (has links)
Die vorliegende Promotionsarbeit “Density functional study of the electronic and magnetic properties of selected transition metal complexes” beschäftigt sich mit dem Zusammenhang zwischen strukturellen Merkmalen sowie elektronischen und magnetischen Eigenschaften von Einzelmolekül-Magneten. Im Wesentlichen konnte dabei gezeigt werden, dass die magnetischen Eigenschaften sowohl von strukturellen Merkmalen als auch von den elektronischen Eigenschaften bestimmt werden. Des Weiteren ergab sich, dass verschiedene Kenngrößen der magnetischen Eigenschaften (im speziellen der magnetische Grundzustand S sowie die magnetische Anisotropie D) miteinander korreliert sind. Dies ist im Besonderen für eine mögliche Anwendung von Einzelmolekül-Magneten im Bereich der Datenspeicherung von Bedeutung.
15

On the electronic structure of layered sodium cobalt oxides

Kroll, Thomas 08 June 2007 (has links)
The discovery of an unexpectedly large thermopower accompanied by low resistivity and low thermal conductivity in NaxCoO2 raised significant research interest in these materials and let to a number of experimental and theoretical investigations. This interest has strongly been reinforced by the discovery of superconductivity in the hydrated compound Na0.35CoO2 •1.3H2O in 2003, and thus, NaxCoO2 experiences an again increasing attention. The similarity of the Na cobaltates to the high temperature superconductors (HTSC) - both are transition metal oxides and adopt a layered crystal structure with quasi-two-dimensional (Cu,Co)O2 layers - is an important aspect of the research activities. In contrast to the HTSC cuprates however, the CoO2 layers consist of edge sharing CoO6 octahedra which are distorted in such a way that the resulting local symmetry is trigonal. The trigonal coordination of the Co sites results in geometric frustration which favours unconventional electronic ground states. The geometrically frustrated CoO2 sublattice also exists in the nonhydrated parent compound NaxCoO2, which has been investigated in this work. The intercalation of water into the parent compound is expected to have little effect on the Fermi surface beside the increase in two dimensionality due to the effect of expansion. Upon lowering the symmetry from cubic to trigonal, the t2g states split into states with eg_and a1g symmetry. Measurements of polarisation and temperature dependent soft X-ray absorption have been performed on a wide doping range of NaxCoO2 single crystals. Beside the Co L_2,3-edges, the O K-edge and the Na K-edge have been measured. These measurements show strong polarisation dependencies especially for the excitations into the lower lying a1g energy level. In addition to that, also an unexpected polarisation dependence for higher energies has been observed, which should be absent in trigonal symmetry. These results point towards a deviation of the local trigonal symmetry of the CoO6 octahedra, which is temperature independent in a temperature range between 25 K and 372 K. This deviation was found to be different for Co3+ and Co4+ sites, which leads to a polaronic electron transport. Furthermore, a strong hybridisation between the Co and O ions has been found. In order to shed further light on the electronic structure of NaxCoO2, the electronic spectrum of a CoO6 cluster has been calculated including all interactions between 3d orbitals as well as hopping processes between Co and O and O and O ions. The ground state for two electronic occupations in the cluster (i.e. Co3+ and Co4+) that correspond nominally to all O in the O−2 oxidation state, and Co+3 or Co+4 has been obtained. Then, all excited states obtained by promotion of a Co 2p electron to a 3d electron, and the corresponding matrix elements are calculated. A fit of the observed experimental spectra is good and points out a large Co-O covalence and cubic crystal field effects, that result in low spin Co 3d configurations. The results indicate that the effective hopping between different Co atoms plays a major role in determining the symmetry of the ground state in the lattice. Remaining quantitative discrepancies with the XAS experiments are expected to come from composition effects of itineracy in the ground and excited states. Beside these points, results of photoemission spectroscopy, magnetisation measurements as well as resonant and non-resonant X-ray diffraction using high energy X-rays are shown and discussed. / Die Entdeckung unerwartet großer Thermokraft bei gleichzeitigem niedrigem Widerstand und niedriger thermischen Leitfähigkeit in NaxCoO2 führte zu einem großen wissenschaftlichem Interesse an diesen Materialien und zu einer großen Anzahl an experimentellen und theoretischen Arbeiten. Dieses Interesse steigerte sich noch einmal nach der Entdeckung von Supraleitung in der hydrierten Verbindung Na0.35CoO2 •1.3H2O im Jahre 2003. Die Ähnlichkeit der Na Kobaltate zu den Hochtemperatur-Supraleitern (HTSL) – beides sind Übergangsmetalloxide mit einer geschichteten Kristallstruktur in der quasi zwei dimensionale (Cu,Co)O2 Ebenen enthalten sind – ist ein wichtiger Aspekt moderner wissenschaftlicher Arbeiten. Im Gegensatz zu den HTSL Kupraten bestehen die CoO2 Ebenen aus CoO6 Oktaedern die über ihre Kanten verbunden sind und in der Art verzerrt sind, dass die resultierende Symmetrie trigonal ist. Die trigonale Anordnung der Co Plätze führt zu einer geometrischen Frustration und unkonventionellen elektronischen Grundzuständen. Diese geometrisch frustrierten CoO2 Untergitter existieren ebenfalls in den nicht hydrierten Mutterverbindungen NaxCoO2, welche in dieser Arbeit untersucht wurden. Interkalierung von Wasser in die Mutterverbindung hat nur einen kleinen Einfluss auf die Fermi Oberfläche und führt zu einem Anstieg des zwei dimensionalen Charakters durch den Effekt der Ausdehnung. Durch Verminderung der Symmetrie von kubisch zu trigonal splitten die vormals entarteten t2g Zustände auf in Zustände mit eg und a1g Symmetrie. Zur Bestimmung der elektronischen Struktur von NaxCoO2 wurden polarisations- und temperaturabhängige Messungen der Röntgenabsorption im weichen Röntgenbereich für einen großen Dotierungsbereich durchgeführt. Neben den Co L_2,3-Kanten wurden auch die O K-Kante und die Na K-Kante gemessen. Sie zeigen eine starke Polarisationsabhängigkeit speziell für Anregungen in die niederenergetischen a1g Level. Zusätzlich wurde eine unerwartete Polarisationsabhängigkeit bei höheren Energien gefunden, die für trigonalen Symmetrie so nicht auftauchen dürfte. Diese Ergebnisse weisen auf eine Abweichung von der lokalen trigonalen Symmetrie der CoO6 Oktaeder hin, welche Temperatur unabhängig ist in einem Temperaturbereich zwischen 25 und 372 Kelvin. Diese Abweichung ist unterschiedlich für Co3+ und Co4+ Ionen was wiederum auf einen polaronischen Transport hinweist. Zusätzlich wird deutlich, dass eine starke Co-O Hybridisierung existieren muss. Um weiteres Informationen über die elektronische Struktur von NaxCoO2 zu erhalten, wurde das elektronische Spektrum eines CoO6 Oktaeders berechnet in dem alle Wechselwirkungen zwischen 3d Orbitalen sowie Hüpfprozesse zwischen Co und O sowie O und O Ionen enthalten sind. Der Grundzustand für zwei elektronische Besetzungen in einem Cluster (d.h. Co3+ und Co4+) wurde bestimmt für O Ionen mit einer nominellen O-2 Oxidation sowie Co3+ und Co4+ Ionen. Im angeregten Zustand werden die entsprechenden Anregungen eines Co 2p Elektrons in einen unbesetzten 3d Zustand berücksichtigt und die entsprechenden Matrixelemente berechnet. Ein Fit an den experimentellen Daten ist gut und weist auf eine starke Co-O Kovalenz und auf einen starken Einfluss des kubischen Kristallfeldes hin, der zu einer Low-Spin Co 3d Konfiguration führt. Die Ergebnisse zeigen, dass ein effektives Hüpfen zwischen benachbarter Co Ionen eine große Rolle für die Symmetrie des Grundzustandes im Gitter spielt. Quantitative Unterschiede zwischen den experimentellen und theoretischen Daten kommen anscheinend von itineranten Effekten im Grund- und angeregten Zustand. Zusätzlich zu den oben kurz beschriebenen Ergebnissen werden in dieser Arbeit weitere Ergebnisse der Photoemissionsspektroskopie, der Magnetisierung sowie aus resonanter und nicht resonanter Röntgenbeugung mit harter Röntgenstrahlung gezeigt und diskutiert.
16

Structural, electronic and optical properties of cadmium sulfide nanoparticles / Strukturelle, elektronische und optische Eigenschaften von Cadmiumsulfid Nanoteilchen

Frenzel, Johannes 08 March 2007 (has links) (PDF)
In this work, the structural, electronic, and optical properties of CdS nanoparticles with sizes up to 4nm have been calculated using density-functional theory (DFT). Inaccuracies in the description of the unoccupied states of the applied density-functional based tight-binding method (DFTB) are overcome by a new SCF-DFTB method. Density-functional-based calculations employing linear-response theory have been performed on cadmium sulfide nanoparticles considering different stoichiometries, underlying crystal structures (zincblende, wurtzite, rocksalt), particle shapes (spherical, cuboctahedral, tetrahedral), and saturations (unsaturated, partly saturated, completely saturated). For saturated particles, the calculated onset excitations are strong excitonic. The quantum-confinement effect in the lowest excitation is visible as the excitation energy decreases towards the bulk band gap with increasing particle size. Dangling bonds at unsaturated surface atoms introduce trapped surface states which lie below the lowest excitations of the completely saturated particles. The molecular orbitals (MOs), that are participating in the excitonic excitations, show the shape of the angular momenta of a hydrogen atom (s, p). Zincblende- and wurtzite-derived particles show very similar spectra, whereas the spectra of rocksalt-derived particles are rather featureless. Particle shapes that confine the orbital wavefunctions strongly (tetrahedron) give rise to less pronounced spectra with lower oscillator strengths. Finally, a very good agreement of the calculated data to experimentally available spectra and excitation energies is found.
17

Untersuchung der elektronischen Struktur quasi-zweidimensionaler Einlagerungsverbindungen

Danzenbächer, Steffen 13 November 2001 (has links) (PDF)
Thema der vorliegenden Arbeit ist die Untersuchung ausgewählter niederdimensionaler Schichtgittersysteme, wobei das Hauptinteresse in der Erforschung der elektronischen Struktur im Zusammenhang mit Interkalationsexperimenten liegt. Einkristalline Graphit-, TiSe2- und TaSe2-Proben wurden vor und nach der Interkalation mit winkelaufgelöster Photoemission, Fermi- und Isoenergieflächenmessungen und Elektronenbeugung (LEED) analysiert. Als Interkalationsmaterialien wurden U, Eu, Gd und Cs verwendet. Die experimentellen Daten wurden mit Ergebnissen von LDA-LCAO-Bandstrukturrechnungen und Simulationen im Rahmen eines Single-Impurity-Anderson-Modells verglichen. Neben dem Einfluß unterschiedlicher Valenzelektronen der interkalierten Atome auf den Einlagerungsprozeß werden Fragen zum Lokalisierungsverhalten von 4f- und 5f-Zuständen und zu den Veränderungen in der Dimensionalität der Verbindungen durch die Einlagerung diskutiert. Ein weiterer Schwerpunkt dieser Arbeit befaßt sich mit Untersuchungen zur temperaturabhängigen Ausbildung von Ladungsdichtewellen in 1T-TaSe2. / Subject of the present thesis are investigations of selected low-dimensional layered lattice systems, with the principal goal to study the electronic structure in relation to intercalation experiments. Single-crystalline graphite-, TiSe2 - and TaSe2- samples were analyzed by angle-resolved photoemission, Fermi- and isoenergy-surface measurements, and low energy electron diffraction experiments before and after intercalation. U, Eu, Gd, and Cs were used as materials for the intercalation process. The experimental results were compared with theoretical LDA-LCAO band-structure calculations and with simulations in the framework of a single-impurity Anderson model. In addition to the influence of different numbers of valence electrons from intercalated atoms, questions concerning the localization of 4f and 5f states and changes in the dimensionality of the compounds due to the intercalation process are discussed. Investigations of the temperature dependent formation of charge density waves in 1T-TaSe2 complete this work.
18

Besetzte und unbesetzte elektronische Struktur von geordneten Dünnschichtverbindungen der Seltenen Erden Eu und Yb mit den Übergangsmetallen Pd und Ni

Wieling, Sönke 26 August 2003 (has links) (PDF)
The present thesis deals with the occupied and unoccupied electronic states of intermetallic compounds of the rare-earth metals (RE) Eu and Yb with the transition metals Pd and Ni. The compounds were prepared in-situ as epitaxial thin films on single-crystalline substrates. For comparison, the experiments were extended to a Ba/Pd compound, which was prepared in the same way. All samples were characterised by low-energy electron diffraction (LEED), photoelectron spectroscopy (PES) and inverse photoemission (IPE). For the IPE experiments an appropriate spectrometer was built. It consists of a combination of a toroidal-grating and a crystal monochromator and enables experiments with photon energies in the range of 10-25 eV and at 1486.6 eV. LEED experiments reveal the formation of a AuCu3 structure with a (111) surface orientation for RE/Pd systems, while the formation of a CaCu5-structure with (0001) surface orientation for the Ba/Pd and Eu/Ni compounds was found. The Eu compounds show a surface-valence transition from the trivalent to the divalent configuration. An ordered overstructure is formed at the surface despite an increase of the ionic volume of Eu by about 40 %. The measured electronic structure is in good accordance with results of local-density-approximation band-structure calculations. / In der vorliegenden Dissertation werden die besetzten und unbesetzten elektronischen Zustände intermetallischer Verbindungen der Seltenen Erden (SE) Eu und Yb mit den Übergangsmetallen Pd und Ni betrachtet. Die Verbindungen wurden als epitaktische Dünnschichten in-situ auf einkristallinen Substraten präpariert und mittels niederenergetischer Elektronenbeugung (LEED), Photoelektronenspektroskopie (PES) und inverser Photoemission (IPE) charakterisiert. Zu Vergleichszwecken wurde die Untersuchung zusätzlich auf eine auf gleiche Weise präparierte Ba/Pd-Verbindung ausgedehnt. Für die Durchführung der IPE-Experimente wurde ein entsprechendes Spektrometer aufgebaut. Die Kombination aus einem Toroidgitter- und einem Kristallmonochromator ermöglicht wahlweise Experimente im Photonenenergiebereich von 10-25 eV und bei 1486,6 eV. Die Analysen der LEED-Daten ergaben für die SE/Pd-Systeme die Bildung der AuCu3-Struktur mit einer (111)-Oberflächenorientierung, für die Ba/Pd- und die Eu/Ni-Verbindungen die der CaCu5-Struktur mit (0001)"=Oberflächenorientierung. Die Eu-Verbindungen zeigen dabei Oberflächenvalenzübergänge von der drei- zu der zweiwertigen Konfiguration mit Ausbildung geordneter Überstrukturen an der Oberfläche trotz einer 40 prozentigen Zunahme des Eu-Ionenvolumens. Die beobachtete elektronische Struktur stimmt gut mit den Ergebnissen von Bandstrukturrechnungen in der lokalen Dichtenäherung überein.
19

Synthese von Edelmetallclustern auf S-Layern und deren katalytische Eigenschaften / Noble metal cluster synthesis on bacterial surface proteins and catalytic properties

Kirchner, Alexander 28 June 2005 (has links) (PDF)
Bakterielle Zellhüllenproteine (S-Layer) können als formgebende Muster für die bottom-up Materialsynthese Verwendung finden. Auf S-Layern von Bacillus sphaericus und Sporosarcina ureae lassen sich nasschemisch Platin- bzw. Palladiumcluster abscheiden, die sich durch ihren gleichmäßig geringen Durchmesser und ihre hohe laterale Dichte auszeichnen. Am Beginn der vorliegenden Arbeit steht die Charakterisierung des Proteintemplates, welches grundlegenden Einfluss auf die sich bildenden Edelmetallcluster hat. Die Topographie der S-Layeroberfläche wird atomkraftmikroskopisch untersucht. Durch Photoemissions- und NEXAFS-Spektroskopie werden Aussagen zur elektronischen Struktur des Proteins gewonnen, die nach entsprechender Interpretation Erklärungen für das Verhalten des Proteintemplates liefern. Daneben sind Syntheseparameter ausschlaggebend für das Erscheinungsbild des dispersen Metalls. Insbesondere der Einfluss des Reduktionsmittels auf die Clustergröße wird elektronenmikroskopisch und durch Kleinwinkelstreuung untersucht. Die katalytische Aktivität von auf gamma-Al2O3 und SiC immobilisierten metallisierten S-Layern für die Oxidation ausgewählter Kohlenwasserstoffe und Kohlenmonoxid wird bestimmt. Außerdem werden Verfahren zur Erzeugung von Gold- und Silberclustern auf S-Layern vorgestellt.
20

Defect-induced local electronic structure modifications within the system SrO - SrTiO3 - TiO2

Zschornak, Matthias 05 August 2015 (has links) (PDF)
Owing to their versatile orbital character with both local and highly dispersive degrees of freedom, transition metal oxides span the range of ionic, covalent and metallic bonding. They exhibit a vast diversity of electronic phenomena such as high dielectric, piezoelectric, pyroelectric, ferroelectric, magnetic, multiferroic, catalytic, redox, and superconductive properties. The nature of these properties arises from sensitive details in the electronic structure, e.g. orbital mixing and orbital hybridization, due to non-stoichiometry, atomic displacements, broken symmetries etc., and their coupling with external perturbations. In the work presented here, these variations of the electronic structure of crystals due to structural and electronic defects have been investigated, exemplarily for the quasi-binary system SrO - SrTiO3 - TiO2. A number of binary and ternary structures have been studied, both experimentally as well as by means of electronic modeling. The applied methods comprise Resonant X-ray Scattering techniques like Diffraction Anomalous Fine Structure, Anisotropy of Anomalous Scattering and X-ray Absorption Fine Structure, and simultaneously extensive electronic calculations by means of Density Functional Theory and Finite Difference Method Near-Edge Structure to gain a thorough physical understanding of the underlying processes, interactions and dynamics. It is analyzed in detail how compositional variations, e.g. manifesting as oxygen vacancies or ordered stacking faults, alter the short-range order and affect the electronic structure, and how the severe changes in mechanical, optical, electrical as well as electrochemical properties evolve. Various symmetry-property relations have been concluded and interpreted on the basis of these modifications in electronic structure for the orbital structure in rutile TiO2, for distorted TiO6 octahedra and related switching mechanisms of the Ti valence, for elasticity and resistivity in strontium titanate, and for surface relaxations in Ruddlesden-Popper phases. Highlights of the thesis include in particular the methodical development regarding Resonant X-Ray Diffraction, such as the first use of partially forbidden reflections to get the complete phase information not only of the tensorial structure factor but of each individual atomic scattering tensor for a whole spectrum of energies, as well as the determination of orbital degrees of freedom and details of the partial local density of states from these tensors. On the material side, the most prominent results are the identification of the migration-induced field-stabilized polar phase and the exergonic redox behavior in SrTiO3 caused by defect migration and defect separation.

Page generated in 0.0742 seconds