• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 11
  • 5
  • 4
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 73
  • 68
  • 37
  • 20
  • 19
  • 13
  • 12
  • 11
  • 10
  • 9
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Early neurone loss in Alzheimer’s disease: cortical or subcortical?

Arendt, Thomas, Brückner, Martina K., Morawski, Markus, Jäger, Carsten, Gertz, Hermann-Josef January 2015 (has links)
Alzheimer’s disease (AD) is a degenerative disorder where the distribution of pathology throughout the brain is not random but follows a predictive pattern used for pathological staging. While the involvement of defined functional systems is fairly well established for more advanced stages, the initial sites of degeneration are still ill defined. The prevailing concept suggests an origin within the transentorhinal and entorhinal cortex (EC) from where pathology spreads to other areas. Still, this concept has been challenged recently suggesting a potential origin of degeneration in nonthalamic subcortical nuclei giving rise to cortical innervation such as locus coeruleus (LC) and nucleus basalis of Meynert (NbM). To contribute to the identification of the early site of degeneration, here, we address the question whether cortical or subcortical degeneration occurs more early and develops more quickly during progression of AD. To this end, we stereologically assesses neurone counts in the NbM, LC and EC layer-II in the same AD patients ranging from preclinical stages to severe dementia. In all three areas, neurone loss becomes detectable already at preclinical stages and is clearly manifest at prodromal AD/MCI. At more advanced AD, cell loss is most pronounced in the NbM > LC > layer-II EC. During early AD, however, the extent of cell loss is fairly balanced between all three areas without clear indications for a preference of one area. We can thus not rule out that there is more than one way of spreading from its site of origin or that degeneration even occurs independently at several sites in parallel.
62

Beyond AMPA and NMDA: Slow synaptic mGlu/TRPC currents : Implications for dendritic integration

Petersson, Marcus January 2010 (has links)
In order to understand how the brain functions, under normal as well as pathological conditions, it is important to study the mechanisms underlying information integration. Depending on the nature of an input arriving at a synapse, different strategies may be used by the neuron to integrate and respond to the input. Naturally, if a short train of high-frequency synaptic input arrives, it may be beneficial for the neuron to be equipped with a fast mechanism that is highly sensitive to inputs on a short time scale. If, on the contrary, inputs arriving with low frequency are to be processed, it may be necessary for the neuron to possess slow mechanisms of integration. For example, in certain working memory tasks (e. g. delay-match-to-sample), sensory inputs may arrive separated by silent intervals in the range of seconds, and the subject should respond if the current input is identical to the preceeding input. It has been suggested that single neurons, due to intrinsic mechanisms outlasting the duration of input, may be able to perform such calculations. In this work, I have studied a mechanism thought to be particularly important in supporting the integration of low-frequency synaptic inputs. It is mediated by a cascade of events that starts with activation of group I metabotropic glutamate receptors (mGlu1/5), and ends with a membrane depolarization caused by a current that is mediated by canonical transient receptor potential (TRPC) ion channels. This current, denoted ITRPC, is the focus of this thesis. A specific objective of this thesis is to study the role of ITRPC in the integration of synaptic inputs arriving at a low frequency, < 10 Hz. Our hypothesis is that, in contrast to the well-studied, rapidly decaying AMPA and NMDA currents, ITRPC is well-suited for supporting temporal summation of such synaptic input. The reason for choosing this range of frequencies is that neurons often communicate with signals (spikes) around 8 Hz, as shown by single-unit recordings in behaving animals. This is true for several regions of the brain, including the entorhinal cortex (EC) which is known to play a key role in producing working memory function and enabling long-term memory formation in the hippocampus. Although there is strong evidence suggesting that ITRPC is important for neuronal communication, I have not encountered a systematic study of how this current contributes to synaptic integration. Since it is difficult to directly measure the electrical activity in dendritic branches using experimental techniques, I use computational modeling for this purpose. I implemented the components necessary for studying ITRPC, including a detailed model of extrasynaptic glutamate concentration, mGlu1/5 dynamics and the TRPC channel itself. I tuned the model to replicate electrophysiological in vitro data from pyramidal neurons of the rodent EC, provided by our experimental collaborator. Since we were interested in the role of ITRPC in temporal summation, a specific aim was to study how its decay time constant (τdecay) is affected by synaptic stimulus parameters. The hypothesis described above is supported by our simulation results, as we show that synaptic inputs arriving at frequencies as low as 3 - 4 Hz can be effectively summed. We also show that τdecay increases with increasing stimulus duration and frequency, and that it is linearly dependent on the maximal glutamate concentration. Under some circumstances it was problematic to directly measure τdecay, and we then used a pair-pulse paradigm to get an indirect estimate of τdecay. I am not aware of any computational model work taking into account the synaptically evoked ITRPC current, prior to the current study, and believe that it is the first of its kind. We suggest that ITRPC is important for slow synaptic integration, not only in the EC, but in several cortical and subcortical regions that contain mGlu1/5 and TRPC subunits, such as the prefrontal cortex. I will argue that this is further supported by studies using pharmacological blockers as well as studies on genetically modified animals. / QC 20101005
63

Microcircuit structures of inhibitory connectivity in the rat parahippocampal gyrus

Barreda Tomás, Federico José 16 May 2023 (has links)
Komplexe Berechnungen im Gehirn werden durch das Zusammenspiel von exzitatorischen und hemmenden Neuronen in lokalen Netzwerken ermöglicht. In kortikalen Netzwerken, wird davon ausgegangen, dass hemmende Neurone, besonders Parvalbumin positive Korbzellen, ein „blanket of inhibition” generieren. Dieser Sichtpunkt wurde vor kurzem durch Befunde strukturierter Inhibition infrage gestellt, jedoch ist die Organisation solcher Konnektivität noch unklar. In dieser Dissertation, präsentiere ich die Ergebnisse unserer Studie Parvabumin positiver Korbzellen, in Schichten II / III des entorhinalen Kortexes und Präsubiculums der Ratte. Im entorhinalen Kortex haben wir dorsale und ventrale Korbzellen beschrieben und festgestellt, dass diese morphologisch und physiologisch ähnlich, jedoch in ihrer Konnektivität zu Prinzipalzellen dorsal stärker als ventral verbunden sind. Dieser Unterschied korreliert mit Veränderungen der Gitterzellenphysiologie. Ähnlich zeige ich im Präsubiculum, dass inhibitorische Konnektivität eine essenzielle Rolle im lokalen Netzwerk spielt. Hemmung im Präsubiculum ist deutlich spärlicher ist als im entorhinalen Kortex, was ein unterschiedliches Prinzip der Netzwerkorganisation suggeriert. Um diesen Unterschied zu studieren, haben wir Morphologie und Netzwerkeigenschaften Präsubiculärer Korbzellen analysiert. Prinzipalzellen werden über ein vorherrschendes reziprokes Motif gehemmt die durch die polarisierte Struktur der Korbzellaxone ermöglicht wird. Unsere Netzwerksimulationen zeigen, dass eine polarisierte Inhibition Kopfrichtungs-Tuning verbessert. Insgesamt zeigen diese Ergebnisse, dass inhibitorische Konnektivität, funktioneller Anforderungen der lokalen Netzwerke zur Folge, unterschiedlich strukturiert sein kann. Letztlich stelle ich die Hypothese auf, dass für lokale inhibitorische Konnektivität eine Abweichung von „blanket of inhibition― zur „maßgeschneiderten― Inhibition zur Lösung spezifischer computationeller Probleme vorteilhaft sein kann. / Local microcircuits in the brain mediate complex computations through the interplay of excitatory and inhibitory neurons. It is generally assumed that fast-spiking parvalbumin basket cells, mediate a non-selective -blanket of inhibition-. This view has been recently challenged by reports structured inhibitory connectivity, but it’s precise organization and relevance remain unresolved. In this thesis, I present the results of our studies examining the properties of fast-spiking parvalbumin basket cells in the superficial medial entorhinal cortex and presubiculum of the rat. Characterizing these interneurons in the dorsal and ventral medial entorhinal cortex, we found basket cells of the two subregions are more likely to be connected to principal cells in the dorsal compared to the ventral region. This difference is correlated with changes in grid physiology. Our findings further indicated that inhibitory connectivity is essential for local computation in the presubiculum. Interestingly though, we found that in this region, local inhibition is lower than in the medial entorhinal cortex, suggesting a different microcircuit organizational principle. To study this difference, we analyzed the properties of fast-spiking basket cells in the presubiculum and found a characteristic spatially organized connectivity principle, facilitated by the polarized axons of the presubicular fast-spiking basket cells. Our network simulations showed that such polarized inhibition can improve head direction tuning of principal cells. Overall, our results show that inhibitory connectivity is differently organized in the medial entorhinal cortex and the presubiculum, likely due to functional requirements of the local microcircuit. As a conclusion to the studies presented in this thesis, I hypothesize that a deviation from the blanket of inhibition, towards a region-specific, tailored inhibition can provide solutions to distinct computational problems.
64

Granular retrosplenial cortex layer 2/3 generates high frequency oscillation events coupled with hippocampal sharp wave-ripples and Str. LM high gamma

Arndt, Kaiser C. 11 June 2024 (has links)
Encoding and consolidation of memories are two processes within the hippocampus, and connected cortical networks, that recruit different circuit level dynamics to effectively process and pass information from brain region to brain region. In the hippocampal CA1 pyramidal layer local field potential (LFP), these processes take the form of theta and sharp wave ripples (SPW-Rs) for encoding and consolidation, respectively. As an animal runs through an environment, neurons become active at specific locations in the environment (place cells) increasing their firing rate, functionally representing these specific locations. These firing rate increases are organized within the local theta oscillations and sequential activation of many place cells creates a map of the environment. Once the animal stops moving and begins consummatory behaviors, such as eating, drinking, or grooming, theta activity diminishes, and large irregular activity (LIA) begins to dominate the LFP. Spontaneously, with the LIA, the place cells active during the experience are replayed during SPW-Rs in the same spatial order they were encountered in the environment. Both theta and SPW-R oscillations and their associated neuronal firing are necessary for effective place recognition as well as learning and memory. As such, interruption or termination of SPW-R events results in decreased learning performance over days. During exploration, the associated theta and sequential place cell activity is thought to encode the experience. During quiet restfulness or slow wave sleep (SWS), SPW-R events, that replay experience specific place sequences, are thought to be the signal by which systems consolidation progresses and the hippocampus guides cortical synaptic reorganization. The granular retrosplenial cortex (gRSC) is an associational area that exhibits high frequency oscillations (HFOs) during both hippocampal theta and SPW-Rs, and is potentially a period when the gRSC interprets incoming content from the hippocampus during encoding and systems consolidation. However, the precise laminar organization of synaptic currents supporting HFOs, whether the local gRSC circuitry can support HFOs without patterned input, and the precise coupling of hippocmapla oscillations to gRSC HFOs across brain states remains unknown. We aimed to answer these questions using in vivo, awake electrophysiological recordings in head-fixed mice that were trained to run for water rewards in a 1D virtual environment. We show that gRSC synaptic currents supporting HFOs, across all awake brain states, are exclusively localized to layer 2/3 (L2/3), even when events are detected within layer 5 (L5). Using focal optogenetics, both L2/3 and L5 can generate induced HFOs given a strong enough broad stimulation. Spontaneous gRSC HFOs occurring outside of SPW-Rs are highly comodulated with medial entorhinal cortex (MEC) generated high gamma in hippocampal stratum lacunosum moleculare. gRSC HFOs may serve a necessary role in communication between the hippocampus during SPW-Rs states and between the hippocampus, gRSC, and MEC during theta states to support memory consolidation and memory encoding, respectively. / Doctor of Philosophy / As an animal moves through an environment, individual neurons in the hippocampus, known as place cells, increase and decrease their firing rate as the animal enters and exits specific locations in the environment. Within an environment, multiple neurons become active in different locations, this cooperation of spiking in various locations creates a place map of the environment. Now let's say when the animal moved from one corner of the environment to another, place cells 'A', 'C', 'B', 'E', and 'D' became active in that order. This means, at any given point in the environment, the animal is standing in a venn-diagram-esque overlap of place fields, or locations individual place cells represent. A key question that entranced researchers for many years was how do these neurons know when to be active to not impinge on their neighbor's locations? The answer to this question rested with population electrical activity, known as the local field potential (LFP), that place cell activity is paced to. During active navigation through an environment, place cells activity is coupled to the phase of a slow ~8 hertz (Hz) theta oscillation. Within one theta cycle, or peak to peak, multiple place cells are active, representing the venn diagram of location the animal is in. Importantly, this theta activity and encoding of place cell activity is largely seen during active running or rapid eye movement (REM) sleep. During slow wave sleep (SWS), after an animal has experienced a specific environment and has created a place map, place cells are reactivated in the same order the animal experienced them in. From our previous example, the content of this reactivation would be the place cells 'A', 'C', 'B', 'E', and 'D' which all would be reactivated in that same order. These reactivations or replays occur during highly synchronous and fast LFP oscillations known as sharp wave-ripples (SPW-Rs). SPW-Rs are thought to be a key LFP event that drives memory consolidation and the eventual conversion of short-term memory into long-term memory. However, for consolidation to occur, connected cortical regions need to be able to receive and interpret the information within SPW-Rs. The granular retrosplenial cortex (gRSC) is one proposed region that serves this role. During SPW-Rs the superficial gRSC has been shown to exhibit high frequency oscillations (HFOs), which potentially serve the purpose for interpreting SPW-R content. However, HFOs have been reported during hippocampal theta, suggesting HFOs serve multiple purposes in interregional communication across different states. In this study, we found that naturally occurring gRSC HFOs occur exclusively in layer 2/3 across all awake brain states. Using focal optogenetic excitation we were able to evoke HFOs in both layer 2/3 and 5. Spontaneous gRSC HFOs occurring without SPW-Rs were highly comodulated with medial entorhinal cortex (MEC) generated high gamma in hippocampal stratum lacunosum moleculare. gRSC HFOs may serve a general role in supporting hippocampo-cortical dialogue during SPW-R and theta brain states to support memory consolidation and encoding, respectively.
65

Apport de l'étude des systèmes mnésiques mesiotemporaux au diagnostic précoce de la Maladie d'Alzheimer débutante / Contributions from studies on mesiotemporal memory systems to the diagnosis of early Alzeimer's disease

Didic-Hamel Cooke, Mira 11 January 2011 (has links)
Un nombre croissant de travaux chez l’animal et chez l’homme suggèrent que les différentes structures composant le lobe temporal interne (LTI) contribuent de manière différentielle à la mémoire déclarative. Chez l’homme, deux réseaux neuraux impliquant le LTI sont décrits : un réseau mésiotemporal antérieur, constitué de structures pour lesquelles les études chez les patients cérébro-lésés indiquent qu’elles contribueraient à la mémoire décontextualisée (mémoire des objets et mémoire sémantique ou mémoire du « quoi ») ; un réseau mésiotemporal postérieur, constitué d’autres structures pour lesquelles ces études suggèrent plutôt une implication dans la mémoire contextualisée (mémoire spatiale, épisodique ou mémoire du «où » et du « quand»). Dans la Maladie d’Alzheimer (MA), les dégénérescences neurofibrillaires, dont la distribution topographique est corrélée à la nature des déficits cognitifs, se développent initialement dans les cortex sous-hippocampiques - transentorhinal et entorhinal - qui sont des composants du réseau mésiotemporal antérieur, avant de s’étendre à l’hippocampe. Les éventuels déficits cognitifs en relation avec l’atteinte de cette région ne sont pas clairement identifiés dans la MA. Les travaux présentés dans ce mémoire sont centrés sur l’étude des cortex sous-hippocampiques avec les méthodes de la neuropsychologie et la neuroimagerie. Ils suggèrent que la MA aux stades les plus précoces pourrait représenter un « modèle » d’étude privilégié des systèmes mnésiques auxquels contribue le LTI. Ces résultats sont en faveur de l’utilité de l’évaluation de la mémoire décontextualisée dans le diagnostic de la MA débutante. / There is increasing evidence from experiments in rodents and non-human primates, as well as from human studies, to suggest that the different structures within the medial temporal lobe (MTL) differentially contribute to declarative memory. In the human brain, two neural networks implicating MTL structures have been described: an anterior MTL network that includes brain areas that contribute to context-free memory (object memory and semantic memory or memory for « what ») and a posterior MTL network that contributes to context-rich memory (spatial memory, episodic memory or memory for “where” and “when”). In Alzheimer’s disease (AD), neurofibrillary tangles (NFT), associated with cognitive signs, initially appear in the sub-hippocampal (transentorhinal and entorhinal) cortex, which are part of the anterior MTL network, before reaching the hippocampus. Potential cognitive deficits related to the dysfunction of this brain area in AD are not clearly identified. In the presented studies, the emphasis is placed on the investigation of sub-hippocampal corteces using a neuropsychological approach and neuroimaging techniques. Our findings suggest that the very earliest stages of AD could represent a “model” leading to a better understanding of memory systems that involve the MTL. They also provide evidence that evaluating context-free memory may be useful in the diagnosis of early AD.
66

Rôle du cortex entorhinal médian dans le traitement des informations spatiales : études comportementales et électrophysiologiques / Role of the medial entorhinal cortex in spatial information processing : behavioral and electrophysiological studies

Jacob, Pierre-Yves 24 January 2014 (has links)
Le travail de recherche réalisé au cours de cette thèse s'intéresse à la nature des représentations spatiales formées par le cortex entorhinal médian (CEM). Tout d'abord, nous montrons que le CEM code spécifiquement une information de distance, l'une des composantes nécessaires pour que l'animal puisse réaliser un type de navigation reposant sur les informations idiothétiques, appelé intégration des trajets. Puis, nous observons que le système vestibulaire, une source importante d'informations idiothétiques, influence l'activité thêta du CEM et permet la modulation de ce rythme thêta par la vitesse de déplacement des animaux. Ensuite, nous montrons que l'activité du CEM est nécessaire à la stabilité de l'activité des cellules de lieu. Parallèlement, nous observons que l'activité des cellules grilles du CEM est modifiée par les informations contenues dans l'environnement (allothétiques).Dans leur ensemble, nos résultats montrent que le CEM traite et intègre des informations idiothétiques mais aussi des informations allothétiques. Ces données suggèrent que la carte spatiale du CEM ne fournit pas une métrique universelle reposant sur les informations idiothétiques, mais possède un certain degré de flexibilité en réponse aux changements environnementaux. De plus, cette carte spatiale entorhinale n'est pas requise pour la formation de l'activité spatiale des cellules de lieu, contrairement à ce que suggère l'hypothèse dominante. / The work conducted during my PhD thesis was aimed at understanding the nature of the spatial representation formed by the the medial entorhinal cortex (MEC). First, we show that the MEC codes specifically distance information which is necessary for a type of navigation based on idiothetic cues, called path integration. Then, we observe that the vestibular system, an important source of idiothetic information in the brain, influences the MEC theta rhythm and its modulation by the animal velocity. In addition, we show that MEC activity is necessary for the stability of place cells activity. Finally, we observe that entorhinal grid cells activity is modified by the information available in the environment (allothetic information).Together, our results show that the MEC processes and integrates idiothetic information as well as allothetic information. These data suggest that the entorhinal map is not a universal metric based on idiothetic information, but is flexible and dependant on the information present in the environment. In addition, the entorhinal map is not required for the generation of place cells activity, contrary to the dominant hypothesis.
67

Neurální substrát magnetické kompasové orientace u myši C57BL/6J / Neural Basis of magnetic compass orientation in C57BL/6J mice

Bláhová, Veronika January 2014 (has links)
The ability to perceive the Earth's magnetic field has been demonstrated in a variety of animals, including representatives of all five classes of vertebrates. The physiological mechanisms underlying magnetic field sensation, however, remain largely unknown. Behavioral, physiological, neuroethological studies and studies using early response genes as neuronal activation markers indicated that a major role in the perception and processing of magnetic information play trigeminal, vestibular and visual systems. Subsequently, magnetic information seem to be integrated with multimodal sensory and motor information within the hippocampal-entorhinal system. In the majority of studies, however, birds have been used as model organisms. In this work I analyzed the neural substrate of magnetic compass orientation in the mouse strain C57BL/6J using markers c-Fos and Egr1. I found that all the aforementioned systems contain neurons responsive to the experimental magnetic fields. This finding demonstrates a complex processing of the magnetic information at level of the central nervous system.
68

Models of spatial representation in the medial entorhinal cortex

D'Albis, Tiziano 23 July 2018 (has links)
Komplexe kognitive Funktionen wie Gedächtnisbildung, Navigation und Entscheidungsprozesse hängen von der Kommunikation zwischen Hippocampus und Neokortex ab. An der Schnittstelle dieser beiden Gehirnregionen liegt der entorhinale Kortex - ein Areal, das Neurone mit bemerkenswerten räumlichen Repräsentationen enthält: Gitterzellen. Gitterzellen sind Neurone, die abhängig von der Position eines Tieres in seiner Umgebung feuern und deren Feuerfelder ein dreieckiges Muster bilden. Man vermutet, dass Gitterzellen Navigation und räumliches Gedächtnis unterstützen, aber die Mechanismen, die diese Muster erzeugen, sind noch immer unbekannt. In dieser Dissertation untersuche ich mathematische Modelle neuronaler Schaltkreise, um die Entstehung, Weitervererbung und Verstärkung von Gitterzellaktivität zu erklären. Zuerst konzentriere ich mich auf die Entstehung von Gittermustern. Ich folge der Idee, dass periodische Repräsentationen des Raumes durch Konkurrenz zwischen dauerhaft aktiven, räumlichen Inputs und der Tendenz eines Neurons, durchgängiges Feuern zu vermeiden, entstehen könnten. Aufbauend auf vorangegangenen theoretischen Arbeiten stelle ich ein Einzelzell-Modell vor, das gitterartige Aktivität allein durch räumlich-irreguläre Inputs, Feuerratenadaptation und Hebbsche synaptische Plastizität erzeugt. Im zweiten Teil der Dissertation untersuche ich den Einfluss von Netzwerkdynamik auf das Gitter-Tuning. Ich zeige, dass Gittermuster zwischen neuronalen Populationen weitervererbt werden können und dass sowohl vorwärts gerichtete als auch rekurrente Verbindungen die Regelmäßigkeit von räumlichen Feuermustern verbessern können. Schließlich zeige ich, dass eine entsprechende Konnektivität, die diese Funktionen unterstützt, auf unüberwachte Weise entstehen könnte. Insgesamt trägt diese Arbeit zu einem besseren Verständnis der Prinzipien der neuronalen Repräsentation des Raumes im medialen entorhinalen Kortex bei. / High-level cognitive abilities such as memory, navigation, and decision making rely on the communication between the hippocampal formation and the neocortex. At the interface between these two brain regions is the entorhinal cortex, a multimodal association area where neurons with remarkable representations of self-location have been discovered: the grid cells. Grid cells are neurons that fire according to the position of an animal in its environment and whose firing fields form a periodic triangular pattern. Grid cells are thought to support animal's navigation and spatial memory, but the cellular mechanisms that generate their tuning are still unknown. In this thesis, I study computational models of neural circuits to explain the emergence, inheritance, and amplification of grid-cell activity. In the first part of the thesis, I focus on the initial formation of grid-cell tuning. I embrace the idea that periodic representations of space could emerge via a competition between persistently-active spatial inputs and the reluctance of a neuron to fire for long stretches of time. Building upon previous theoretical work, I propose a single-cell model that generates grid-like activity solely form spatially-irregular inputs, spike-rate adaptation, and Hebbian synaptic plasticity. In the second part of the thesis, I study the inheritance and amplification of grid-cell activity. Motivated by the architecture of entorhinal microcircuits, I investigate how feed-forward and recurrent connections affect grid-cell tuning. I show that grids can be inherited across neuronal populations, and that both feed-forward and recurrent connections can improve the regularity of spatial firing. Finally, I show that a connectivity supporting these functions could self-organize in an unsupervised manner. Altogether, this thesis contributes to a better understanding of the principles governing the neuronal representation of space in the medial entorhinal cortex.
69

Padrão da atividade locomotora e expressão de EAAC1 e GLT1 no córtex pré-frontal e entorrinal de ratos criados em isolamento a partir do desmame / Pattern of locomotor activity and expression of EAAC1 and GLT1 in prefrontal and entorhinal cortex of rats reared in isolation from weaning

Bosaipo, Nayanne Beckmann 20 July 2012 (has links)
O estresse por isolamento social aplicado em ratos a partir do desmame e mantido durante o desenvolvimento encefálico tem sido utilizado como um modelo experimental de desordens psiquiátricas como a esquizofrenia. Tem sido demonstrado que o isolamento induz alterações morfológicas, comportamentais (como hiperatividade em um novo ambiente) e neuroquímicas semelhantes àquelas que ocorrem em humanos esquizofrênicos. Evidências sugerem que as sinapses glutamatérgicas sejam o sitio primário das anormalidades que ocorrem na esquizofrenia, sendo as alterações dopaminérgicas secundárias às glutamatérgicas. Nesse sentido, alterações nos mecanismos de regulação desta neurotransmissão pelos transportadores de glutamato podem contribuir para o desenvolvimento e/ou manutenção da esquizofrenia. Neste estudo analisamos o padrão de atividade locomotora e a expressão de transportadores de glutamato (EAAC1 e GLT1) no córtex pré-frontal e córtex entorrinal de ratos criados em isolamento a partir do desmame. Ratos Wistar machos (PND21) foram aleatoriamente alocados em 2 grupos (n=11-12): controle (agrupados, 3 animais/caixa) ou isolados (1 animal/caixa) por 10 semanas. Os animais foram testados no campo aberto (arena) durante 20 min. e registrados: números de cruzamentos (exploração horizontal), número de levantamentos (exploração vertical) e tempo despendido, tanto no centro como na periferia da arena. Os grupos foram comparados utilizando ANOVA ou teste t de Student (significante quando p 0.05). Os animais foram anestesiados (uretana-Sigma, 25%, 5ml/kg), perfundidos e os encéfalos retirados, congelados e posteriormente utilizados nos experimentos de imunoistoquímica. Secções (40m) do córtex pré-frontal (CPF) e córtex entorrinal (CE) foram utilizadas para o estudo da expressão de EAAC1 e GLT1. A criação em isolamento induziu hiperatividade, com um aumento no número total de cruzamentos em relação aos animais agrupados (F1,22=0,38; p<0,05), sendo mais consistente na periferia da arena e após 5 minutos de teste (73%, (F1,22=14,08; p<0,001). Em contraste, o isolamento induziu redução no número total de levantamentos (F1,22=0,27; p=0,05), principalmente no centro da arena (58%, F1,22=12,48; p<0,01), nos primeiros 15 minutos de teste e significante no 1° e 3° blocos de tempo (BT1 e BT3). Na periferia o isolamento induziu aumento significante no número de levantamentos em BT2 e BT3. O tempo despendido no centro e na periferia da arena pelos animais criados em isolamento foi, respectivamente, reduzido (54%; F1,22=11,11; p<0,001) e aumentado (65%; F1,22=11,20; p<0,01) quando comparados aos animais agrupados. A expressão de EAAC1 foi significantemente aumentada pelo isolamento no CPF (38%, t= 2,730, p=0,017). Em contraste, nenhuma diferença foi encontrada no CE (t= 1,892; p= 0,081). O isolamento não induziu alteração no número de células imunopositivas para GLT1 no CPF (t=-1,28; p=0,21). Entretanto, marcação fluorescente de GLT1 foi observada associada a células gliais e neuroniais do CPF e CE. Os resultados comportamentais sugerem: i) ratos Wistar criados em isolamento social apresentam hiperatividade em novo ambiente; ii) a hiperatividade locomotora somente é detectável após períodos maiores que cinco minutos de exposição a um novo ambiente; iii) o padrão de exploração apresentado pelos animais demonstra clara preferência pela periferia da arena. Os resultados moleculares fornecem evidências para a participação dos transportadores de glutamato na redução da neurotransmissão glutamatérgica no CPF de ratos criados em isolamento a partir do desmame. / Isolation rearing of rats from weaning has been used as an experimental model of psychiatric disorders like schizophrenia. It has been demonstrated that isolation induces morphological, behavioral (like hyperactivity in a novel environment) and neurochemical changes similar to those reported for humans with schizophrenia. Evidence suggest that glutamatergic synapses might be the site of primary abnormalities in this disorder with the dopaminergic changes being secundary to the glutamatergic ones. In this context, changes on the mechanisms of regulation of the glutamatergic neurotransmission through glutamate transporters may contribute to the development and/or maintenance of schizophrenia. In this study we analyzed the pattern of locomotor activity and the expression of glutamate transporters (EAAC1 and GLT1) in prefrontal cortex and entorhinal cortex of rats reared in social isolation from weaning. Male Wistar rats (PND 21) were randomly allocated in 2 groups (n=11-12): control (grouped, 3 animals/cage) or isolated (1 animal/cage) for 10 weeks. The animals were tested in the open field (arena) for 20min. and recorded: number of crossings (horizontal exploration), number of rearings (vertical exploration) and time spent either at the center or at the periphery of the arena. The groups were compared using ANOVA or Sudents \"t\" test (significance level was set at p 0.05). The animals were anesthetized (urethane-Sigma, 25%, 5ml/kg), perfused and the brains removed, frozen and further used on the experiments of immunohistochemistry. Sections (40m) of the prefrontal córtex (PFC) and entorhinal córtex (EC) were used for studying the expression of EAAC1 and GLT1. Isolation rearing induced hyperactivity, with an increase in the number of crossings related to grouped animals (F1,22=0,38; p<0,05), being more consistent at the periphery of the arena and after 5 minutes of test (F1,22=14,08; p<0,001). In contrast, isolation induced a decrease in the total number of rearings (F1,22=0,27; p=0,05), mainly in the center of the arena (58%, F1,22=12,48; p<0,01), in the first 15 minutes of test and significant on the 1st and 3rd blocks of time (BT1 e BT3). In the periphery isolation induced a significant increase in the number of rearings in BT2 and BT3. The time spent in both center and periphery of the arena by the rats reared in isolation was, respectively, decreased (54%; F1,22=11,11; p<0,01) and increased (65%; F1,22=11,20; p<0,01) when compared to grouped rats. The expression of EAAC1 was significantly increased by isolation in PFC (38%, t = 2,730, p = 0,017). In contrast, no change was found in EC (t = 1,892, p = 0,081). Isolation rearing did not induce alterations in the number of immunopositive cells for GLT1 in PFC (t= -1,28; p = 0,21). However, fluorescent labeling of GLT1 was seen associated to both glial cells and neuronal cells. The behavioral results suggest: i) Wistar rats reared in social isolation present hyperactivity in a novel environment; ii) the hyperactivity is only detectable after periods longer than 5 minutes; iii) the pattern of exploration showed by the animals demonstrate clear preference for the periphery of the arena. The molecular results provide evidence for the involvement of glutamate transporters on the reduction of glutamatergic neurotranmission in PFC of rats reared in isolation from weaning.
70

Molekulare Analyse der Nogo Expression und der Myelinisierung im Hippocampus während der Entwicklung und nach Läsion

Meier, Susan 21 February 2006 (has links)
Im Gegensatz zum peripheren Nervensystem (PNS) ist die Regenerationsfähigkeit im adulten zentralen Nervensystem (ZNS) von Vertebraten sehr eingeschränkt. Diese eingeschrängte Regenerationsfähigkeit wird im Wesentlichen durch das Vorhandensein von Myelin im adulten ZNS determiniert. Einerseits ist dieses Lipid für die Stabilisierung und Ernährung von Axonen sowie für die schnelle Reizweiterleitung unbedingt notwendig, andererseits stellt es den größten Inhibitor axonaler Regeneration dar. Myelin ist außerdem Zielstruktur diverser ZNS Pathologien, wie z.B. der Multiplen Sklerose. Für das Verständnis dieser Pathologien sowie der auswachsinhibitorischen Wirkung von Myelin wurde der Hippocampus als eine der plastischten ZNS Regionen gewählt. Dazu waren genaue Kenntnisse der Myeloarchitektur dieses Gebietes notwendig. Nach Etablierung einer zuverlässigen Detektierung für Myelin konnten in der vorliegenden Arbeit detailliert Myelinisierungsvorgänge im sich entwickelnden, im adulten und im deafferenzierten Hippocampus der Ratte analysiert werden. Während der Entwicklung erreichen die ersten entorhinale Axone den Hippocampus bereits am embryonal Tag 17 (E17); Myelin kann jedoch erst am postnatal Tag 17 (P17) lichtmikrokopisch nachgewiesen werden. Die Anzahl myelinisierter Fasern erreicht um den P25 ein Verteilungsmuster, welches dem von adulten Tieren gleicht. Nach Entorhinaler Cortex Läsion (ECL), bei der die Durchtrennung des Tractus perforans (PP) eine Denervation des Hippocampus bewirkt, kommt es zu einem langanhaltenden Verlust von Myelin. Zehn Tage nach Läsion (10 dal), also zum Zeitpunkt maximaler Aussprossung (Sprouting), kommt es zu einem Wiederkehren myelinisierter Fasern. Mehrere myelin-assoziierte Proteine, mit wachstumshemmenden Eigenschaften sind bekannt, wie z.B. die Familie der Nogo Gene (Nogo; englisch, kein Durchkommen). Diese werden ganz entschieden für den Verlust der Regenerationsfähigkeit des adulten ZNS verantwortlich gemacht. In der vorliegenden Arbeit wird die Expression der drei Nogo Gene (Nogo-A, -B, - C) und deren Rezeptor (Ng66R) während der postnatalen Entwicklung, im adulten ZNS sowie nach Läsion beschrieben. Ein erster überraschender Befund war die neuronale Expression der Nogos, die bisher nur in Oligodendrocyten nachgewiesen worden war. Zu einem Zeitpunkt, an dem entorhinale Fasern bereits in den Hippocampus eingewachsen, aber noch nicht myelinisiert sind (P0), wird Nogo-A, -B und Ng66R mRNA mit Ausnahme der Körnerzellschicht des Gyrus dentatus in allen Zellschichten des sich entwickelnden Hippocampus detektiert. Nogo-C und myelin basic protein (MBP) mRNA, werden erst am P15 expremiert, zu einem Zeitpunkt also, an dem myelinisierte Fasern erstmalig im Hippocampus auftreten. MBP wird ausschließlich in glialen, Nogo-C hingegen hauptsächlich in neuronalen Zellen exprimiert. Nach Deafferenzierung zeigt sich eine dynamische und Isoform- spezifische Regulation aller Nogo Transkripte. So zeigen die als erste von der Deafferenzierung betroffenen Körnerzellen zu Beginn der Waller`schen Degeneration sowie der neuronalen und glialen Antwort, eine starke Erhöhung aller Nogo Transkripte. Zum Zeitpunkt der maximalen Aussprossung kam es zu einem signifikanten Abfall der Nogo-C und Ng66R mRNA Expression, währendessen Nogo-A und Nogo-B bereits wieder das Kontrollniveau erreicht hatten. Vor allem im contralateralen Hippocampus, dem Hauptquellgebiet sproutender Fasern, imponierte die Runterregulation von Ng66R mRNA und zeigte erst nach Abschluß von axonalen Sproutingprozessen und der Synapsenformation wieder vergleichbare Werte mit den Kontrolltieren. Diese Korrelation der erniedrigten Ng66R Expression im contralateralen Hippocampus und dem axonalen Einwachsen in den deafferenzierten Hippocampus, läßt eine reduzierte axonale Ansprechbarkeit auf den Neuriten-Auswachshemmer Nogo-A vermuten, da bekannt ist, dass Axone, die kein Ng66R exprimieren, nicht durch die Nogo Gene im Wachstum gehemmt werden. Zusammenfassend kommt es während der Entwicklung und in der Reorganisationsphase zu einer spezifischen und geordneten Myelinisierung im Hippocampus. Die neuronale Expression von Nogo- A, -B und -C in einer so plastischen ZNS- Region unterstützt die Hypothese, dass den Nogo- Genen neben der reinen Hemmung von axonalen Auswachsen weitere Funktionen zuzuordnen sind. So scheinen sie vor allem während der Entwicklung und während der Stabilisierungsphase der hippocampalen Reorganisation eine wichtige Rolle einzunehmen. Die hier dargestellten Daten zeigen auf, dass vor einem therapeutischen Einsatz von Nogo- Antagonisten nach Schädigung deren Verträglichkeit bzw. unerwünschte Nebeneffekte ausgeschlossen werden müssen. / Compared to the peripheral neuronal system (PNS) the reorganisation capacity in the adult central neuronal system (CNS) is highly restricted. One important reason for the lack of reorganisation is the existence of myelin in the CNS. Myelin is crucial for the stabilization of axonal projections in the developing and adult mammalian brain. However, myelin components also act as a non-permissive and repellent substrate of outgrowing axons. In these thesis the appearance of mature, fully myelinated axons during hippocampal development and following entorhinal cortex lesion with the myelin-specific marker Black Gold is reported. Althrough entorhinal axons enter the hippocampal formation at the embryonic day 17, light and ultrastructural analysis revealed that mature myelinated fibres in the hippocampus occur in the second postnatal week. During postnatal development, increasing numbers of myelinated fibers appear and the distribution of myelinated fibers at postnatal day 25 was similar to that found in the adult. After entorhinal cortex lesion, a specific anterograde denervation in the hippocampus takes place, accompanied by a long- lasting loss of myelin. Quantitative analysis of myelin and myelin breakdown products at different time points after lesion revealed a temporally close correlation to the degeneration and reorganisation phases in the hippocampus. In conclusion, it could be shown that the appearance of mature axons in the hippocampus is temporally regulated during development. Reappearing mature axons were found in the hippocampus following axonal sprouting. Various myelin-associated proteins, with neurite inhibition properties are known. One is the family of Nogo genes (no go). They are distinctly responsible for the lack of reorganisation. In these thesis the expression pattern of Nogo-A, Nogo-B, Nogo-C and Nogo-66 receptor (Ng66R) mRNA during hippocampal development and lesion induced axonal sprouting is reported. The first surprising result was the neuronal expression of all Nogos, who were supposed to be only expressed by oligodendrocytes. Nogo-A, Nogo-B and Ng66R transcrips preceded the process of myelination and were highly expressed at postnatal day zero (P0) in all principal hippocampal cell layers, with the exception of dentate granule cells. Only a slight Nogo-C expression was found at P0 in the principal cell layers of the hippocampus. During adulthood, all Nogo splice variants and their receptor were expressed in the neuronal cell layers of the hippocampus, in contrast to the myelin basic protein mRNA expression pattern, which revealed a neuronal source of Nogo gene expression in addition to oligodendrocytes. After hippocampal denervation, the Nogo genes showed an isoform-specific temporal regulation. All Nogo genes were strongly regulated in the hippocampal cell layers, wheras the Ng66R transcrips showed a significant increase in the contralateral cortex. These data could be confirmed on protein levels. Futhermore, Nogo-A expression was up-regulated after kainat- induced seizure. These data show that neurons express Nogo genes with a clearly distinguishable pattern during development. This expression is further dynamically and isoform-specifically altered after lesioning during the early phase of structural rearrangements. Thus, these results indicate a role for Nogo-A, -B and –C during development and during stabilisation phase of hippocampal reorganization. Taken together with these data, the findings that neurons in a highly plastic brain region express Nogo genes supports the hypothesis that Nogo may function beyond its known neuronal growth inhibition activity in shaping neuronal circuits.

Page generated in 0.0462 seconds